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Abstract: This paper investigates the thermodynamic functions of the universe in the presence of viscous fluid in general relativity 

and Lyra geometry. The space-time is modeled by Bianchi type 𝑉𝐼0 cosmological model. The field equations' solution is obtained 

considering that the scalar expansion θ of the cosmological model is proportional to the eigenvalue 𝜎1
1 of the shear tensor 𝜎𝑖

𝑗
. The 

thermodynamic functions are studied for the universe and their values are compared in general relativity and Lyra geometry. For all 

obtained models, the entropy is consistent with the second law of thermodynamics. The physical and geometrical properties of the 

obtained models are discussed. Also, we show that the Lyra term 𝛽 plays the role of the variable cosmological term in the relativity 

theory and can not be identified as a viscosity term. Without the viscosity term, we obtain the entropy as a constant 𝑺= constant. That 

is the universe is in an adiabatic state. The Bianchi type 𝑉𝐼0 cosmological model presented in this paper explains a stage of evolution 

with the positive deceleration parameter. 
Keywords: Lyra geometry; Bianchi type 𝑉𝐼0 cosmological model; Viscosity, Energy momentum tensor; Thermodynamic functions. 

  

1. Introduction 

After Einstein [1] introduced his general relativity theory, 

which is a geometrizing of gravitation by identifying the metric 

tensor,𝑔𝑖𝑗, with the gravitational potentials. In 1918, Weyl [2] 

introduced a generalization of Riemannian geometry by 

introducing a scalar field Φ to be identified with the 

electromagnetic field in a trial to geometrize both 

electromagnetism and gravitation. This generalization was 

criticized by Einstein [3] due to the concept of the non-

integrability of length transfer. In 1952, Lyra [4] proposed a 

modification of Riemannian geometry. He introduced the 

notation of a gauge function,𝑥0(𝑥𝑖), in his manifold. In Lyra 

geometry, the transfer of length is integrable, and the connection 

is preserved as in Riemannian geometry. When 𝑥0(𝑥𝑖) = 1, the 

curvature scalar of Lyra and Weyl is identical. 

Bianchi type 𝑉𝐼0  cosmological model  is suitable  for 

describing the universe since it is  inhomogeneous, anisotropic 

and a generalization of the FRW cosmological model, in 

addition, it plays an important role with the Bianchi family, in 

understanding and describing the early and present stages of the 

evolution of the universe 

In relativity theory, Bianchi type 𝑉𝐼0 space-time with 

different forms of matter distribution was investigated. Dark 

energy Bianchi type 𝑉𝐼0 model with the equation of state as a 

variable was studied by Amirhashchi et al. [5]. Sharma et al. [6] 

investigated inhomogeneous Bianchi type 𝑉𝐼0  space-time in the 

case of stiff matter (𝑝 = 𝜌). In the existence of dark energy fluid 

and an attractive massive scalar fluid, Aditya et al. [7] 

investigated the dynamical aspects of the Bianchi type 𝑉𝐼0 

model. In the presence of perfect fluid, Mishra and Biswal [8] 

presented a self-consistent system of a five-dimensional Bianchi 

type 𝑉𝐼0  model with dark energy. Bali and Poonia [9] studied 

Bianchi type 𝑉𝐼0 inflationary model with flat potential. Bianchi 

type 𝑉𝐼0 cosmological model in the existence of the 

electromagnetic field and variable deceleration parameter was 

studied by Hegazy and Rahaman [10]. Roy and Narain [11] 

investigated the inhomogeneous Bianchi type 𝑉𝐼0  model. 

Bianchi type 𝑉𝐼0 in the theory of self-creation and Lyra 

geometry was studied by Hegazy and Rahaman [12]. Priyanka 

et al. [13] presented dark energy Bianchi type 𝐼0 , cosmological 

models, with the equation of state parameters as a constant and 

time-dependent. For a cosmological term 𝛬 as a function of 𝑡, 
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Tripathi et al. [14] investigated an inhomogeneous Bianchi type 

𝑉𝐼0 cosmological model. Kate et al. [15] examined some 

solutions in Bianchi type 𝑉𝐼0  models with modification of 

chaplain gas. Adhav et al. [16] discussed the nature of the 

anisotropic dark energy Bianchi type 𝑉𝐼0 model. 

In the existence of viscosity, some cosmological models in 

different theories of relativity were studied. Bianchi type 𝐼 string 

cosmological model with negative constant deceleration 

parameter and bulk viscous fluid in the general relativity theory 

studied by Singh and Baro [17]. Bianchi type 𝑉𝐼0  holographic 

Ricci dark energy model in the Brans-Dicke theory [18] was 

studied by Santhi et al. [19]. In 𝑓(𝑅, 𝑇) theory: Prasad et al. [20] 

studied the bulk viscous accelerating universe, Sahoo and Reddy 

[21] studied LRS Bianchi type I bulk viscous models, Ram and 

Kumari [22] discussed Bianchi types 𝑉 and 𝐼 cosmological 

models, Samanta et al. [23] studied bulk viscous Kaluza-Klein 

models and validity of the second law of thermodynamics, 

Mahanta [24] studied bulk viscous cosmological models and 

Satish and Venkateswarlu [25] investigated Kaluza Klein 

cosmological models with bulk viscous fluid. By using the 

technique of Letelier and Stachel in the Bimetric theory of 

gravitation, the Bianchi type 𝐼 bulk viscous fluid string dust 

cosmological model with the magnetic field was investigated by 

Borkar and Charjan [26]. With a new proposed form of time-

dependent deceleration parameter, Singh and Bishi [27] 

presented FRW cosmological model in the Brans Dicke theory. 

An inhomogeneous plane-symmetric bulk viscous model with 

variable 𝛬 studied by Pandey and Pradhan [28]. Bali and 

Pradhan [29] presented Bianchi type III string cosmological 

models with variable bulk viscosity. In Lyra geometry: 

Accelerating Bianchi type 𝑉𝐼0  model with bulk viscosity was 

studied by Asgar and Ansari [30], Kandalkar and Samdurkar 

[31] investigated LRS Bianchi type 𝐼 in the presence of the 

viscosity and Five-dimensional homogeneous cosmological 

models with variable bulk viscosity and 𝐺 were studied by Singh 

et al. [32]. Singh and Kale [33] dealt with anisotropic bulk 

viscous models with variables 𝐺 and 𝛬. In Saez-Ballester's 

theory, Mishra and Dua [34] constructed a new class of bulk 

viscous string cosmological models. In the presence of viscosity 

and variable cosmological term 𝛬, Bianchi type 𝐼 was studied 

by Bali and Singh [35]. In Lyra geometry and relativity theory, 

Hegazy [36] introduced Bianchi type 𝐼 space-time. Mohanty and 

Samanta [37] studied five-dimensional cosmological models in 

the absence of bulk viscosity, in the existence of constant bulk 

viscosity, and in the case of variable bulk viscosity. 

As a consequence of the previous studies, we investigate the 

Bianchi type 𝑉𝐼0 cosmological model in the presence of viscous 

fluid. In section 2 we present the results and discussion of the 

study. The conclusion is indicated in section 3. 

2. Results and discussion 

For the Bianchi type 𝑉𝐼0 model, 𝑑𝑠2 ( Line element) takes 

the form:  

𝑑𝑠2 = [𝐴(𝑡)]2𝑑𝑥2 + [𝐵(𝑡)]2𝑒2𝑚𝑥𝑑𝑦2 + [𝐶(𝑡)]2𝑒−2𝑚𝑥𝑑𝑧2 −

𝑑𝑡2, (1) 

 In the normal gauge (𝑥0(𝑥𝑖) = 1), the field equations as 

obtained by Sen [38] on Lyra geometry reads as.  

𝐺𝑖𝑗 +
3

2
ϕ𝑖ϕ𝑗 −

3

4
𝑔𝑖𝑗ϕ𝑘ϕ

𝑘 = −𝜒𝑇𝑖𝑗 , (2) 

 where 𝐺𝑖𝑗  is the Einstein tensor and 𝜙𝑖 is a displacement vector 

that has only a time component and is given by: ϕ𝑖 =

(0,0,0, [𝛽(𝑡)]). (3) 

 𝑇𝑖𝑗  is the momentum tensor in the form  [39], [40]:  

𝑇𝑖
𝑗
= (𝜌 + 𝑝)𝑢𝑖𝑢

𝑗 + 𝑝𝑔𝑖
𝑗
− 𝜉𝜃[𝑔𝑖

𝑗
+ 𝑢𝑖𝑢

𝑗], (4) 

 where 𝜉 is the coefficient of the bulk viscosity, 𝜃 the scalar 

expansion, 𝜌 the density, and 𝑝 the pressure. In co-moving 

coordinates (𝑢1 = 0 = 𝑢2 = 𝑢3, 𝑢4 = 1, 𝑢4 = −1, 𝑢𝑖𝑢
𝑗 = −1) 

with (4) we get:  

𝑇1
1 = [𝑝 − 𝜉𝜃] = 𝑇2

2 = 𝑇3
3,    𝑇4

4 = −𝜌, (5) 

 Form(1) and (2), we get:  

𝐵̈

𝐵
+
𝐶̈

𝐶
+
𝐵̇𝐶̇

𝐵𝐶
+
𝑚2

𝐴2
+
3

4
𝛽2 = −𝜒[𝑝 − 𝜉𝜃], (6) 

 
𝐴̈

𝐴
+
𝐶̈

𝐶
+
𝐴̇𝐶̇

𝐴𝐶
−
𝑚2

𝐴2
+
3

4
𝛽2 = −𝜒[𝑝 − 𝜉𝜃], (7) 

 
𝐴̈

𝐴
+
𝐵̈

𝐵
+
𝐴̇𝐵̇

𝐴𝐵
−
𝑚2

𝐴2
+
3

4
𝛽2 = −𝜒[𝑝 − 𝜉𝜃], (8) 

 𝑚[
𝐵̇

𝐵
−
𝐶̇

𝐶
] = 0, (9) 

 
𝐴̇𝐵̇

𝐴𝐵
+
𝐴̇𝐶̇

𝐴𝐶
+
𝐵̇𝐶̇

𝐵𝐶
−
𝑚2

𝐴2
−
3

4
𝛽2 = 𝜒𝜌. (10) 

 Dot means the ordinary differentiation according to the 
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coordinate 𝑡. 

The conservation 𝑇𝑗
𝑖 (𝑇𝑗;𝑖

𝑖 = 0) gives:  

𝜌̇ + (𝑝 + 𝜌 − 𝜉𝜃)(
𝐴̇

𝐴
+
𝐵̇

𝐵
+
𝐶̇

𝐶
) = 0. (11) 

 Conservation of the L. H. S. of (2) gives:  

3

2
𝛽(𝛽̇ + 𝛽[

𝐴̇

𝐴
+
𝐵̇

𝐵
+
𝐶̇

𝐶
]) = 0. (12) 

 Solutions of (12) are given by:  

𝛽 = 0,        𝑎𝑛𝑑        𝛽 =
𝑁1

𝐴𝐵𝐶
, (13) 

 where 𝑁1 is a constant of integration. 

In the case 𝛽 = 0, we reduce to the general theory of 

relativity which will be studied later. 

Equation (13) gives the value of β by 𝐴, 𝐵, 𝐶, and equation 

(9) gives 

𝐶 = 𝑘1𝐵. (14) 

 By using (9) in (7) and (8) we see that the two equations are 

equal. Hence, we have five equations (6), (7) or (8), (10)-(12) 

with five unknowns 𝐴, 𝐶 or 𝐵, 𝜌, 𝑝 and 𝜉. Logically, five 

equations with five unknowns so solutions are possible. From 

(6) and (7) we get: 

𝐵̈

𝐵
+
𝐵̇𝐶̇

𝐵𝐶
−
𝐴̈

𝐴
−
𝐴̇𝐶̇

𝐴𝐶
+
2𝑚2

𝐴2
= 0. (15) 

 To find the solution of (15), we impose the following 

constraints (physical condition) on space-time: considering that 

the scalar expansion 𝜃 of the cosmological model is proportional 

to the eigenvalue 𝜎1
1  of the shear tensor 𝜎𝑖

𝑗
, that is 

𝐴 = (𝐵𝐶)𝐿 , (16) 

 where 𝐿 is a constant. 

From (14) and (16), equation (15) becomes:  

𝐵̈

𝐵
+ (2𝐿 + 1)

𝐵̇2

𝐵2
= 𝑏𝐵−4𝐿 , (17) 

 where 𝑏 =
2𝑚2

𝑘1
2𝐿(2𝐿−1)

. 

From (17), 𝐵(𝑡) reads as:  

𝐵(𝑡) = (√
𝑚2𝑘1

−2𝐿

(2𝐿−1)
  2𝐿𝑡 + 𝑘4)

1

2𝐿

, (18) 

 where 𝑘4 is a constant. 

From (14) and (16) we get:  

𝐴(𝑡) = 𝑘1
𝐿 (√

𝑚2𝑘1
−2𝐿

(2𝐿−1)
  2𝐿𝑡 + 𝑘4) ,        𝐶(𝑡) = 𝑘1 (√

𝑚2𝑘1
−2𝐿

(2𝐿−1)
  2𝐿𝑡 + 𝑘4)

1

2𝐿

. (19) 

 The line element (1) reads as:  

𝑑𝑠2 = 𝑘1
2𝐿𝑇2𝑑𝑥2 + 𝑇

1

𝐿𝑒2𝑚𝑥𝑑𝑦2 + 𝑘1
2𝑇

1

𝐿𝑒−2𝑚𝑥𝑑𝑧2 − 𝑑𝑡2, (20) 

 where  

𝑇 = (√
𝑚2𝑘1

−2𝐿

(2𝐿 − 1)
  2𝐿𝑡 + 𝑘4). 

From (13) the additional term 𝛽 introduced by Lyra reads as:  

𝛽 = 𝑁1𝑘1
−𝐿−1𝑇−

𝐿+1

𝐿 . (21) 

 For the model (20), the spatial volume 𝑉 = 𝑘1
𝐿+1(𝑇)

1

𝐿
+1

. The 

non-vanishing components of the (𝜎𝑖
𝑗
) read as 𝜎1

1 = −2𝜎2
2 =

−2𝜎3
3 =

2(2𝐿−1)

3𝑇
. The shear 𝜎2 =

(2𝐿−1)𝑚2𝑘1
−2𝐿

3(𝑇)2
. the scalar 

expansion 𝜃 =
2(𝐿+1)√

𝑚2𝑘1
−2𝐿

2𝐿−1

𝑇
. 

From (10), we get:  

𝜌 =
𝑘1
−2(𝐿+1)

(𝑇)
−
2(𝐿+1)
𝐿 (8𝑘1

2(𝐿+1)𝑚2(𝑇)2/𝐿+3(1−2𝐿)𝑁1
2)

4(2𝐿−1)𝜒
. (22) 

 From (6)-(8), the term (𝑝 − 𝜉𝜃) reads as:  

𝑝 − 𝜉𝜃 =
2(𝐿−1)𝑚2𝑘1

−2𝐿

(2𝐿−1)𝜒(𝑇)2
−
3𝑁1

2𝑘1
−2(𝐿+1)

(𝑇)
−
2(𝐿+1)
𝐿

4𝜒
, (23) 

 We can split (23) to gives:  

𝑝 =
𝑘1
−2𝐿(

8𝐿𝑚2

2𝐿−1
−
3𝑁1

2(𝑇)−2/𝐿

𝑘1
2 )

4𝜒(𝑇)2
, (24) 

 and  

𝜉𝜃 =
2𝑚2𝑘1

−2𝐿

(2𝐿−1)𝜒(𝑇)2
. (25) 

Hence : 

𝜉 =
𝑚2𝑘1

−2𝐿

(𝐿+1)(2𝐿−1)𝜒√
𝑚2𝑘1

−2𝐿

2𝐿−1
(𝑇)

. (26) 

 At the beginning of evolution, 𝑝, 𝜌, and 𝜉 begin with large 

values as 𝑡 = 0 and at 𝑡 → ∞, 𝑝, 𝜌, and 𝜉 tend to zero. 

 

2.1. Effect of the viscosity on thermodynamic functions 

The second law of thermodynamics state that the 

entropy of the universe will increase over time and can never be 

negative. Entropy defines as a measure of randomness in the 

system. Due to internal and external dissipative effects, the 

entropy changes and these changes is always non-negative i.e. 

𝑑𝑺 > 0. The enthalpy (𝑯) is a measure of the heat content of 

the physical system (universe). The Gibbs energy (𝑮) can be 
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defined as the maximum amount of work that can be extracted 

from a universe. Helmholtz's energy (𝑭) is a measure of the 

useful work in the universe. 

In the second self-creation theory, Hegazy [41] studied 

Bianchi's type 𝑉𝐼 model in the existence of perfect fluid and 

obtained a mathematical expression for deriving entropy. 

Hegazy and Rahman [12] proved that the additional component 

introduced by Lyra has no effect on the entropy because its 

arises from geometry and is not a part of the momentum tensor. 

In the relativity theory, Hegazy and Rahman [42] studied the 

thermodynamic functions of the universe in the existence of the 

electromagnetic field. Hegazy [43] explained the 

thermodynamic functions of the universe with help of the scalar 

field 𝜙. Hegazy [44] gave the effect of viscosity on the 

thermodynamic functions of the universe. Hegazy [36] 

identified the Lyra term as viscosity and explains its effect on 

thermodynamic functions. 

For the entropy problem 𝑺, we have 𝑑𝑺 > 0 (second 

law of thermodynamics). The change in the entropy with time, 

reads as [36], [44]:  

𝑑𝑺𝐿𝑦𝑟𝑎

𝑑𝑡
=
2𝜋𝑉[𝜉𝜃2]

𝐻
= −

12𝜋𝑚2𝑘1
1−𝐿(𝑇)

1
𝐿−1

𝜒−2𝐿𝜒
, (27) 

 by integration we get:  

𝑺𝐿𝑦𝑟𝑎 = −
6𝜋𝑚2𝑘1

1−𝐿(𝑇)1/𝐿

(𝜒−2𝐿𝜒)√
𝑚2𝑘1

−2𝐿

2𝐿−1

. (28) 

 If the internal energy 𝑈 is given by 𝜌𝑉 and the temperature 𝑇 =

𝐻 (𝑚𝑒𝑎𝑛  𝐻𝑢𝑏𝑏𝑙𝑒  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

2𝜋
 [45] we get: The enthalpy (𝑯𝑳𝒚𝒓𝒂), the 

Helmholtz energy (𝑭𝑳𝒚𝒓𝒂) and the Gibbs energy (𝑮𝑳𝒚𝒓𝒂) read as:  

𝑯𝐿𝑦𝑟𝑎 = 𝑈 + 𝑃𝑉 = (𝜌 + 𝑃)𝑉 =

𝑘1
−𝐿−1(𝑇)

−
𝐿+1
𝐿 (4𝑘1

2(2𝐿+1)𝑚2(𝑇)2/𝐿+3(1−2𝐿)𝑁1
2)

2(2𝐿−1)𝜒.
, (29) 

𝑭𝐿𝑦𝑟𝑎 = 𝑈 − 𝑇𝑺𝐿𝑦𝑟𝑎 = −
3𝑁1

2𝑘1
−𝐿−1(𝑇)

−
𝐿+1
𝐿

4𝜒
, (30) 

𝑮𝐿𝑦𝑟𝑎 = 𝑯𝐿𝑦𝑟𝑎 − 𝑇𝑺𝐿𝑦𝑟𝑎 =

𝑘1
−𝐿−1(𝑇)

−
𝐿+1
𝐿 (4𝑘1

2𝐿𝑚2(𝑇)2/𝐿+3(1−2𝐿)𝑁1
2)

2(2𝐿−1)𝜒
. (31) 

 

2.2. Bianchi type 𝑽𝑰𝟎 cosmological model in the relativity 

theory only. 

In the relativity theory ( Lyra term 𝛽 = 0), there are no 

changes in the metric coefficients since they are not dependent 

on 𝛽. The physical quantities: 𝜌𝐺𝑅 , 𝑝𝐺𝑅  , and 𝜉𝐺𝑅 are changed 

and read as: 

𝜌𝐺𝑅 =
2(𝐿+1)𝑚2𝑘1

−2𝐿

(2𝐿−1)𝜒(𝑇)2
, (32) 

 𝑝𝐺𝑅 − 𝜉𝐺𝑅𝜃 =
2(𝐿−1)𝑚2𝑘1

−2𝐿

(2𝐿−1)𝜒(𝑇)2
. (33) 

 Equation (33) can be divided as:  

𝜉𝐺𝑅𝜃 =
𝑚2𝑘1

−2𝐿

𝜒(𝑇)2
, (34) 

 and  

𝑝𝐺𝑅 =
(4𝐿−3)𝑚2𝑘1

−2𝐿

(2𝐿−1)𝜒(𝑇)2
. (35) 

 From (27), we get:  

𝑑𝑺𝐺𝑅

𝑑𝑡
=
2𝜋𝑉[𝜉𝐺𝑅𝜃

2]

𝐻
=
6𝜋𝑚2𝑘1

1−𝐿(𝑇)
1
𝐿−1

𝜒
, (36) 

 by integration we get:  

𝑺𝐺𝑅 =
3𝜋𝑚2𝑘1

1−𝐿(𝑇)1/𝐿

𝜒√
𝑚2𝑘1

−2𝐿

2𝐿−1

. (37) 

 

The thermodynamic functions read as:  

𝑯𝐺𝑅 =
(6𝐿−1)𝑚2𝑘1

1−𝐿(𝑇)
1
𝐿−1

(2𝐿−1)𝜒
, (38) 

 𝑮𝐺𝑅 = −
𝐿(2𝐿−5)𝑚2𝑘1

1−𝐿(𝑇)
1
𝐿−1

(2𝐿−1)𝜒
, (39) 

 𝑭𝐺𝑅 = −
(𝐿+1)(2𝐿−3)𝑚2𝑘1

1−𝐿(𝑇)
1
𝐿−1

(2𝐿−1)𝜒
. (40) 

 Now, we make a comparative study between the results 

obtained in relativity theory and Lyra geometry. The constants 

are taken as 𝑚 = 1, 𝑘1 = 1, 𝑁1 = 5, 𝜉 = 8𝜋, 𝐾4 = 1 and 𝐿 =

2. 
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Figure 1. The entropy 𝑺𝐺𝑅 (Thick line) and the entropy 𝑺𝐿𝑦𝑟𝑎 

(Dashed line) vs. time 𝑡, 0 < 𝑡 < 30. 

 

       The behavior of the entropy in relativity theory and Lyra 

geometry is consistent with the fundamental of the second law 

of thermodynamics, 𝑑𝑺𝐺𝑅 > 0, 𝑑𝑺𝐿𝑦𝑟𝑎 > 0. The entropy 𝑺𝐿𝑦𝑟𝑎 

and 𝑺𝐺𝑅  begin with small values at the beginning of evolution 

and increase as time is released and reach infinities at the end of 

evolution. 

 
Figure 2. The absolute values of 𝑭𝐺𝑅 (Thick line) and 𝑭𝐿𝑦𝑟𝑎 

(Dashed line) vs. time t, 0 < 𝑡 < 30. 

 

For the interval 0 < 𝑡 ≤ 4, 𝐹𝐿𝑦𝑟𝑎 has no value. For the interval 

4 < 𝑡 < 8, the value of 𝑭𝐿𝑦𝑟𝑎 > 𝑭𝐺𝑅 . For 𝑡 > 8, the value of 

𝑭𝐺𝑅 > 𝑭𝐿𝑦𝑟𝑎. We can say that. For the interval 4 < 𝑡 < 30, the 

value of 𝑭𝐺𝑅 and 𝑭𝐿𝑦𝑟𝑎 are closer to each other. Hence, we can 

conclude that the two theories (Lyra, General relativity) are 

complete with each other.  

 
 Figure 3. The absolute values of 𝑯𝐺𝑅 (Thick line) and 𝑯𝐿𝑦𝑟𝑎 

(Dashed line) vs. time t, 0 < 𝑡 < 30.  
 
At 𝑡 = 0 , 𝑯𝐺𝑅  has a large value. 𝑯𝐺𝑅  reduces to a 

small value at the end of evolution. At 𝑡 = 3, from the beginning 

of evolution 𝑯𝐺𝑅 = 𝑯𝐿𝑦𝑟𝑎 . For the interval 

 3 < 𝑡 < 4, 𝑯𝐿𝑦𝑟𝑎   reduces to reach zero, and as 𝑡 > 4, 𝑯𝐿𝑦𝑟𝑎 

is increasing to reach nearly the same value as 𝑯𝐺𝑅 . It is 

noticed that the Lyra geometry gave different behaviors for the 

enthalpy of general relativity compared with Lyra geometry.  

 
Figure 4. The absolute values of 𝑮𝐺𝑅 (Thick line) and 𝑮𝐿𝑦𝑟𝑎 

(Dashed line) vs. time t, 0 < 𝑡 < 30. 

 
𝑮G𝑅 has large value at the beginning of evolution and 

decreases as time elapsed. For the interval 0 ≤ 𝑡 ≤ 5, 𝑮𝐿𝑦𝑟𝑎 =

𝑧𝑒𝑟𝑜 . For the interval 5 < 𝑡 < 12 , 𝑮𝐿𝑦𝑟𝑎  decreases to reach 

zero and as 𝑡 > 12, 𝑮𝐿𝑦𝑟𝑎  increases. We can say that Lyra’s 
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geometry is not enough to explain the behavior of 𝑮 from the 

beginning of evolution. So, we need the two theories to complete 

each other. For ( 𝑡 < 6 , 𝑮 = 𝑧𝑒𝑟𝑜 ) missing stage in Lyra 

geometry can be described from general relativity.    

2.3. Bianchi Type 𝑽𝑰𝟎 Cosmological Model in the Absence of 

Viscosity. 

In the absence of the viscosity term 𝜉 = 0, from (6) - 

(10) we obtain the same value for the metric coefficients 

𝐴(𝑡), 𝐵(𝑡), and 𝐶(𝑡) as given in equations (18) and (19). The 

pressure, density, and thermodynamics function of the universe 

will be different from the previous cases and read as: 

Case 1: In Lyra geometry  

𝑝 =
𝑘1
−2(1+𝐿)

𝑇
−
2(1+𝐿)
𝐿 (3(1−2𝐿)𝑁1

2+8(−1+𝐿)𝑚2𝑘1
2𝑇2/𝐿)

4(−1+2𝐿)𝜒
, (41) 

 

 

𝜌 =
𝑘1
−2(1+𝐿)

𝑇
−
2(1+𝐿)
𝐿 (3(1−2𝐿)𝑁1

2+8(1+𝐿)𝑚2𝑘1
2𝑇2/𝐿)

4(−1+2𝐿)𝜒
. (42) 

 From (27), the change in the entropy with time becomes: 

𝑑𝑺𝐿𝑦𝑟𝑎

𝑑𝑡
= 0, by integration we get 𝑺𝐿𝑦𝑟𝑎 = 𝐶1. The 

thermodynamic functions read as:  

𝑯𝐿𝑦𝑟𝑎 =
𝑘1
−1−𝐿𝑇

−
1+𝐿
𝐿 (3(1−2𝐿)𝑁1

2+8𝐿𝑚2𝑘1
2𝑇2/𝐿)

2(−1+2𝐿)𝜒
, (43) 

𝑭𝐿𝑦𝑟𝑎 =
−
4(1+𝐿)𝐶1

√𝑚
2𝑘1
−2𝐿

−1+2𝐿

𝜋
+
𝑘1
−1−𝐿𝑇−1/𝐿(9(1−2𝐿)𝑁1

2+24(1+𝐿)𝑚2𝑘1
2𝑇2/𝐿)

(−1+2𝐿)𝜒

12𝑇
,

 (44) 

𝑮𝐿𝑦𝑟𝑎 =

−
2(1+𝐿)𝐶1

√𝑚
2𝑘1
−2𝐿

−1+2𝐿

𝜋
+
𝑘1
−1−𝐿𝑇−1/𝐿(9(1−2𝐿)𝑁1

2+24𝐿𝑚2𝑘1
2𝑇2/𝐿)

(−1+2𝐿)𝜒

6𝑇
. (45) 

  

Case 2: In general relativity 

𝜌𝐺𝑅 =
2(1+𝐿)𝑚2𝑘1

−2𝐿

(−1+2𝐿)𝜒𝑇2
,    𝑝𝐺𝑅 =

2(−1+𝐿)𝑚2𝑘1
−2𝐿

(−1+2𝐿)𝜒𝑇2
. (46) 

    The change in the entropy 
𝑑𝑺𝐺𝑅

𝑑𝑡
= 0 that is 𝑺𝐺𝑅 = 𝐶1 

(constant). The thermodynamics functions read as:  

𝑯𝐺𝑅 = −
4𝐿𝑚2𝑘1

1−𝐿𝑇
−1+

1
𝐿

𝜒−2𝐿𝜒
, (47) 

𝑮𝐺𝑅 = −
(1+𝐿)𝐶1√

𝑚2𝑘1
−2𝐿

−1+2𝐿

3𝜋𝑇
−
4𝐿𝑚2𝑘1

1−𝐿𝑇
−1+

1
𝐿

𝜒−2𝐿𝜒
, (48) 

𝑭𝐺𝑅 =

(1+𝐿)

(

 
 
−
𝐶1
√𝑚

2𝑘1
−2𝐿

−1+2𝐿

𝜋
−
6𝑚2𝑘1

1−𝐿𝑇
1
𝐿

𝜒−2𝐿𝜒

)

 
 

3𝑇
. (49) 

 

In the following, we make a comparative study 

between the results obtained in Lyra geometry and general 

relativity. 

 
Figure.5  The absolute values of the Helmholtz 𝑭𝐺𝑅 (Thick 

line) and the Helmholtz 𝑭𝐿𝑦𝑟𝑎 (Dashed line) vs. time t, 0 <

𝑡 < 30. 

 

 For 𝑡 ≤ 5, 𝑭𝐿𝑦𝑟𝑎 = 0 and as 𝑡 > 5 𝑭𝐿𝑦𝑟𝑎  decreases to 

reach a small value at the end of the present evolution. For 0 <
𝑡 < 2, 𝑭𝐺𝑅 is reduced to reach zero at 𝑡 = 2 and increases again 

to reach nearly the same value of 𝑭𝐿𝑦𝑟𝑎 at the end of the present 

stage of evolution.  

  
Figure.6 The absolute values of the Enthalpy 𝑯𝐺𝑅 (Thick line) 

and the Enthalpy 𝑯𝐿𝑦𝑟𝑎 (Dashed line) vs. time t, 0 < 𝑡 < 30.  
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At the beginning of evolution, the values of 𝐻𝐺𝑅  and 

𝐻𝐿𝑦𝑟𝑎  are closer to each other. In the interval 0 < 𝑡 < 6, 

𝐻𝐿𝑦𝑟𝑎 decreases to reach a small value, and as 𝑡 > 6  they 

increase and reach nearly the same value of 𝐻𝐺𝑅   at the end of 

the evolution. 

  
Figure. 7  The absolute values of the Gibbs function 𝑮𝐺𝑅 

(Thick line) and the Gibbs function 𝑮𝐿𝑦𝑟𝑎 (Dashed line) vs. 

time t, 0 < 𝑡 < 30. 

 

 For the interval 𝑡 < 6, 𝑮𝐿𝑦𝑟𝑎 = 0. 𝑮𝐺𝑅 decreases to 

reach zero at 𝑡 = 1 and increases again until the end of 

evolution. At 𝑡 = 17 𝑮𝐿𝑦𝑟𝑎 = 𝑮𝐺𝑅 and for > 17 𝑮𝐿𝑦𝑟𝑎 < 𝑮𝐺𝑅. 

 

3. Conclutions 

In the present paper, we have studied Bianchi's type 

𝑉𝐼0  model in Lyra geometry and the relativity theory. In this 

study, the Lyra term can not be defined as a viscosity term as in 

[36] since we obtain a nonintegrable equation for the change in 

the entropy (not a useful choice). The suitable description of the 

additional term introduced by Lyra is it plays the role of a 

variable cosmological term in general relativity. The additional 

term introduced by Lyra affects the behavior of the pressure and 

the density which causes a change in the thermodynamic 

functions of the universe. The model does not explain an 

accelerating universe as 𝑞 > 0. If we tried to deal with an 

accelerating universe, we need 𝐿 < 0.5 which makes the 

universe imaginary (not accepted). So, the presented model 

represents a stage of evolution in which 𝑞 > 0. The pressure and 

the density have large values at the beginning of evolution, 

reduce to constant values as 𝑡 = 𝑡0 and reach small values at the 

end of the present evolution. The behavior of entropy in general 

relativity and Lyra geometry is consistence with the second law 

of thermodynamics. 

In the absence of the viscosity term 𝜉 = 0, the entropy 

S is obtained as a constant in Lyra geometry and in general 

relativity. But, It is known that the values of the pressure and 

density change with time which means that the entropy must 

change also with time which means S is not a constant and must 

be increased (the second law of thermodynamics). Hence, in the 

presence of the perfect fluid, the gravitational theory based on 

Lyra geometry and the general relativity theory is not suitable 

for explaining the entropy as an increasing function of 𝑡. An 

alternative gravitational theory that can give a good explanation 

for the entropy as an increasing function of t in the case of a 

perfect fluid is the second self-creation theory [12], [43], and 

[44]. Due to the additional term β introduced by Lyra, the 

behaviors of the thermodynamic functions obtained in Lyra 

geometry are differs from those obtained in the general relativity 

theory as indicated in figures (5), (6), and (7). 
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