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ABSTRACT 

Negative skin friction (NSF) is considered one of the most popular problems in the design of 
piled foundations in consolidating soils. NSF develops on piles when the settlement of the 

surrounding soils is greater than that of the piles. When the relative shear displacement ( ) 
increased than limiting value the slip at soil-pile interface is induced. As a result an additional 

compression force on the pile called drag-load ( ) and an extra pile displacement called 
down-drag (W). Both NSF and down-drag (W) are time dependent. However, the mechanism 
of NSF mobilization on pile is still not well understood and often several pile design codes 
provide different recommendations to calculate NSF. At the meantime, codes dealing with 
down-drag calculations are scarce. In the present study, the behavior of single piles 
embedded in consolidating clay is analyzed by three dimensional finite element model using 
(ABAQAUS, 6.14). In this model, clay was simulated using Cam Clay model (CCM) to 
represent the soil strength while the friction at soil-pile interface and sand was represented by 
Mohr-Coulomb model (MCM). The pile was described by a ٣D linear elastic model. In the 
analysis, one dimensional consolidation theory was coupled with the NSF developed along 
the pile. The analysis revealed drag-load, down-drag, soil settlement and excess pore water 
pressure at different degrees of consolidation (U). An extensive parametric study was carried 

out to investigate the effect of spatial parameters on drag-load ( ) and down-drag (W). The 
numerical results indicated that; when designing a pile foundation in consolidating soil it is 
crucial to take into account the pile-soil-fluid water interaction to achieve the actual 
performance of pile-soil system and to avoid overestimating drag-load on piles.  

Keywords: Drag-load, Down-drag, Consolidating clay, Slip condition, Axial load. 
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1.Introduction: 
 
      Negative skin friction (NSF) induced on single piles in consolidating clay was 
realized since sixties of the last century and attracts the attention of many 
researchers, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and [15]. 
Piles in consolidating clay are subjected to drag-load ( ஽ܲ௅) and down-drag (W), the 
first affects the structure deficiency of the piles while the later affects the 
serviceability of the piles. The investigation of down-drag (W) of single pile has 
received little attention from researchers, [3], [16], [6], [17], [18], [13] and [14]. The 
awareness of the performance of single pile in consolidating clay is a crucial aspect 
in the design of pile foundation. Poulos,[19] and Fellenius,[12] reported that down-
drag (W) of pile should be included in pile design. Despite of the research effort, 
Lee,[20] pointed out that the assessment of drag-load ( ஽ܲ௅)  imposed on a pile in 
consolidating clay and the exhibited down-drag (W) are neither based on unsuitable 
factors nor realistic design approaches. The researchers reported from field studies 
that, piles got out of service due to excessive down-drag (W), [21], [22], [8], [23] and 
[24].  While, Lee,[20] pointed out that down-drag (W) may input some problems on 
pile serviceability. Development and magnitude of drag-load ( ஽ܲ௅) on single pile is 
dependent on soil model of pile-soil interface and the method of analysis. Notably 
that the performance of single pile in consolidating clay was achieved by different 
methods; analytical method,[25], [26] and [27], simplified linear elastic analysis, [28] 
and [29] and no-slip linear elastic finite element analysis,[20] and [30]. The later 
method revealed results which overestimate the drag-load. 
 
2. Verification and modelling: 

 
2.1. Geometry and model discretization: 
 
       A soil domain of cylindrical shape having a diameter of 60m, which is equal to 
50 times the pile diameter, and a height of 35.0m, in which the pile is contained, was 
discretized. The thickness of soil domain below the pile tip was 12m while pile length 
23m. Due to symmetry only one-quarter of the pile and soil domain was modeled. 
The clay and sand domain were simulated using C3D4P (a 4-node linear tetrahedral, 
coupled displacement-pore water pressure elements), while the pile was simulated 
using (a 4-node linear tetrahedral elements). More than 41214 elements were used 
to discretize the pile and soil domain containing 11006 nodes. The mesh was staged 
refinement by using elements most refined along pile-soil interface and the size of 
elements gradually increased as the distance increased radially from the pile center 
line. 
 
 2.2. Boundary condition: 
 
       The vertical boundary of soil domain is located far away from the pile by a 
distance equal to 25 times the pile diameter (30m), while the bottom boundary at 
depth equal to about 1.5 times pile length. The vertical and radial displacements of 
soil elements at bottom boundary were restrained by the means of pinned supports. 
The soil elements along the vertical boundaries of soil medium were restrained 
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against radial displacements; only vertical displacement is allowed using roller 
supports on the side boundary of the soil domain. Top boundary of soil domain is 
free to move at vertical and radial directions. At the top and bottom of clay layer, the 
excess pore water pressures were set equal to zero at any time.  
 
 2.3. Interface modeling: 
 
       The interface between the pile and the soil was modeled using surface to 
surface algorithm in (ABAQUS, 6.14). Surfaces are in contact where the relative 
displacement (∆) between master node (Pile) and slave node (Soil) is less than 
5mm. If shear displacement becomes more than 5mm, the slip between surfaces 
(soil and pile) will occur.  The interface elements which are of zero thickness transfer 
shearing force across the interface between pile and soil. Friction between the pile-
soil interfaces before slippage was simulated by Mohr-Coulomb Model (MCM) with 
friction interface angle (ߜ). In the present study (ߤ) was set equal to 0.3 at pile-soil 
interface for clay and sand.  
 
2.4. Constitutive model and material parameters: 
 
      The soil is represented with appropriate constitutive parameters in the numerical 
simulation. The subsoil soft clay is simulated by Cam Clay Model, (CCM). Three 
parameters are implemented in the model λ, k and m.  The parameter m is the slope 
of critical state line in ݍ െ ܲᇱ space.The pile is simulated as a 3D linear elastic 
material. Sand layer is simulated by Mohr- Coulomb Model (MCM). The model is 
configured for flow of water to complete dissipation of excess pore water pressure. 
The flow of water is kept on during the analysis, and the excess pore water 
distributions within the clay layer were computed at time intervals. In the analysis, 
the flow of water is kept on, while the properties of clay λ, k and m are kept constant 
independent of the effective stress variation. The drained-coupled analysis is 
simultaneous action of pore water fluid for with the volumetric change of clay soil; 
therefore pore water flow is simultaneous actions with the drag load, and down drag 
of the pile. The inelastic behavior of material is accompanied by volume change. 
Dilation angle ψ of zero is set for clay and 10° for sand.   
      The initial condition of soil is considered isotropic. In the developed three 
dimensional model, the consolidation of soft clay occurs by means of pore water fluid 
flow in vertical direction. Since, the clay is double open faces, flow of water takes 
place in vertical direction only.  The analysis is carried out up to a degree of 
consolidation of clay equal to 90%, to save computation time. 
 
   2.5. Loading and solution steps: 

 
        In the numerical analysis, the effect of pile installation on soil properties is 
disregarded, so the pile is wished-in-place in soil domain. Two cases of pile loading 
are considered, simultaneous loading and post consolidation loading. For both, the 
first step of the analysis is the geostatic deformations of soil domain. At the end 
calculation of first step, numerical analysis indicated negligible deformations. During 
the geostatic step the interaction between pile and soil is allowed, as well as all 
boundary conditions are implemented. In case of simultaneous loading, where the 
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pile head load ( ுܲ௅) and surcharge load on ground surface (q) were applied 
simultaneously, the second step is the application of surcharge load (q) and pile 
head load ( ுܲ௅) at once. Pile head load ( ுܲ௅) is applied as uniformly distributed load 
over the pile head cross section while the surcharge load (q) is applied on unlimited 
area on ground surface. The pile head load ( ுܲ௅) and surcharge load (q) are kept 
constant. The consolidation process continues up to predefined time corresponding 
to a specified degree of consolidation (U).  On reaching specified time the output 
results are harvested. Different elapsed time intervals corresponding to different 
degree of consolidation (U) are considered. Each time interval is started from initial 
conditions. But in case of post consolidation loading the second step is the 
application of surcharge load (q) only as distributed load on ground surface, then 
consolidation continues up to a predefined time corresponding to degree of 
consolidation (U) equal to 90%. At this stage of consolidation the pile head load ( ுܲ௅) 
was applied and the process continues up to a predefined time. 
       
2.6. Verification of FE model: 

 
      Lam [13], carried out axis-symmetric modeling using ABAQUAS software and 
conducted laboratory tests using centrifuge. The pile was circular of diameter 1.2m 
wished-in-place in 18m of soft clay followed by12m of sand. Water level was at 
ground surface. The pile is a friction pile of 17.7m length with pile tip 0.30 m above 
the clay-sand interface. Soil domain was 24m diameter with soil properties shown in 
table (1). Surcharge load of 45kPa was applied on ground surface. Analyses were 
continuing to time equal to 60 months which represent 90% degree of consolidation. 
In the verification process both axisymmetric and 3D analysis were carried out and 
compared by Lam [13]. Drag-load verses depth were shown in figures (1). The figure 
indicates reasonable agreement between measured shaft load compared with 
results obtained using 3D and axisymmetric analysis implemented in the present 
study. However, 3D analyses resulted in closer shaft loads to those measured. 
 

Table 1: Constitutive model parameters of single pile verification. 
 

Properties Clay Sand Pile 
Unite weight ߛ (௞ே ௠య⁄ ሻ 16.3 19.4 27 

Modulus of elasticity E (݇ܰ ݉ଶ⁄ ሻ 
λ = 0.14 
k = 0.012 
m = 0.98 

1.2 E 5 7 E 7 

Poisson’s ratio ሺߴ ሻ 0.35 0.3 0.35 
void ratio ሺ݁଴) 1.6 0.4 0.2 

Frictional angle at critical state  ሺ׎ᇱሻ 25° 29. 7° - 
Angle of dilation (߰ᇱ) 0 8. 3° - 

 Coefficient of earth pressure at rest ܭ଴  0.58 0.39 - 
Permeability ܭ௦ሺ݉ ⁄ݏ ሻ 1e -8 1e -5 1e -10 

 - ௖௥௜௧௜௖௔௟ (mm) 5.0 5.0ߛ
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       In case of free-head-load pile the relative depth of peak drag-load (ܲ. ஽ܲ௅) is the 
location of neutral plane (N.P) is 0.8. This relative depth (ܼு௅ ⁄ܮ ) moves little upward 
to (ܼு௅ ⁄ܮ ) of 0.75 corresponding to pile head load ( ுܲ௅) of 2000kN. The relative 
depth of (N.P) is more or less equal to the relative depth of clay-soil interface. 
Therefore, the depth of (N.P) in case of end bearing pile is at the clay-sand interface. 
The depth of N.P is not appreciably affected by pile head load up to a load equal to 
2000kN.  
       The peak drag-loads (ܲ. ஽ܲ௅) of free-head-pile load and pile loaded with different 
head load up to 2000kN were calculated and normalized as expressed in equation 
(1).Then drawn against the degree of consolidation (U), figure (5). The figure 
indicated that, the peak drag-load (ܲ. ஽ܲ௅) imposed on the pile decreased as the pile 
head load increased. The peak drag-load (ܲ. ஽ܲ௅) developed on the pile at (U) equal 
to 90% was 887.2kN and 1105.8kN in case of surcharge load (q) 30 and 40kPa, 
respectively and the head-pile load ( ுܲ௅) equal to 2000kN. The pile head load of 
2000kN represents 2.54 and 1.8 times the long term drag-load, even though the pile 
head load was unable to eliminate appreciable percentage of the drag-load. 
 

  ሺܲ. ஽ܲ௅ሻே ൌ
ܲ. ஽ܲ௅

ߨ כ ܦ כ ଶܪ כ ௘௙௙ߛ
           (1) 

Where;  
D Pile diameter, 
 ,Thickness of clay layer ܪ
௪௘௧ߛ ) ௘௙௙ Effective unite weight which expressed asߛ െ  .(௪௔௧௘௥ߛ

Table 2: Constitutive model parameters of numerical analysis model. 
 

Properties Clay Sand Pile 
Unite weight ߛ (௞ே ௠య⁄ ሻ 16.3 19.4 27 

Modulus of elasticity E (݇ܰ ݉ଶ⁄ ሻ 
λ = 0.14 
k = 0.012 
m = 0.98 

1.2 E 5 7 E 7 

Poisson’s ratio ሺߴ ሻ 0.45 0.35 0.15 
void ratio ሺ݁଴) 1.6 0.4 0.2 

Frictional angle at critical state  ሺ׎ᇱሻ 25଴ 45° - 
Angle of dilation (߰ᇱ) 0 10° - 

 Coefficient of earth pressure at rest 
  ଴ܭ

0.58 0.5 - 

Permeability ܭ௦ሺ݉ ⁄ݏ ሻ 1e -9 1e -5 1e -13 
 - ௖௥௜௧௜௖௔௟ (mm) 5.0 5.0ߛ

 

3.1. 1.1 Effect of surcharge load (q): 
 

     Figures (3) and (4) revealed that the drag-load ( ஽ܲ௅) imposed on the pile and the 
peak drag-load (ܲ. ஽ܲ௅) increased with the increase of surcharge load (q). But the 
figures indicated that the peak drag-loads at U equal to 40% in case of free-head-
load pile are 83% and 86% of that imposed on the pile at U equal to 90% in case of 
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7. Most of the drag-load ( ஽ܲ௅) imposed on pile takes place in the early stage of 
consolidation irrespective of pile length. 

8. The excess pore water pressure (u) depends upon the magnitude of surcharge 
load (q) and the degree of consolidation (U) where excess pore water pressure 
(u) independent of pile head load ( ுܲ௅). 

9. The mobilization length (ܮ௠) established along the pile earlier as the surcharge 
load (q) increased, the maximum mobilized length was attained at U equal to 
40% and 20% in case of surcharge load 30kPa and 40kPa, respectively. The 
maximum mobilization length is independent of pile head load ( ுܲ௅). 

10. The down-drag (W) exhibited by the pile still in progress as long as the long term 
consolidation of clay in progress. 

11.  The lock-in peak drag-load (ܮ ஽ܲ௅) mobilized on free-head-load pile, at U equal 
to 90% decreased instantaneously at the time of the acting pile head load ( ுܲ௅), 
then built up again to attain the same value. The drag-load imposed on the pile 
is not dependent on the time-load history of pile head load ( ுܲ௅).The down-drag 
(W) of the pile is independent of the load history of pile head load ( ுܲ௅) either 
loaded simultaneously with surcharge load (q) or loaded at degree of 
consolidation (U) of 90%. 

12. The down-drag (W) depends on the elastic shortening of the pile under the 
acting loads and on the magnitudes of pile tip load ( ்ܲ௅ሻ, positive friction load ( 
ிܲ௅ሻ and drag-load( ஽ܲ௅ሻ. 
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