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1. Introduction

Numerous scholars have provided examples of methods for introducing probability models. A more
robust family of distributions is created by the phenomenon of adding parameters, and these distribu-
tions are successfully applied to the modeling of data sets in the fields of engineering, economics,
biological research, and environmental sciences.

A different method of constructing new life distributions by altering trigonometric functions to pro-
duce new statistical distributions was provided. By modifying trigonometric functions to produce new
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statistical distributions, Kumar et al. [1] showed yet another method of creating a new life distribu-
tion. They created the sine-G class, a novel statistical distribution based on the sine function, which
the cumulative distribution function (CDF) and the probability density function (PDF) are available as
follows

F(y) = sin
(
π

2
G(y)
)
, y ∈ R, (1.1)

and
f (y) =

π

2
g(y) cos

(
π

2
G(y)
)
, y ∈ R. (1.2)

The associated hazard rate function (h) and reversed hazard rate function (rh) of S-G family are pro-
vided by

h(y) =
π

2
g(y) tan

[
π

4
(1 +G(y))

]
, (1.3)

and
rh(y) =

π

2
g(y) cot

(
π

2
G(y)
)
. (1.4)

Al-Babtain et al. [2] obtained Sine Topp-Leone-G family of distributions. Souza et al. [3] discussed
Sin-G class of distributions with theory, model and application. Jamal et al. [4] introduced sine ex-
tended odd Fréchet-G family. Mahmood et al. [5] derived a new sine-G family of distributions. Tomy
and Chesneau [6] obtained sine modified Lindley distribution. Alyami et al. [7] discussed modeling to
factor productivity of the united kingdom food chain by using sine-exponentiated Weibull-H (SEW-H)
family. Fayomi et al. [8] discussed sine inverse Lomax generated family. Aldahlan [9] introduced sine
Fréchet model with application of COVID-19 death cases in kingdom of Saudi Arabia. Ahmadini [10]
introduced statistical inference of sine inverse Rayleigh distribution.

Nadarajah and Haghighi [11] introduced the Nadarajah-Haghighi (NH) or extension of the expo-
nential (ExEx) distribution. Following are the ExEx distribution’s CDF and PDF, respectively:

G(y;α, λ) = 1 − e1−(1+λy)α; y > 0, α, λ > 0, (1.5)

g(y;α, λ) = αλ(1 + λy)α−1e1−(1+λy)α; y > 0, α, λ > 0. (1.6)

The associated hr and rhr of NH distribution are provided by

h(y;α, λ) = αλ(1 + λy)α−1; y > 0.α, λ > 0. (1.7)

and

rh(y;α, λ) =
αλ(1 + λy)α−1e1−(1+λy)α

1 − e1−(1+λy)α (1.8)

The ExEx or NH distribution is used as a baseline model in many papers and applications as: Modified
and extended versions of the ExEx distribution have been studied by many authors as Gómez et al. [12]
presented a new extension of the exponential distribution based on mixtures of positive distributions.
Khan et al. [29] studied transmuted generalized exponential distribution for analyzing lifetime data.
Muhammad [14] introduced a new family of distributions called the Poisson-odd generalized exponen-
tial distribution. De Andrade et al. [15] introduced exponentiated generalized extended exponential
distribution. Kumar et al. [16] discussed extended exponential distribution based on order statistics.
Hassan et al. [17] proposed a new distribution called the alpha power transformed extended exponen-
tial distribution. Pena-Ramirez et al. [18] proposed a new lifetime model called the exponentiated
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power generalized Weibull distribution, which is obtained from the exponentiated family applied to the
power generalized Weibull distribution.

This essay seeks to make two points clear. First, suggest and research a brand-new lifespan distri-
bution based on the sin-G family called the sin extension of the exponential (SExEx) or sin Nadarajah-
Haghighi (SNH) distribution. The SNH distribution’s statistical characteristics are provided. Second,
the MLE and MPS methods for parameter estimation for the SNH distribution are explored. The per-
formance of the estimators is evaluated through a thorough simulation exercise. Environmental data
are used to illustrate our SNH model as well as a few other well-known distributions. Compared to
several other distributions, the SNH distribution can offer better fits.

The paper is organized as follows: Section 2 of the study introduces the description, notation, and
statistical characteristics of the SNH distribution. The parameter estimation of the SNH distribution is
covered in section 3. In section 4, Monte-Carlo simulation studies that assess the effectiveness of the
parameter estimate for various approaches are described. Environmental data application is examined
in section 5. Finally, we address the findings and conclusions of the present study in section 6.

2. Sin-NH Distribution

The Sin family and NH distribution have been used to generate SNH distribution. It is represented
by the random variable Y ∼ S NH(α, λ). By using Equations (1.1, 1.5, 1.2 and 1.6), the CDF and PDF
of SNH distribution takes this form respectively:

F(y;α, λ) = sin
[
π

2

(
1 − e1−(1+λy)α

)]
; y > 0, α, λ > 0, (2.1)

and
f (y;α, λ) =

π

2
αλ(1 + λy)α−1e1−(1+λy)α cos

[
π

2

(
1 − e1−(1+λy)α

)]
; y > 0, α, λ > 0. (2.2)

The associated survival, hazard rate (hr) and reversed hazard rate (rhr) of SNH distribution are provided
by

S (y;α, λ) = 1 − sin
[
π

2

(
1 − e1−(1+λy)α

)]
; y > 0, α, λ > 0, (2.3)

hr(y;α, λ) =
π

2
αλ(1 + λy)α−1e1−(1+λy)α tan

[
π

4

(
2 − e1−(1+λy)α

)]
(2.4)

and
rhr(y;α, λ) =

π

2
αλ(1 + λy)α−1e1−(1+λy)α cot

[
π

2

(
1 − e1−(1+λy)α

)]
(2.5)

In Figure 1 shows plots of the PDF and hazard rate of the SNH distribution with some values of
parameters.

If Y is a continuous variable, then FX has range frome 0 to 1 is the expression for its SNH cumulative
distribution function. From this description, it follows that a percentile function Q typically returns a
threshold value y below which a random sample from the provided cdf would fall q percent of the time.
By using numerical analysis, we can obtain the Summarized data of SNH distribution as discussed in
Table 1, where this table obtained Minimum, first quintile (Q1), Median, third quintile (Q3), maximum,
and standard deviation (SD).
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Table 1. Summarized data of SNH distribution

α λ Minimum Q1 Median Mean Q3 Maximum SD

0.5

0.02 0.0156 22.5466 49.9098 85.2389 108.6612 915.0369 106.4600
0.52 0.0154 0.7842 1.9197 3.3587 4.2825 26.8458 4.0943
1.02 0.0012 0.3289 0.8960 1.5919 2.0311 23.4913 2.1502
1.52 0.0047 0.2533 0.6365 1.0957 1.3714 9.9460 1.3056
2.02 0.0003 0.1926 0.4532 0.8531 1.0072 9.8786 1.1488
2.52 0.0001 0.1543 0.3844 0.6999 0.8605 11.3216 1.0080
3.02 0.0002 0.1101 0.2706 0.5182 0.6398 5.4311 0.6624
3.52 0.0001 0.1030 0.2492 0.4732 0.6007 6.3322 0.6201
4.02 0.0002 0.1014 0.2484 0.3994 0.5125 5.9096 0.4974
4.52 0.0002 0.0824 0.2077 0.3529 0.4485 4.1520 0.4297

1.5

0.02 0.0052 6.6047 12.9771 16.6195 23.4745 84.1203 13.9047
0.52 0.0051 0.2322 0.4992 0.6460 0.9187 2.8154 0.5540
1.02 0.0004 0.0992 0.2369 0.3098 0.4447 1.8848 0.2752
1.52 0.0016 0.0754 0.1665 0.2152 0.2998 1.0040 0.1813
2.02 0.0001 0.0573 0.1198 0.1630 0.2217 0.8698 0.1438
2.52 0.0000 0.0459 0.1005 0.1320 0.1860 0.8297 0.1179
3.02 0.0001 0.0332 0.0729 0.1020 0.1428 0.5270 0.0913
3.52 0.0000 0.0309 0.0663 0.0913 0.1308 0.5272 0.0813
4.02 0.0001 0.0300 0.0646 0.0797 0.1124 0.4762 0.0658
4.52 0.0001 0.0246 0.0547 0.0702 0.0988 0.3770 0.0594

3

0.02 0.0026 3.1999 6.1146 7.4308 10.6113 31.8903 5.7190
0.52 0.0026 0.1128 0.2352 0.2879 0.4146 1.0956 0.2284
1.02 0.0002 0.0484 0.1120 0.1385 0.2017 0.6956 0.1134
1.52 0.0008 0.0367 0.0786 0.0963 0.1358 0.3877 0.0752
2.02 0.0001 0.0278 0.0566 0.0727 0.1006 0.3269 0.0586
2.52 0.0000 0.0223 0.0474 0.0588 0.0841 0.3008 0.0479
3.02 0.0000 0.0162 0.0347 0.0457 0.0650 0.2019 0.0379
3.52 0.0000 0.0150 0.0314 0.0408 0.0592 0.1960 0.0335
4.02 0.0001 0.0146 0.0304 0.0358 0.0510 0.1759 0.0272
4.52 0.0001 0.0120 0.0258 0.0315 0.0448 0.1426 0.0247
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Figure 1. Plots of the PDF and hazard rate of the SNH distribution with Some Values of
Parameters

3. Estimation Methods

The parameter estimate for the SNH distribution using the MLE and MPS methods will be covered
in detail in this section.

3.1. Maximum likelihood estimation

The log-likelihood function of SNH distribution, is given by:

ℓ(α, λ) =n
[
log
(
π

2

)
+ log(α) + log(λ)

]
+ (α − 1)

n∑
i=1

log (1 + λyi) + n −
n∑

i=1

(1 + λyi)α +

n∑
i=1

log
(
cos
[
π

2

(
1 − e1−(1+λyi)α

)])
,

(3.1)

To achieve the desired MLE, we will evaluate MLEs of α, and λ.
The likelihood equations are constructed with respect to the variable of interest by calculating the

derivatives of Equation (3.1) in the following forms

∂ℓ(α, λ)
∂α

=
n
α
+

n∑
i=1

log (1 + λyi) −
n∑

i=1

(1 + λyi)α log (1 + λyi)+

π

2

n∑
i=1

log(1 + λyi)(1 + λyi)αe1−(1+λyi)α tan
[
π

2

(
1 − e1−(1+λyi)α

)]
,

(3.2)
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∂ℓ(α, λ)
∂λ

=
n
λ
+ (α − 1)

n∑
i=1

yi

1 + λyi
− α

n∑
i=1

yi (1 + λyi)α−1 +

π

2
α

n∑
i=1

yi(1 + λyi)α−1e1−(1+λyi)α tan
[
π

2

(
1 − e1−(1+λyi)α

)]
,

(3.3)

The ML estimators (MLEs) of the SNH parameters can be obtained by simultaneously solving the
two Equations (3.2)–(3.3) and equating them to zero. It is obvious that the MLEs cannot be computed
in closed forms, but they may be quantitatively estimated using appropriate iterative methods like
the Newton-Raphson. The observed information matrix, Ii j(α, λ), is needed in order to create the
confidence intervals (CIs) of the model parameters, and it has the following form:

Ii j(α, λ) =

E
[
−
∂2ℓ(α,λ)
∂α2

]
E
[
−
∂2ℓ(α,λ)
∂α∂λ

]
E
[
−
∂2ℓ(α,λ)
∂α∂λ

]
E
[
−
∂2ℓ(α,λ)
∂λ2

] (3.4)

Practically, the approximate asymptotic variance-covariance matrix, V(α, λ) = I−1(α, λ) is obtained by
eliminating the expectation operator given in (3.4) and substituting α̂, and λ̂ by their MLEs. Hence, for
central limiting theory (large samples), 100(1 − δ)% C Is for the model parameters α and β are

α̂ ∓ Zδ/2
√

V(α̂), λ̂ ∓ Zδ/2
√

V(λ̂)

3.2. Maximum Product Spacing

The MPS approach was developed by Cheng and Amin [20] as a substitute for the MLE method for
estimating the parameters of continuous univariate distributions. They claimed that the MPS technique
possesses the majority of the maximum likelihood qualities and that the likelihood function was re-
placed by the product of spacings. The MPS technique was also independently proposed by Ranneby
[21] as a way to approximate the Kullback-Leibler measure of information.

The authors also noted that the MPSEs are at least as effective as the MLEs when they depart.
The consistency and asymptotic features of the MPSEs are explored in Cheng and Amin [20]. The
invariance property of MPSEs was studied by Coolen and Newby [22] and they claimed that it is
identical to that of MLEs. Additionally, the MPSEs are quite efficient, and many authors suggested
using them as a good substitute for the MLEs. They also discovered that in a number of circumstances,
both in complete and censored samples, this estimation approach can produce better estimates than the
maximum likelihood approach. The reader can consult Ghosh and Jammalamadaka [23], Rahman and
Pearson [24], Singh et al. [1], Basu et al. [25], Almetwally and Almongy [12], Alshenawy et al. [26],
Almetwally et al. [27], and El-Sherpieny et al. [28] for further information.

Consider sorted sample, say Y1:n < · · · < Yn:n, from the SNH distribution with with CDF (2.1) and
parameters α, and λ. Then, the uniform spacings of this random sample are defined as

Di (yi:n;α, λ) =


F (y1:n;α, λ) if i = 1,
F (yi:n;α, λ) − F (yi−1:n;α, λ) if i = 2, · · · , n,
1 − F (yn:n;α, λ) if i = n,

(3.5)
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The MPSEs can be obtained by maximizing the product of spacings (3.5).

PS (yi:n;α, λ) = C
n∏

i=1

D(yi:n, α, λ) ,

where C is a constant term and it does not depend on parameters α, and λ.

Using the CDF of the SNH distribution and the logarithm of product of spacings, we obtain

S (yi:n;α, λ) = log
(
sin
[
π

2

(
1 − e1−(1+λy1:n)α

)])
log
(
1 − sin

[
π

2

(
1 − e1−(1+λyn:n)α

)])
m∑

i=2

log
(
sin
[
π

2

(
1 − e1−(1+λyi:n)α

)
sin
[
π

2

(
1 − e1−(1+λyi−1:n)α

)]])
,

(3.6)

By resolving nonlinear equations and differentiating the logarithm of the product of spacing in
Equation (3.6) with respect to each parameter, the MPSEs of α, and λ are produced. Nonlinear op-
timization procedures like the Newton-Raphson method can be used to solve problems analytically.
Additionally, the ACI is followed by a normal approximation confidence interval and an asymptotic
variance-covariance matrix.

4. Simulation

In order to compare the estimators of parameters of the SNH distribution, a simulation study was
performed utilizing 1000 samples for each simulation for different actual values of parameters. To
generate samples from the SNH distribution, with initial values α = 0.5, 2 and λ = 0.5, 2, and 4 in
Table 2, and α = 4 and λ = 0.02, 0.5, 2, and 4 in Table 3. The sample sizes have been changed in
simulation study as 30, 75, and 150. The bias, mean square error (MSE), and length of ACI of the
various methods used by the estimators of the α and λ outcomes have been compared (LACI).
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Table 2. MLE and MPS for different measure: when α =0.5 and 2

MLE MPS
α λ m Bias MSE LACI Bias MSE LACI

0.5

0.5

30
α 0.1340 0.0910 1.0603 -0.0089 0.0380 0.9065
λ 0.0111 0.1128 1.3167 0.2051 0.2109 1.4174

75
α 0.0538 0.0262 0.5988 -0.0143 0.0155 0.5533
λ 0.0027 0.0426 0.8091 0.1043 0.0675 0.8321

150
α 0.0245 0.0105 0.3912 -0.0140 0.0075 0.3727
λ 0.0019 0.0226 0.5889 0.0600 0.0300 0.5793

2

30
α 0.1550 0.1896 1.5961 0.0085 0.0304 0.8298
λ -0.1937 0.6666 3.1108 0.1573 0.4343 2.1590

75
α 0.0728 0.0743 1.0299 -0.0054 0.0083 0.4355
λ -0.1159 0.3508 2.2781 0.1054 0.1882 1.4290

150
α 0.0179 0.0052 0.2742 -0.0087 0.0028 0.2295
λ -0.0395 0.1458 1.4896 0.0690 0.0963 1.0782

4

30
α 0.0508 0.0354 0.7100 -0.0122 0.0082 0.4156
λ -0.1570 0.6642 3.1366 0.1236 0.2436 1.5937

75
α 0.0293 0.0087 0.3481 -0.0100 0.0020 0.2097
λ -0.1262 0.6029 3.0049 0.0825 0.0897 0.9205

150
α 0.0057 0.0014 0.1435 -0.0089 0.0010 0.1307
λ -0.0318 0.1088 1.2875 0.0527 0.0460 0.7312

2

0.5

30
α 0.0454 0.3927 2.4511 -0.3598 0.4739 2.7069
λ 0.1553 0.2779 1.9757 0.3530 0.4804 2.1415

75
α 0.0080 0.2775 2.0659 -0.2382 0.2571 2.0019
λ 0.0828 0.0905 1.1347 0.1697 0.1427 1.2368

150
α -0.0174 0.1042 1.2639 -0.1538 0.1310 1.4213
λ 0.0366 0.0313 0.6784 0.0811 0.0432 0.7057

2

30
α 0.4908 1.4970 4.3956 -0.1539 0.3086 2.7381
λ 0.0493 1.6271 4.9990 0.4110 0.8846 2.9563

75
α 0.3368 0.8719 3.4155 -0.1176 0.1720 2.0142
λ 0.0740 1.0513 4.0108 0.2533 0.3845 2.0407

150
α 0.1732 0.4090 2.4144 -0.0968 0.1029 1.4697
λ 0.0251 0.4696 2.6859 0.1680 0.1981 1.4736

4

30
α 0.7309 2.0135 4.7702 -0.1177 0.1722 2.4091
λ -0.2207 2.3977 6.0110 0.3127 0.6863 2.4754

75
α 0.3269 0.9227 3.5424 -0.0870 0.0885 1.5300
λ -0.0401 1.5450 4.8724 0.1991 0.3065 1.7869

150
α 0.3485 0.8133 3.2620 -0.0832 0.0808 1.4979
λ -0.0733 1.4414 4.6999 0.1798 0.2768 1.6859
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Table 3. MLE and MPS for different measure: when α =4

MLE MPS
λ m Bias MSE LACI Bias MSE LACI

0.02

30
α -5.795E-05 3.510E-06 7.344E-03 -9.464E-04 8.574E-04 1.157E-01
λ 6.782E-04 8.441E-06 1.108E-02 -3.967E-04 7.463E-06 1.168E-02

75
α 1.689E-06 1.038E-10 3.941E-05 -8.777E-05 7.290E-06 1.067E-02
λ 2.939E-04 3.183E-06 6.902E-03 -2.509E-04 3.000E-06 7.266E-03

150
α 2.638E-07 4.623E-11 2.665E-05 -2.104E-06 4.655E-11 2.782E-05
λ 5.973E-05 1.385E-06 4.609E-03 -2.598E-04 1.407E-06 4.858E-03

0.5

30
α 0.0156 0.1351 1.4401 -0.0813 0.0461 0.8766
λ 0.0310 0.0442 0.8156 0.0038 0.0071 0.3581

75
α 0.0296 0.1330 1.4618 -0.0432 0.0146 0.5159
λ 0.0089 0.0054 0.2866 0.0002 0.0022 0.1918

150
α 0.0075 0.0142 0.4666 -0.0307 0.0075 0.3555
λ 0.0011 0.0012 0.1357 -0.0021 0.0010 0.1240

2

30
α 0.2155 1.9499 5.4109 -0.1932 0.2190 2.0803
λ 0.3840 1.9921 5.3267 0.0936 0.1255 1.6303

75
α 0.0908 0.7432 3.3623 -0.1236 0.0975 1.3392
λ 0.1180 0.4509 2.5926 0.0539 0.0466 0.8839

150
α 0.0816 0.5803 3.1492 -0.1158 0.0899 1.3023
λ 0.1016 0.4082 2.2683 0.0453 0.0408 0.8427

4

30
α 0.4886 2.5148 5.9169 -0.1602 0.1637 2.1057
λ 0.2172 2.9808 6.7175 0.0824 0.1376 1.5530

75
α 0.1760 1.4708 4.7061 -0.1030 0.0731 1.2595
λ 0.2282 1.7815 5.1577 0.0517 0.0562 1.0838

150
α 0.1801 1.4073 4.5986 -0.0985 0.0677 1.2235
λ 0.1713 1.6242 4.9531 0.0428 0.0494 0.9839

Tables 2, and 3 display the findings of the bias of estimate parameters and their MSE, and also the
results of the ACL of the 95 percent confidence intervals. The following conclusions can be made
based on the findings:

• From tables, it can be seen that as sample size rises, bias, MSEs and LACI decreases.
• MPSEs have the lowest MSEs for parameters in some times.
• The ACI for MPS provides more accurate results than the ACI for MLE, as shown in Tables 2,

and 3 for various sample sizes.
• When parameter λ increases, the bias, MSE and LACI increases for parameters of SNH distribu-

tion.
• When parameter α increases, the bias, MSE and LACI increases for parameters of SNH distribu-

tion.
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5. Application of real data

Line-transect distance sampling typically uses observed target distances from transect lines to esti-
mate population densities in order to simulate detectability. The current situation is linked to significant
wild animal populations in a specific setting. All creatures can be found where they initially appear,
which is the basic tenet of this approach. Animal migration that is not controlled by the transect and
observer could therefore significantly disturb the community’s natural food chain. This data set, taken
from Patil et al. [19], shows the locations of the 68 stakes found while walking L = 1000 m and looking
w = 20 m on either side of the transect line. The dimensions are:

2.0, 0.5, 10.4, 3.6, 0.9, 1.0, 3.4, 2.9, 8.2, 6.5, 5.7, 3.0, 4.0, 0.1, 11.8, 14.2, 2.4, 1.6, 13.3, 6.5, 8.3,
4.9, 1.5, 18.6, 0.4, 0.4, 0.2, 11.6, 3.2, 7.1, 10.7, 3.9, 6.1, 6.4, 3.8, 15.2, 3.5, 3.1, 7.9, 18.2, 10.1, 4.4,
1.3, 13.7, 6.3, 3.6, 9.0, 7.7, 4.9, 9.1, 3.3, 8.5, 6.1, 0.4, 9.3, 0.5, 1.2, 1.7, 4.5, 3.1, 3.1, 6.6, 4.4, 5.0, 3.2,
7.7, 18.2, 4.1

The SNH distribution is validated to many other competing models, including the inverse Weibull
(IW) by [29], Weibull (W) by [30], Kumaraswamy exponentiated Burr XII (KEBII) by [31], Weibull-
Lomax (WL) by [32], Marshall-olkin alpha power inverse Weibull (MOAPIW) [33], Kumaraswamy
Weibull (KW) by [34], and extended odd Weibull Lomax (EOWL) by [35].

Table gives the MLE estimates and standard errors (SE) for all model parameters, as well as the
P-values (PVKS) for the Kolmogorov-Smirnov distance (KSD) statistics, the Akaike information cri-
terion (AIC), the corrected AIC (CAIC), the Bayesian information criterion (BIC), the Hannan-Quinn
information criterion (HQIC), the Cramer-von Mises (CVM), and the Anderson–Darling (AD) for all
competitive models using the data used in the application section.
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Figure 2. Estimated cdf for SNH distribution of data

The curve of the estimated cdf of SNH distribution is displayed over the ones of the corresponding
empirical cdf of the data in Figure 2, together with the histograms and the curves of the associated
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Table 4. MLE with different measures

estimates SE AIC CAIC BIC HQIC CVM AD KSD PVKS

SNH
α 3.9642 1.2667

375.2964 375.4810 379.7354 377.0553 0.0401 0.2564 0.0817 0.7544
λ 0.0185 0.0219

NH
α 3.0570 2.3885

375.3033 375.4879 379.7423 377.0621 0.0415 0.2641 0.0846 0.7149
λ 0.0388 0.0366

IW
θ 0.7428 0.0603

423.9449 424.1295 428.3839 425.7038 0.7535 4.2158 0.2218 0.0025
β 1.7266 0.2094

W
θ 1.2248 0.1189

376.3396 376.5242 380.7786 378.0985 0.0487 0.3191 0.0886 0.6593
β 6.2367 0.6484

KEBXII

a 59.6973 48.3504

386.1400 387.1078 397.2376 390.5372 0.1057 0.6749 0.1159 0.3205
λ 2.6264 2.1250
b 878.8083 1515.0922
β 0.0734 0.0294
δ 4.1593 1.6381

WL

α 0.6065 3.6002

379.3216 379.9565 388.1996 382.8394 0.0404 0.2567 0.0820 0.7509
λ 1.0039 0.3082
θ 2.0828 4.4869
β 10.9628 81.0411

MOAPIW

α 270.6825 480.3184

394.7630 395.3979 403.6410 398.2807 0.2497 1.5459 0.1343 0.1718
λ 1.5551 0.1454
θ 107.6239 56.3932
β 0.0147 0.0075

KW

α 0.8749 0.0035

407.9942 408.6292 416.8723 411.5120 0.1003 0.6444 0.2483 0.0005
λ 0.0650 0.0079
θ 10.0240 0.0032
β 0.6845 0.0022

EOWL

α 1.1741 0.5868

378.6758 379.3108 387.5539 382.1936 0.0963 0.5542 0.0617 0.3857
λ -0.4967 0.5591
θ 0.4642 0.8624
β 2.5411 7.9689
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estimated pdfs in Figure 3. Quarantines-quarantines (Q-Q) of SNH distribution is provided in Figure
4, and Probability-Probability (PP) plot of SNH distribution in Figure 5 is provided.
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Figure 3. Estimated pdf for SNH distribution of data
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Figure 5. PP-plot for SNH distribution of data

Computational Journal of Mathematical and Statistical Sciences Volume 1, Issue 1, 26–41



38

0 5 10 15 20

0
5

1
0

1
5

QQ plot

quantile(x)

x

Figure 4. QQ-plot for SNH distribution of data

6. Conclusions

The Sine Nadarajah-Haghighi distribution is a brand-new distribution that is presented in this article.
Some properties of the proposed distribution such as survival, hazard rate, reversed hazard rate, the first
quintile, minimum, median, mean, third quintile, maximum, and standard deviation are some of the
properties of the suggested distribution that are reviewed. The MLE method and MPS approach are
used to estimate the model parameters. Also, we concluded the MPS is better than MLE for estimating
parameters of SNH distribution. SNH model is used to fit a set of environmental data. To put it
more succinctly, we anticipate that the proposed distribution and its participants will be attractive for
widespread applications in a variety of industries, including insurance, bio-informatics, economics,
queuing theory, meteorology, and hydrology.
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