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ABSTRACT 

When mounting acoustic liners inside the inlet duct of aircraft jet engines, hard strips 
exist in-between liner sections in order to hold them in place. It has been generally 
acknowledged, from experiments, that the existence of hard strips inside lined ducts 
affects the attenuation behaviour of the duct. The acoustic energy is scattered and 
rearranged among different modes so that it might be transferred into modes which are 
less attenuated by the liner. Moreover, cut-off modes may scatter into cut-on modes. In 
this paper, flow is included in the locally reacting liner case, which is more interesting to 
the aeronautics applications. Moreover, the duct is made finite and connected to two 
semi-infinite hard inlet and outlet ducts. By using mode matching, it is possible to input 
any mode at the inlet side and to study the modes on the outlet side. Comparisons are 
made between different hard strip cases and the splice-less liner case. 
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INTRODUCTION 

One of the main sources of noise in aircraft is the engine. Many recent studies on noise 
reduction involve the use of acoustically absorbent material in the air and gas flow 
ducting of the engine. Although the lined wall may have been designed to be uniform, a 
variation in admittance may result from the mounting techniques, which can make the 
existence of hard strips inevitable, to hold the liners in place. 

Watson' developed Finite Element Methods to analyze sound attenuation in ducts with a 
peripherally variable liner. For a finite duct with no flow, he showed that the attenuation 
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rate near the frequency of maximum attenuation drops significantly if a small portion of a 
peripheral liner is removed. 

From the in-flight circumferential modal spectra of the Rolls-Royce Tay 650 engine 
mounted on the Fokker 100 aircraft, Sarin and Rademaker2  found that the sound field 
propagating upstream in the inlet is strongly modulated by hard-walled strips in the lined 
area, the non-cylindrical geometry of the duct and the non-axisymmetric flow velocity 
distribution. In order to study the effect of the modulation of the acoustic field by the 
hard-walled strips separately, an experimental program in the NLR spinning mode 
synthesizer was carried out3. 

Regan & Eaton developed a FE model4'6  and used it to analyze a finite duct lined with 
locally reacting liner with different number of hard strips of different widths. They 
demonstrated that the transmitted modal spectrum can be significantly modulated by the 
presence of hard strips, but for the frequency range considered (ka < 10), the overall 
transmitted power is not significantly affected. 

The solution of the eigenvalue problem inside a circular duct is simple as long as the 
duct is axi-symmetric, because the variables are separable, see for example6. When the 
boundary condition varies around the circumference, the property of the field being 
separable breaks down. Therefore, a more complicated technique has to be used. The 
most well known method is probably FEM4.2. FEM may, especially for the analysis of 
higher order modes, be somewhat cumbersome and is thus not ideally suited in an 
iterative design process. However, there are a number of other methods such as null-
field8, Rayleigh-Ritz9  and collocation16. The collocation technique has been already 
tested to handle hard discontinuities in lined ducts and showed good potential". 

Bi et a1.12  used the Multimodal Method to solve the problem of sound transmission 
through circular cylindrical ducts lined with a non-uniform impedance in the absence of 
flow. The liner impedance was assumed to be piecewise constant along the axis of the 
duct, and can arbitrary vary along the circumference. First, the Euler and continuity 
equations are projected over the eigenfunctions of a rigid uniform duct. Mode coupling 
effects are then explicitly expressed by the inverse Fourier transformation of liner 
admittance. Second, a scattering matrix is used to express the reflection and 
transmission coefficients of each axial uniform segment from which a global scattering 
matrix can be constructed. 

The collocation technique was earlier used to calculate the wavenumbers of the modes 
in an infinite lined duct with hard strips". The problem is taken a step forward in this 
paper by considering a duct of a finite length. The field in the lined duct must be linked to 
the field in the hard ducts before and after the lined section. Mode matching determines 
how energy is transferred and scattered between modes across the lined section when 
hard strips exist. The formulation presented here is valid for any cross section with flow, 
as long as the fields in the three ducts are pre-determined, provided that that the liner in 
the intermediate duct is locally reacting. 
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THEORETICAL APPROACH 

The considered configuration is shown in Fig. 1. A single mode, of any order m and n, is 
incident at the inlet duct emanating from a sound source, e.g. a rotating fan. The 
generated wave, Pii, travels towards the lined section and is scattered at z = 0 to a 
reflected, Tir, and transmitted W21 wave. The travelling wave in the lined duct is further 
scattered at z = L into reflected, Y'2r , and transmitted waves, V3i. The hard ducts are 
assumed to be semi-infinite so that no waves are reflected from the other ends. The 
numbering of the fields is as follows: 1 for the inlet hard duct, 2 for the lined duct and 3 
for the outlet hard duct. The letter i refers to the incident wave and the letter r refers to 
the reflected one. The boundary condition in the lined duct can vary around the 
circumference to allow the definition of the hard strips. 

Fan 

Inlet Hard Duct 	z=0 	Lined section 	z=L Outlet Hard Duct 

Fig. 1 Incident, reflected and transmitted modes in the calculation domain. 

Since the acoustic field is irrotational, the velocity vector can be expressed as a gradient 
of a certain potential which is a scalar quantity (u = 	). It can be easily shown that the 
convective wave equation can be expressed in terms of the velocity potential. A 
stationary problem is considered where all the fields and their derivatives are time 
harmonic with ed  . When the direction of the mean flow is in the axial direction, the wave 
equation reduces to 

- (jk + M 11* = 0 	 (1) 

where Pis the temporal Fourier transform of the velocity potential. The solution to this 
equation can be considered as a sum of linearly independent acoustic modes, each 
satisfies the same wave equation and the same boundary conditions. 

(r,0,z)=ib(q)  v(g)(r,O) 	 (2) 
y.I 

where q is the mode number, 01)  is the amplitude of the qt" mode, and ip is the two-
dimensional mode shape of the qth  mode after separating the z dependence because 
the duct is now assumed infinite. The modes are arranged in an ascending order 
according to their cut-on frequency in the corresponding hard wall duct. Equation (1) can 
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be simplified, for each mode 41,) . y,10.e-J41°',, using the expansions of the derivative 

operators to 

viy,(r)+(kio) .,/,(q) =0 	 (3) 

where the transversal wave number, ki(q ), is given by 

(ki)y = —2kMk!' )  —(1— Al'Xic( ! )Y 
	

(4) 

The terminology of the transversal wavenumber, k1, is used here instead of the radial 
wavenumber, kr, because in spite of the fact that the duct is circular, the boundary 
condition is not axi-symmetric. Therefore, the field is not separable in the two-
dimensional plane perpendicular to the duct axis. The transversal and axial 
wavenumbers are scaled as k:=ka and consequently, the distances are scaled as 
x:= xia , where a is the duct radius. 

A. The acoustic field in a lined duct using collocation 
For the two-dimensional field, it is solved by using the point-matching or collocation 
method". The field is approximated by finite expansions in the polar eigenfunctions 

v/(20  = i✓„,(k(pr)(A,(: ,  cos we + B;,?)sin we) 
	

(5) 

The acoustic field in the lined duct is now represented using Eqs. (2) and (5) by 

=[A„J „(ki`n r)+ 	„.(kiq' r)(A;:' cos we9+ B( j )  sin Is9)]•e-A l'` 	 (6) 

where the first term is treated separately for convenience. The transversal and axial 
wavenumbers are related by equation (4). The boundary condition at the duct wall (r= 1) 
is based on the assumption that the lining is locally reacting. To the mean flow, the duct 
wall is hard, but for the acoustic field the duct is lined with an impedance boundary 
condition. The following simplified equation is obtained for the boundary condition 

[‘7
2 	 - y/ • n1,4, + 7(k, + k,2 "" , )1i/ • e 	=0 (7)  

where n is the normal vector to the liner surface and directed into the wall and A is the 
acoustic admittance at the wall (the reciprocal of the impedance). This is an acceptable 
assumption when plug flow is assumed. This yields the following expression 

Ao[kA(k,a,>+ (k1+  k!)•Jo(k,a,)] 	A:1(k ,J:(k,a,)+ -k(k; + k!,)• Jjk,ad)cos(we,)] 
(8)  

)+ 	+ k.!,)• J w(k,a,)) 
k 	

sin(w0,)]= 0 
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Equation (8) represents a set of finite number of simultaneous equations and can be 
written in matrix form. The system matrix has the dimension of (P x P). The collocation 
points are defined by a;  = a(0) where i = 1, 2, ...P and P must be set to be equal to 
(2W+1) in order to equate the number of equations and the number of unknowns. To 
avoid non-trivial solutions, the rows of the system matrix must be linearly independent; 
in other words, its determinant must be equal to zero constituting the dispersion relation 
for the eigenmodes of the lined duct. The wavenumbers for the lined duct are obtained 
using the secant iteration method starting from the wavenumbers solutions for a circular 
hard duct. The secant method is able to predict the value of a function based on two 
previous values. The iteration is performed in the complex plane of the axial 
wavenumber in order to have physical insight into the solution concerning left and right 
propagating waves. The first two values for the admittance stepping are the 
wavenumber for the hard duct and the same wavenumber but with a slightly perturbed 
imaginary part. The relation between k2  and ki in equation (4) was combined with 
eigenvalue equation to have only one independent variable. First, the admittance is 
increased with sufficiently small steps from zero to its final value, and then the Mach 
number is increased with the same step to its final value. It is very important to choose 
sufficiently small steps to reach the correct solution without loosing trace of the 
wavenumber or jumping to an adjacent one. In order to decrease the number of steps, a 
growing step can be used because the start of the trajectory is very critical. Once the 
wavenumbers are known, the modal amplitude coefficients can be calculated for each 
mode. The total acoustic field in the lined duct is the sum of incident and reflected waves 

4,2  = 	 teeelkirAr-L) 
	

(9) p=1 	 P.L 

In order to get stable matrices and enhance their manipulation, it is better to refer each 
mode to the plane at which it is generated. For example, the right propagating modes in 
the lined section are generated at z = 0, and the left propagating modes in the lined 
section are generated at z = L. 

B. Fields in a circular duct with uniform boundary condition 
For a circular duct with a uniform circumferential boundary condition either lined or hard, 
the duct becomes axi-symmetric so that the two-dimensional field is separable 

w(1)  = J .(141)r)•[A(:)  cos(m 0) + Be" )  sin(m&)] 
	

(10) 

The modes are numbered here in an ascending order according to their cut-on 
frequency. Each mode is divided into two parts treated separately; each part consists of 
one term. This is to give Am  and 13,77  the freedom to have any value. If the duct is lined 
with a uniform impedance boundary condition, equation (10) can be substituted in the 
boundary condition to give a simpler eigenvalue relation to calculate the radial 
wavenumbers in the circular duct 
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kit  Jj114_c 	A kkigg + (01.0 
2  .1 .(k„) 	k 

where the axial wavenumber, kz(q) , is related to the transversal wavenumber, kl(q), by the 
dispersion relation in equation (4). In the hard ducts before and after the lined section, 
the boundary condition is different and the normal velocity at the wall is zero, i.e. A = 0 

V*, • 4.4,  = 0 (12)  

which gives the following eigenvalue equation 

r r)= o (13)  

and the axial wavenumbers are calculated from 

M 	(1 Al2) ii (14)  J 

Note that there are two values of the axial wavenumber for each radial wavenumber 
corresponding to the propagation direction. An acoustic energy argument can be used to 
show that the positive sign in equation (14) corresponds to the acoustic power 
transmitted in the positive z-direction and the negative sign corresponds to the acoustic 
power transmitted in the negative z-direction15. This is only true for the cut-on modes 
and vice versa for the cut-off modes. Every solution of the eigenvalue equation 
corresponds to a propagating mode. The acoustic field is a summation of all the 
propagating modes 

ta(!)e)exv- 

Similarly, the field in the outlet duct can be represented as 

= in;o-Avi,L) 
PI 

D. Mode Matching 
Mode matching is a well-known technique which is used to determine how energy is 
transferred and scattered between modes at an interface where there is a discontinuity 
in either duct dimensions or transversal boundary conditions. Cummings & Chang1  
used mode matching to calculate the sound attenuation of a circular dissipative silencer 
with flow. Glav17  used it to calculate the transfer matrix for a dissipative silencer of 
arbitrary cross section but with no mean flow. Peat16  calculated the transfer matrix for an 
absorption circular silencer element with flow. The aforementioned studies were done 
for silencers in automotive applications; therefore, the used liner was non-locally 

(15)  

(16)  



(21) 
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reacting. There was sound propagation inside the liner but the mean flow in the liner is 
neglected compared to that in the main duct. Peat19  also used mode matching to 
determine equivalent acoustic impedance at the junction of an extended inlet or outlet 
inside a circular silencer to be able to calculate its transfer matrix. Lansing & Zorumski2°  
used the technique to evaluate the effect of axially changing the wall admittance of a 
circular lined duct with no flow in order to evaluate the effect on the transmitted power. 

The formulation presented here is valid for any cross section with flow, as long as the 
fields in the three ducts are pre-determined, provided that that the liner in the 
intermediate duct is locally reacting. According to the theory of relative convergence17, 
the number of considered modes in both ducts must be equal as long as their areas are 
equal. The boundary conditions at the interface between any two adjacent ducts implies 
the continuity of acoustic pressure and axial velocity at z = 0 and z = L. By substituting 
the acoustic fields from equations (9), (15) and (16) in these boundary conditions, and 
multiplying by the mode shapes in the hard duct w1", where u = 1..Q, then integrate 
over the cross-section. After careful manipulation, the axial boundary conditions can be 
shown to yield the following set of independent equations 

ta(26A1", - 	1);.q ).A°2';, - 
2.1 	y.I 	9.1  

clo AT 	k,oneAN - 	= os 	xrl 

g=1 	a=1 	 v-1  

-t a(!) Ank ) tb° ) M"kV +t k° ) Aq" )e *I'` = -a? ) / ll'k1' )!,-. ,„! 	,„C, 
q=1

; 
  a=1 

t c(:) AnkX -t1)A9,"„k,1!e-'4114'+ 	 -0 
9.1 	v-I 	 a-I 

where q, is the order of the incident mode, and A is defined as 

2x I 
= fig p(')erdrd0 

0 

Equations (17) to (20) are written in matrix form. All unknown modal amplitudes are 
calculated by solving the above system of linear equations in 4Q unknowns (a.(q) , c+(q) , 

b.(q)). The amplitude of the input mode, a+, is normalized to 1 and all the other 
modal amplitudes are calculated with reference to it. To achieve the full advantage and 
speed of the mode-matching method, all integrals are evaluated analytically. One 
advantage of choosing the eignfunctions in the hard duct as the basis function is that 
they are orthogonal; a property which reduces the matrix size enormously. All As are 
independent double integrals in r and 0 that can be divided into two single integrals 
evaluated separately. 
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RESULTS AND DISCUSSION 

A. Validation with simple configurations 
A series of simple duct tests were examined to validate the formulation and the 
computer code. All the test cases will be compared with the Finite Element calculations 
presented in reference 5. In the first case, the intermediate duct was completely hard as 
the inlet and outlet ducts. The second test case was a semi-infinite hard walled duct with 
uniform flow and one end closed by an acoustically hard termination. The third test case 
was more appropriate where a liner of finite admittance is placed at the walls of the 
intermediate duct. The duct was circular of 0.2 m radius, and the length of the lined 
section was 0.4 m. Four test cases were considered and their parameters are listed in 
Table 1. Computed values for the transmitted normalized modal amplitudes Ici-liia+1 of 
the incident mode for each case are listed in the last two columns. Two values are 
shown, one calculated by mode matching and the other calculated by FEM from 
reference 5. It can be seen that there is close agreement between the mode matching 
and Finite Element calculations. In Fig. 2, the field results are plotted as contours of the 
amplitude of the computed complex pressure for case number 3 in Table 1. 

Table 1 Different parameters used for different cases, and comparison of the calculated 
transmitted, normalized modal amplitudes of the incident mode for each case. 

Case z M Incident 
mode ka Mode 

matching FEM 

1 (1,-2) 0 (0,0) 1.5 0.6499 0.65 
2 (1,-2) -0.3 (0,0) 1.5 0.1717 0.17 
3 (2,-1) -0.3 (0,2) 7.4 0.1323 0.13 
4 (3,0) -0.3 (5,0) 7.4 0.0118 0.012 

(b) FEM from reference 5. 

Fig. 2 Calculations of amplitude pressure contours for incident mode (0, 2), impedance 
(2 , -1) in the intermediate duct, M = -0.3 and ka = 7.4, IJa = 2. 
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B. Validation with hard strips 
The next step is to apply the combined collocation and mode matching code to the case 
with hard strips and compare the results with the Finite Element predictions. The 
configuration in reference 5 will be considered which contains two hard strips. The strips 
are diametrically opposite to each other and each extends circumferentially over an 
angle of 0.75 rad. The duct has a diameter of 0.2 m as before and a lined section of 0.4 
m. This corresponds to configuration 4 in reference 5, see Fig. 3. Without flow, the non-
dimensional impedance was specified in reference 5 as follows: a resistance of 1.5, a 
mass reactance of 0.01k and a cavity reactance of —cot(0.016k). 

z = 1.5+ j(0.01k — cot(0.0161()) 
	

(22) 

To investigate the effect of the liner splices, a single incident mode is injected and the 
resulting transmitted modal spectrum is calculated. This spectrum is compared with the 
transmitted field produced by a uniform homogeneous liner modelled under the same 
conditions. The transmitted modal amplitudes are normalized with respect to the 
amplitude of the single incident mode. 

1.1.0) 	( 0,0) 	0.0) 	 I n, 	V1.01 	1101 

	

Node 	 hde 

	

(a) Collocation-mode 	(b) FEM from reference 5, o 

	

matching. 	 2 strips, o 0 strips. 

Fig. 3 The lined section with two splices 	Fig. 4 Comparison of the scattering 
(Configuration 4 in reference 5). 	spectra. M = 0, ka = 2.2, 2 splices (.75 

rad), and incident mode (1, 0). 
The first set of calculations is performed at 600 Hz, which corresponds to a ka value of 
2.217. At this frequency, only modes (0, 0), (1, 0), and (-1,0) are cut-on, so that the 
effect of the scattering on a single mode should be easy to isolate. Mode (1, 0) is 
injected in the inlet duct then both the uniform and spliced configurations are solved and 
compared in Fig. 4. In the same figure, they are also compared with the finite element 
calculations presented in reference 5. For an axi-symmetric duct, only the incident mode 
and other modes having the same circumferential order m appear in the transmitted 
spectrum. This is because there is no mechanism to generate modes of other 
circumferential orders. Only cut-on modes are presented in the figures because 
scattered cut-off modes have no importance as they do not carry any energy. For the 
spliced case, two changes occur. The transmitted amplitude for the spliced arrangement 
is larger than for the uniform liner, which is expected since the latter has a larger lined 
surface area. Scattering effects cause modes of other circumferential orders to be 
excited and therefore mode (-1, 0) is excited and transmitted because it is also cut-on. 
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By analogy to the rotor-stator interaction theory22, the circumferential order of the modes 
excited by scattering can be specified by 

m=m,±13•N 	/3= 0, 1, 2,... 	 (23) 

where in; is the circumferential order of the injected incident mode and N is the number 
of splices. The second test case was conducted at 1830 Hz, corresponding to a 
wavenumber of ka = 6.8. This frequency was chosen to demonstrate the behaviour 
described by equation (23) over a broader range of circumferential mode orders. In this 
case, all zero-order radial modes of circumferential order less than six are cut-on, in 
addition to first-order radial modes of circumferential order less than three (a total of 16 
modes). The incident mode was chosen to be (1, 0). When the same mode was injected 
towards a liner with two strips, modes with circumferential order —5, —3, —1, 3, 5, which 
are cut on, were also excited. This is illustrated in Fig. 5, where the scattered spectrum 
of the combined collocation and mode matching technique is compared to that 
calculated by Finite Elements in reference 5 and the Multimodal Method in reference 12. 
Although there are some discrepancies between the three methods in the exact values 
of the amplitudes of the scattered waves, the general shape looks similar for the three 
methods. 

The amplitudes of the scattered modes do not give much information about the 
transmitted sound energy across the lined section because each mode has its own 
decay rate and ability to carry energy. Therefore, it is important to compare the 
transmitted sound power with and without hard strips. Fig. 6 compares the propagating 
sound power for the previous duct case at ka = 6.8, and 2 strips (0.75 rad each). As 
expected, the transmitted power increases slightly when hard strips are present. 

001.1.1.11::::: or• ===== - == ° um Oommem. imalomm I//car 1' mom. 
era 

 irk.: ot,.1_,_1- . ,r, It, 	 il„,  .11 z7z7,1,-,,3: 40.._,:od ..4.22 	 , 
, 

(a) Collocation and mode matching. 	 (b) FEM from reference 5. 	(c) Multimodal Method from reference 12. 

Fig. 5 Comparison of the scattering spectra calculated by the collocation mode matching 
technique, FEM from reference 5, and the multimodal method from reference 12. M = 0, 

ka = 6.8, 2 splices (.75 rad), and incident mode (1, 0). 

CONCLUSIONS 

It is inevitable to have hard strips between liner segments in the inlet of aircraft jet 
engines. It has been found that these strips scatter the modal energy among different 
modes. An analytical formulation is presented here to calculate the scattered transmitted 
modal spectrum when a single mode is input from one side of the lined duct. The 
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wavenumbers in the lined section are found by collocation, and then the modes are 
matched at the duct interface. The formulation is valid for any cross section with flow 
provided that the liner in the intermediate duct is locally reacting. 

Fig. 6 The propagating sound power 
across the lined section with and without 

splices. 
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