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ABSTRACT 

The use of genetic algorithms with the aid of the panel method to determine high-
efficiency missile aerodynamic shape has been examined. The capability of these 
algorithms to determine highly efficient and robust missile aerodynamic designs is 
demonstrated by giving a variety of design variables and constraints. Results 
indicate that the genetic algorithm is clearly capable of designing aerodynamic 
shapes that perform well in either single or multiple goal applications. 
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NOMENCLATURE 

b: Span. 
Co  CL  Drag and lift coefficients 
CFD: Computational fluid dynamic. 
Cr  , Ct : Root and tip chord. 
GA: Genetic Algorithm. 
L: Length. 
pc  : Crossover probability. 
pn,: Mutation probability. 
R: Caliber 
Xcg  , Xcp  Location of center of gravity and center of pressure from nose tip. 

Xs,,,,,: Static margin. 
TR: Taper ratio 
A: Sweep back angle. 

* Lecturer, Dpt. Of Mech. Aeronautical & Aerospace, Karary Academe of 
Technology, Khartoum, Sudan. 
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INTRODUCTION 

The design of missile configurations is one of the most interesting and 
challenging fields "perhaps the most complex" for the aeronautical design 
engineer [1]. In recent years, researchers have applied gradient-based 
optimization schemes to aerodynamic design, but these methods are subject to 
undesirable restrictions. For instance, gradient-based optimizers must start with a 
specified set of initial parameters, which can bias future solutions toward a local 
optimum in the vicinity of the starting point. Gradient search procedures work 
most efficiently when there are a small number of design variables and when the 
variables are essentially independent of each other. As the number of design 
variables increases and coupling of the variables occurs (most often the case for 
complex aerodynamic designs), gradient-based algorithms do not have the ability 
to recombine disparate solutions to form solutions that sample a new portion of 
the optimization space [2]. 

GENETIC ALGORITHM 

GA is a search optimization method, which simply works by selecting a group of 
solutions from a population of candidate solutions and evolving them through its 
main operator's crossover and mutation. So it is better than the traditional search 
method by its capability to evolve the candidate solution and its ability to solve 
both single and multi-objective (goal) problems. 

Genetic algorithms have been applied to aeronautical problems in several ways, 
including parametric and conceptual design of aircraft, preliminary design of 
turbines, topological design of non-planar wing and aerodynamic design using 
Computational Fluid Dynamics (CFD) [3]. 

Encoding of Chromosomes: 

The chromosome should be in some way containing information about solution, 
which it represents. There are many ways to encode chromosomes. In encoding 
of the design parameters, the number of codes (strings or solutions) available is: 

number of solutions =   (1) 

Where, 
m: being the number of possible alphabetic in encoding type 
n: being the number of bits (genes) used to represent a parameter. 
n = 2 for binary, 10 for Permutation, and 26 for English alphabetic. 

Binary encoding 
Binary encoding is the most common, mainly because first works about GA used 
this type of encoding. In binary encoding every chromosome is a string of bits, 0 

or 1 as shown below. 



Chromosome A 101100101100101011 
Chromosome B 111111100000110000 

Original offspring 110111100001111 

Mutated offspring 110011100011111 

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 	 AF-03 	33 

Binary encoding gives many possible chromosomes even with a small number of 
alleles. On the other hand, this encoding is often not natural for many problems 
and sometimes corrections must be made after crossover and/or mutation [4]. 

GA Operators 

1. Crossover: 
After encoding crossover can be done. Crossover selects parent of 
chromosomes and creates a new offspring. There are many ways in how to 
make crossover, for example single or multi crossover points. 

Chromosome 1 11011 I 001001110110 
Chromosome 2 11011 1 110000111110 
Offspring 1 11011 1 1100000110 
Offspring 2 1101 11001001111/10 

Crossover is made in hope that the new offspring will have good parts of old 
chromosomes and may be the new chromosomes will be better. However it 
is good to leave some part of population survive to next generation. 
Crossover can be rather complicated and very depends on the encoding of 
chromosome. Specific crossover made for a specific problem can improve 
performance of the genetic algorithm. 

Single point crossover 
It is the simplest way. In this type one crossover point is selected, binary 
string from beginning of chromosome to the crossover point is copied from 
one parent and the rest is copied from the second parent 

11001011+11011111= 11001111 & 11011011 	 (2) 

2. Mutation (Bit inversion): 
After crossover is performed, then mutation takes place. Mutation is made 
to prevent falling GA into local extreme, or to prevent falling of all solutions 
in population into a local optimum of solved problem. Mutation changes 
randomly the new offspring. Mutation can then be shown as following: 

Mutation depends on the encoding as well as the crossover. 
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Flip bit 
A mutation operator, who is simply inverts the value of the chosen gene (0 
goes to 1 and 1 goes to 0). This mutation operator can only be used for 
binary encoding genes. 

Selection: 

As we already know from above, chromosomes are selected from the population 
to be parents to crossover. The problem is how to select these chromosomes. 
According to Darwin's evolution theory the best ones should survive and create 
new offspring. There are many methods how to select the best chromosomes, for 
example roulette wheel selection, Boltzman selection, tournament selection, rank 
selection, steady state selection and some others. 

Roulette wheel selection 
In this type parents are selected according to their fitness. The better the 
chromosomes are, the more chances to be selected they have. Imagine a roulette 
wheel where are placed all chromosomes in the population, every one has its 
place big accordingly to its fitness function. Then a marble is thrown there and 
selects the chromosome. Chromosome with bigger fitness will be selected more 
times. 

Elitism: 
When creating new population by crossover and mutation, there will be a big 
chance, that the best chromosome can be loose. Elitism is the name of method, 
which first copies the best chromosome (or a few best chromosomes) to new 
population. Elitism can very rapidly increase performance of GA, because it 
prevents losing the best found solution. Surely elitism should be used (if other 
methods are not used for saving the best-found solution). 

Genetic Parameters: 

a. Crossover probability pc : Says how often will be crossover performed. If 
crossover probability is 100%, then all offspring is made by crossover. If it is 
0%, whole new generation is made from exact copies of chromosomes from 
old population. Crossover rate generally should be high, about 80%-95% [4]. 

b. Mutation Probability pm : Says how often will be parts of chromosome mutated. 
If mutation probability is 100%, whole chromosome is changed, if it is 0%, 
nothing is changed. Mutation rate should be very low. Best rates reported are 
about 0.5%-1% [4]. 

c. Population Size: It may be surprising, that very big population size usually 
does not improve performance of GA. Some research shows that best 
population size depends on encoding (on size of encoded string). Two times 
the number of genes is the best population size. 
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Termination 

Termination is the criterion by which the genetic algorithm decides whether to 
continue searching or stop the search. Each of the enabled termination criterions 
is checked after each generation to see if it is time to stop. Generation Number is 
a termination method that stops the evolution when the user specified the 
maximum numbers of evolutions has been run. This termination method is always 
active [5]. 

PANEL CODE 

The panel code, which is used here, is Woodward panel method code 
(Woodward code [6], is a panel code developed by Boeing aircraft company to 
calculate pressure distribution and aerodynamics coefficient for wing body 
combination by using singularity distribution on the body surface) after some 
modifications. In spite of that the panel method is computationally expensive it 
give a good results. 

DESIGN VARIABLES 

In this research the external shape is determined from a number of design 
variables, ten for wing-body, and fifteen for wing-body-tail. These variables 
include total length, nose length, boat-tail length, caliber, base diameter and 
wing/tail geometry, etc. (see tablet ), within design constraints to these 
parameters. 

SIMPLE OPTIMIZATION ALGORITHM: 

As shown in figure (2) the simple optimization algorithm work as follow: 
1) Start with a randomly generated population of n candidate solution to a 

problem (chromosome) each chromosome consists of all design variables in 
a certain arrangement. 

2) Calculate the fitness f(x)of each chromosome x in the population by using 
panel method. 

3) Select the best fitness chromosome as a temporary solution of the problem. 
4) Compare the temporary solution with the previous solution and determine 

the correct solution. 
5) Encoding all the design variables with their arrangement as a zeros ones 

string (chromosome). 
6) Repeat the following steps until n offspring have been created. 

a. Select a pair of parent chromosomes from the current population, the 
probability of selection being an increasing function of fitness. 

b. With probability pc  cross over the selected pair. 
c. Mutate the two offspring at each locus with probability p,, "mutation 

probability". 



Proceeding of the 11417 ASAT Conference, 17-19 May 2005 	 AF-03 	36 

7) Replace the current population with the new population. 
8) Go to step 2 

RESULTS AND DISCUSSION 

The results were carried out for single and multiple goal cases as shown in below. 

Maximum Lift Coefficient 

In this case it was tried to see whether the GA would maximize the fins areas. Fin 
placement does not play a significant part in the design consideration for this 
case. Also, because drag force is not considered for this case, the base radius 
can be anything and nose can be very blunt. Figure (3) graphically show the 
design history for the missile. In this figure, and subsequent figures of this nature, 
only the design that produced the highest aggregate lift force coefficient at each 
displayed generation is shown. Although these configurations design may make 
the missile look a little strange at first, one must focus on the wing/tail planform 
geometries because they are the most important parameters for now. From these 
qualitative representations of the design variable histories it is clear that the GA 
learned to make the wing and tail areas large. Although early attempts used small 
and highly swept wings, they were later replaced by straight and large wings. The 
missile body also grew in length during the process, which contributes to higher 
normal force coefficients. The nose and boat-tail length was also minimized in 
order to increase the body length, further helping to maximize the normal force 
coefficient. 

Convergence history is important to the understanding of the behavior of a GA. 
Figure (4), show the convergence history for this case. The maximum line 
denotes the performance of the best single member of the population. Average 
denotes the performance of the average member of the population. From this 
figure and subsequent figures of this nature it is clear that by using elitism the 
maximum solution always in progress if it is not constant. 

Minimum Drag Coefficient Case: 

The inclusion of a requirement for low drag force coefficients should necessitate 
two primary design changes over the preceding high lift coefficient case. First, the 
nose of the missile should elongate to minimize large wave drag due to a blunt 
nose. Second, the nozzle exit radius should be equal to or less than the radius of 
the body. It might be expected that there would be wing/tail leading-edge sweeps 
to forestall the sharp transonic drag rise that accompanies the transition from 
subsonic to supersonic flight. Also wings and tails areas should be minimize. 
Figure (5), show that as generations number increase there will be progress and 
the new generations have long nose and small sweeps fins and base radius less 
than or equal to body radius. Figure (6) show the convergence history for this 
case. In these figures the maximum fitness line denotes the inverse of the drag 
coefficient, so if the corresponding drag coefficient for each generation is drown, 
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the resultant line will be start from high drag for earlier generation and decreases 
(minimized) as generations proceed. 

Maximum Lift and Minimum Drag Coefficients Case: 

This case will be optimized by, maximizing C, and minimizing CD  . So the 
excepted configuration is a combination of the above two cases geometry. Drag 
coefficient minimization need sweep wings, but the GA might find that high 
normal force coefficients due to unswept wings might out weigh the delay in axial 
force coefficient rise that sweep would certainly produce. The objective function 
for this case can be: 

I -ct  C1, 
Or when using one as the maximum value the objective function can be: 

, 
The GA design history figure (7) show that the algorithm produced good high 
CL /CD  designs. As expected with the following properties: 
1) The wings and tails became exactly those that were designed under the high 

C, case (taper ratio included). 
2) The body radius was not maximized. 
3) The base radius became less than the body radius. 
4) The nose grew in length to minimize bluntness (to reduce the axial force 

coefficient). 
Figure (8) show the convergence history for this case. 

High Normal Force, Low Axial Force, Minimal Static Margin Case: 

This case includes a measure of the stability of the airframe in addition to the 
aerodynamic performance. The aerodynamic performance goal is calculated as 
before by calling the panel code, whereas the static margin goal, which is to 
minimize the static margin, is calculated as 

XStatic = IXCP XCS 

Where the X locations, are measured positive aft of the nose tip. And the 
objective function for this case can be. The genetic algorithm will attempt to find 
solutions that will perform reasonably well in each of the two goal areas, but it can 
be expected that, some of the earlier aerodynamic performance exhibited will be 
lost to the desire to have a minimal static margin. The objective function for this 
case can be: 

(3) 

(5) 



Proceeding of the 11-th ASAT Conference, 17-19 May 2005 
	 AF-03 	38 

f - 	+ 
1  	 (6) 

Cd  X„,,, 
Or when using one as the maximum value the objective function can be: 

	

C, 	1 
f =1-1/( 	+ 	 (7) 

	

Cd 	X Static 
Figure (8) shows the convergence history for the maximum among the 
generations in each goal area. Clearly, some aerodynamic performance was 
sacrificed for good static margin performance. For this case several of the better 
solutions are obtained, and allowing the designer to choose from a variety of 
similar performing solutions, based perhaps on some other criteria such as 
manufacturing simplicity or weight. These solutions have different levels of static 
margin and aerodynamic performance. All of the solutions have large tails to 

increase 	This . This result should have been expected because large tails would 

serve also to help the static margin performance. Also better static margin 

solutions have more highly swept wings and more taper than the higher y CD  

solutions. Clearly, the GA learned to keep the wing areas fairly large keeping the 
center of pressure far enough aft to keep the static margin reasonable. 

CONCLUSION: 

It is clear that it is possible to couple Computational Fluid Dynamics (CFD) panel 
code, with Artificial Intelligence (Al) Genetic Algorithm (GA) in a single computer 
program. This program can predict aerodynamic (external) shapes of a wing-body 
or a wing-body-tail missile configuration that can perform well in either single or 
multiple goal applications. Also It is clear from the results that genetic algorithm 
always search for the optimum solution, so that the curves of maximum fitness 
always in progress until it reach its global maximum value. 
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Table I. Design parameters 

Parameter Minimum  
(in) 

Maximum 
(in) 

Resolutio 
n 

Number 
of genes 

L„,.e  20 200 5 
5 

6 
Lbody  300 700 7 

LW 10 100 5 5 
F2,,,,,,, 16 20 0.25 5 
Ri„,e  4 20 0.25 7 
X,, 20 350 2 8 
1:),, 5 80 1 7 
C,  5 80 1 7 
Ate„ 0 75 5 4 
TR„ 0 1 0.05 5 
X 300 690 2 8 
b, 5 80 1 7 
C, 5 80 1 7 
At, 0 75 5 4 
TRt  0 1 0.05 5 
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