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ABSTRACT 
The supersonic locally-conical flow over a 5° semi-apex circular cone at a Mach 
number of 1.8 and angles of attack (AOA) ranging from 10° to 35° is studied 
computationally using the three-dimensional Navier-Stokes equations. An implicit 
upwind flux-difference splitting scheme was used to obtain the numerical solution 
of the governing equations. Three flow patterns were predicted depending on the 
AOA. These flow patterns are; steady symmetric flow at AOA = 10°, steady 
asymmetric flow for 15° AOA 25° and unsteady asymmetric flow with vortex 
shedding for AOA ?. 30° . A number of passive control methods including vertical, 
fixed or erected, fins, two side strakes and four strakes in two different 
arrangements, oblique and cross, are used to restore the flow symmetry over the 
cone. A comparison between the studied control methods is carried out to select 
the best method of control. The four cross-strake method was found to be the 
best of the tested control methods. 
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INTRODUCTION 

Slender conical shapes are among the most common shapes of the forebodies of 
supersonic missiles and aircraft fighters. Many research works have been dedicated 
to study the flow characteristics over such shapes both experimentally and 
computationally. The steady inviscid flow over these conical shapes is called conical 
flow which is a special case of three-dimensional flow where all flow quantities are 
invariant along rays that emanate from the cone apex. However, for unsteady 
viscous flow over a conical body, if two very close axial planes are considered, the 
flow may be thought of as "locally conical", with all flow quantities on these planes 
are invariant along rays that emanate from the cone apex, Liu, et. al. [1]. 
At high angles of attack, flow separations from the forebodies of missiles and fighter 
aircraft may become asymmetric resulting in side forces, yawing moments and rolling 
moments which are, in many instances, sufficiently large to trigger missiles and 
aircraft spin. Moreover, the resulting side forces can jeopardize the flight of aircrafts 
and decrease the targeting efficiency of self guided weapons, such as, missiles and 
intelligent bombs. 
The research efforts to study the flow over conical bodies can be categorized into 
three historical stages. The first was the graphical solutions in 1929, Anderson [2]. 
The graphical solutions showed that the flow over circular cones at zero AOA is 
globally conical. When, the value of AOA (a) is not zero the flow over slender conical 
bodies can be considered locally conical. 
The second stage was the experimental studies which started by studying low-speed 
flows and then covered speeds up to hypersonic flows. The experimental studies [3-
6] showed that as the AOA increases the crossing flow increases and forms a vortical 
flow over the conical bodies. Keener and Chapmann [7] categorized vortical-flow 
regimes into four distinct patterns depending on the AOA (Fig. 1). The first pattern 
develops in the very low AOA range, where the flow is attached and vortex free, and 
the axial flow is dominant. At moderate to high AOA, the cross-flow influence 
becomes of same order as that of the axial flow, and large scale vortices are formed 
on the leeward side of the body because of the boundary-layer separation (Fig. 2). At 
this AOA range, the vortices are both stable and symmetric. At higher AOAs, the 
cross-flow effects start to dominate and the vortices may lose their stability or even 
symmetry, which may lead to asymmetric vortices about the symmetric body. The 
fourth flow pattern develops at extremely high AOAs where the cross-flow influences 
dominate completely, and leeside flow is characterized by an unsteady diffuse wake, 
which is the possibility of having either random or periodic vortex shedding. 
The previous researches showed that there are two mechanisms for explaining the 
evolution vortical-flow asymmetry over slender conical bodies at moderate and high 
AOAs. The first, suggests that the flow asymmetry occurs due to instabilities of 
velocity profiles in the vicinity of the saddle point that exists in the cross-flow planes 
above the projections of the body vortices, Fig. 2. This mechanism appears to 
operate in both laminar and turbulent separation regimes. The second mechanism 
relates the asymmetry to the occurrence of asymmetric cross flow boundary-layer 
transition, leading to an effectively asymmetric mean flow about the body. 
The third stage started in the 1990's after the great advancements in supercomputer 
which made many fluid problems computationally solvable. Computational methods 
are advantageous over the experimental methods by their lower cost and higher 
flexibility to solve numerous cases without huge facilities or resources. 
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Fig. 2 

The computational studies [8, 9, 10 and11] simulate the flow asymmetry using two 
methods. The first is introducing a temporary imperfection in the boundary layers just 
for asymmetry initialization, which is known as convective instability. The second 
method depends on the random computational truncation errors to simulate the 
asymmetry initiator, which is known as absolute instability. 
The great advancements in both experimental and computational devices 
encouraged many researchers to study control methods of flow asymmetry over 
slender bodies at moderate to high values of AOA. The control of this phenomena 
using passive or active control methods was studied both experimentally and 
computationally. In the field of computation, Kandil et. al. [12] and Malcolm [13] have 
studied using a vertical fin along the plane of geometric symmetry on the leeward 
side and side strakes as passive control methods. While different active methods 
such as jet blowing, suction, air injection, heating, spinning and rotary oscillation 
were studied by Font et. al. [14], Tavella et al. [15], and Kandil and Sharaf El-Din 
[16]. 
In the field of experimental work, same passive control methods were studied by 
Stahl [17] and Moskovitz [6]. Active control methods, air injection and jet blowing 
were studied by Skow and Peak [18] and Font et al. [14]. 
The present work covers the prediction of vortical flow asymmetry and vortex 
shedding over a 5 semi-apex angle circular cone at a free-stream Mach number, 
M-=1.8 and different AOAs, from 10° to 30°. The flow is formulated using the full 
Navier-Stoke's equations and an implicit upwind flux-difference splitting finite-volume 
scheme is used to obtain the numerical solution of the governing equations. Also, a 
number of flow asymmetry control methods including vertical, fixed or erected fins, 
side strakes and four strakes in two different arrangements, oblique and cross, are 
examined. Then, a comparison between the studied control methods is presented. 

FORMULATION 

Full Navier-Stokes Equations in General Coordinates: 

The governing equations for the compressible, viscous flow around the body are the 
conservative form of the dimensionless, unsteady compressible, full Navier-Stokes 
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equations. Introducing the time-independent body-conforming coordinates, 	and 
e, yields the transformed equations as follows: 
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of 	am 

Where the flow-field vector, Q, and the inviscid and viscous fluxes, E„, and ty„„ are 
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Where m, n and j are summation indices with values ranging from one to three. The 
Jacobian of transformation from the Cartesian coordinate to curvilinear space is 
given by: 

The contravarient velocity component in the direction 	is 11„, = 	. 

The shear stress and heat transfer elements in equation (2) are given by: 
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Where, j and I are free indices and k and m are summation indices. The range of j, k, 
/ and m is from one to three. The reference parameters for the dimensionless form of 
the equations are L, a.., L/ a.., p.. and p.. for the length, velocity, time, density and 
molecular viscosity, respectively. The freestream Reynolds number is defined as Re 
= p.. V.. L / p.., where L is the body length, a.., p., and p.. are the free-stream speed of 
sound, density and viscosity, respectively. 
The pressure, p, is related to the total energy per unit mass for an ideal gas equation 

by the following equation: P = —1)P [e 2 (u■ u22  u01. 

The viscosity is calculated from the Sutherland's law, p =T 2(T  ±  (7 )  y 1+  C , C = 110.4 K. 

The Prandtl number Pr is chosen to be 0.72. 

Computational Method: 

Equation (1) is written in the integral form and the divergence theorem is applied to 
the divergence of the inviscid and viscous flux terms. 
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Where, R is the domain of integration and aR is the domain's boundary. The 
computational domain, R is divided into small hexahedral cells which are considered 
as unit cubes, for convenience. The flow quantities are cell-averaged values rather 
than point wise values at the cell center. The integral form of Eq. (3) becomes an 
ordinary differential equation in time with spatial-differencing terms. 
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Where, the subscripts i, j, k denote the value at the centroid of a cell and the half-
integer subscripts refer to the value at the *nterface of cells. 
Then the flux-difference splitting scheme of Roe is applied on the equations. The 
Jacobian matrices of the inviscid fluxes are split into backward and forward fluxes 
according to the sign of the eigen values of the inviscid Jacobian matrices. The 
viscous and heat-flux terms are centrally differenced. The resulting difference 
equation is solved using approximate factorization in the 	e and e directions. 
Locally-conical solutions of the Navier-Stokes equations are obtained by solving the 
three-dimensional flow equations on two axial (or cross-flow) surfaces which are 
located in the very near proximity of a constant axial distance. During time stepping, 
the flow field vector is forced to be equal at the corresponding grid cell centers on the 
two surfaces. 

Initial and Boundary Conditions: 

The initial conditions correspond to uniform flow with u1 = u2 = u3 = 0 on the solid 
boundary. On the solid boundary, the no-slip and no-penetration conditions are 
enforced, i.e., u1 = u2 = u3 = 0 and the normal pressure gradient is assumed to be 
zero. The adiabatic condition is maintained on the solid surfaces. In the plane of 
geometric symmetry, periodic conditions are used. Far field boundary conditions are 
specified to be freestream conditions. Solid boundary conditions are applied on both 
sides of fins and strakes. 

PREDICTION OF FLOW ASYMMETRY OVER A CIRCULAR CONE 
Navier-Stokes equations are used to solve for asymmetric flow on a grid of 161x81 
points in the circumferential and normal directions, respectively. The global time step 
is 10-4  is used in all case studies. The grid was generated using a modified 
Joukowski transformation and a geometric series was used for grid clustering in both 
circumferential and normal directions. The minimum grid spacing in both directions is 
2x10-3. The maximum radius of the computational domain is 15 rb, where rb is the 
radius of the circular cone at the axial station of unity. 

(4) 
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Steady Asymmetric Flows over a Circular Cone (15° 5 a 5 25°, M. = 1.8, Re=105 ) 

Figures 3.a, 3.b, 3.c and 3.d show the results of studying the flow over a 5° semi-
apex circular cone at M. = 1.8 and Re=105 and AOA (a) equals 15°, 20°  and 25°. 
Figure 3.a shows total pressure loss contours over the cone for the three cases. 
Figure 3.b shows the history of residual error while Fig. 3.c shows the pressure 
coefficients versus body angle, theta. Figure 3.d shows the history of the side force 
coefficients. 
The results of the three cases represent steady asymmetric vortical flows. The total 
pressure loss contours show that, as the AOA increases the asymmetry of the two 
vortices over the leeward side of the slender cone increases. Results of the residual 
error show that the numbers of time steps required to obtain steady state at a = 15, 
20' and 25°  are 800, 2000 and 3400, respectively. This means that as the AOA 
increases the time required for the asymmetric vortical flow to become steady 
increases. The surface pressure coefficient distributions show that there is an 
asymmetry of the surface pressure coefficient on the two sides of the cone. This 
asymmetry increases as the AOA increases. The asymmetry in surface pressure 
causes a steady side force which is shown Fig. 3.c. Figure 3.c shows that the side 
force increases as the AOA increases. The vortices demonstrated by the total 
pressure loss contours in Fig. 3.a are steady asymmetric at these values of AOA. 
The results show that as the AOA increases the size of the vortices increases and 
the vortices become weaker. The weakness of vortices structure explains their need 
for more time to reach steadiness. The results in the next section will show that at 
higher A0As the vortices will be too weak to attain steadiness. 

Unsteady Asymmetric Flow with Vortex Shedding (a = 30°, M.. = 1.8, Re=106) 

As the AOA increases the leeward side vortices become larger and weaker. The 
weakness of the vortices makes it difficult to reach a steady state. At an angle of 
attack, a = 30 , the flow was found to be unsteady asymmetric with vortex shedding. 
Eight snapshots of the total pressure-loss contours after 7700 time steps with an 
increment of 200 time steps are shown in Fig. 4. The figure shows a clear 
demonstration of an unsteady flow asymmetry with clear vortex shedding from both 
sides. The shedding mechanism occurs in a periodic manner. It takes about 1200 
time steps to complete one cycle of vortex shedding oscillation. It is noticed that the 
second snapshot (at n = 7900) is very similar to the last snap shot shown (at n = 
9100) while the snapshot (at n = 8500, the mid cycle) is a mirror image to the two 
snapshots mentioned above. As a result of the periodic vortex shedding, the conical 
body oscillates which may jeopardize the flight safety. 

PASSIVE CONTROL OF SUPERSONIC ASYMMETRIC VORTICAL 

FLOWS AROUND CONES 
Flow Asymmetry Control Using Vertical Fins: 

Vertical fins in the leeward plane of geometric symmetry were examined 
experimentally by Stahl [17] and computationally by Kandil et al. [12] in controlling 
the flow asymmetry around cones at AOA = 20°, M.. = 1.8 and Re = 105. Their 
results showed that the presence of a vertical fin suppressed the vortical flow 
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asymmetry. The minimum fin height to control the asymmetry was found to be equal 
to the local radius of the cone. However, both the numerical and experimental studies 
tested only two different fin heights (0.5 rb and 1 rb) at AOA = 20

. 
 . The margin from 

0.5 rb to 1 rb is a wide margin that led to bad resolution. In the present, a numerical 
simulation of the vortical flow using vertical fins with heights from 0.1 rb to 1.35 rb 
shows that at AOA (a) = 20° a fin with a height less than 1 rb is capable in 
eliminating the flow asymmetry. Also, using an erected fin is examined at the same 
AOA a = 20°. 
This section considers the use of vertical fins to control the flow asymmetry at AOAs 
of 20° and 30°, as they represent the two conditions of flow asymmetry; steady 
asymmetric vortical flow and unsteady asymmetric vortical flow with vortex shedding. 

Using Fixed Vertical Fins to Control The Flow Asymmetry: 
In this method the fin is placed from the beginning of the computational simulation. 
This situation represents the case in which the fin is fixed to the body. Figures 5.a 
and 5.b show the results of using vertical fixed fins of heights of 0.4 rb and 0.6 rb at a 
= 20°, while figures 5.c and 6.d show the results when using fixed fins of heights of 
0.8 rb and 1.25 rb at a = 30°. It is noticed that using a vertical fin of a height of 0.6 rb is 
enough to maintain the flow symmetry at a = 20°. This height is less than the 
minimum height required at same AOA in reference [12]. Figure 5.d shows that the 
minimum required height to maintain the flow symmetry at a = 30° is 1.25 rb which is 
very large and also not practical. 
Using Vertical Erected Fins to Control the Flow Asymmetry: 

In this method the computational simulations start without the presence of the vertical 
fin then the fin is placed gradually (erected) in the plane of geometric symmetry if a 
flow asymmetry is sensed. This situation simulates a case in which a fin folded inside 
the body is erected only if a flow asymmetry is sensed over the leeward side of the 
body. This control method may be classified as an active control method since the 
method is used only if it is needed and the height of the fin may be adjusted based 
on the strength of the vortex asymmetry. The erection can be controlled by a 
hydraulic cylinder with a proportional control system that senses the pressure 
difference between the two sides of the cone. This flow control method was never 
simulated in the literature and further investigation is required to judge its visibility 
and applicability. Figures 6.a and 6.b show the results of using erected fins of 
heights of 0.6 rb and 0.75 rb at a = 20°, while Figs. 6.c and 6.d show the results of 
using erected fins of heights of 1.25 rb and 1.35 rb at a = 30°. It is noticed that using 
an erected vertical fin of a height of 0.6 rb is not enough to maintain the flow 
symmetry at a = 20°. Although this height was enough when using a fixed fin. Figure 
6.b shows that the minimum erected fin height required restore the flow symmetry is 
0.75 rb. Figures 6.c and 6.d show that the minimum required fin height restore the 
flow symmetry at a = 30° is 1.35 rb which is very large and seems to be impractical. 

Control of Flow Asymmetry Using Two and Four Thick Strakes: 

Different arrangements and lengths of strakes are used to control vortical flow 
asymmetry at AOA values of 20°, 30° and 35°. Flow conditions and strake's slope 
angles will be the same for all considered cases (M. = 1.8, Re=105, b = 30°). 
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Using Two Sharp Edged Thick Side Strakes to Control the Flow Asymmetry 

Figures 7 and 8 show the total pressure-loss contours, residual error and surface 
pressure coefficient when using two 0.3-rb-length side strakes at AOAs of 20°and 
30°. The results show that the side strakes render the flow perfectly symmetric since 
the two primary vortex cores are pushed further apart preventing the flow 
disturbances of the two sides from interacting. The effects of placing the side strakes 
on the surface pressure distribution is very clear from Figs. 7 and 8 which has the 
favorable effect of increasing the lift coefficient as was also presented by Liu et. al. 
[19J. 
The results of using strakes of the same length of 0.3 rb at a = 35° are shown in Figs. 
9.a and 10.b. The figure shows that at a = 35°, 0.3- rb-length strakes are not enough 
to maintain the flow symmetry. The flow in this case is unsteady with vortex 
shedding. Testing larger strakes at the same AOA showed that the minimum required 
strake length to maintain the flow symmetry is 0.8 rb. This result is shown in Fig. 9.c, 
which shows the total pressure-loss contours, residual error versus number of time 
steps and surface pressure coefficient versus body angle for using two side strakes 
of 0.8 rb length at a = 35°. 

Using Four Oblique Strakes and Four Cross Strakes to Control the Flow 

Asymmetry 
Two different arrangements of four strakes on a slender cone are tested to control 
the vortical flow asymmetry occurring at AOAs of 20°, 30° and 35° at the same flow 
conditions of the previous cases. It is noted that no computational or experimental 
results of using this control methods were presented by previous investigators in the 
literature. The first arrangement consists of four oblique strakes placed at angles of 
45° from the plane of geometric symmetry, while the second arrangement consists of 
four cross strakes. Figures 10.a and 10.b show the total pressure-loss contours and 
surface pressure coefficient of the flow around a cone at a = 20° and a = 35°. The 
results show that the minimum strake lengths required to maintain the flow symmetry 
at these values of AOA are 0.3 rb and 0.6 rb, respectively. Figures 10.c and 10.d 
show the total pressure-loss contours and surface pressure coefficient at a = 20° and 
a = 35° for using four cross strakes. The results show that the minimum strake 
lengths of the four cross strakes required to keep the flow symmetry at a = 20° and a 

= 35° are 0.3 rb and 0.6 rb, respectively. 

Comparison between Different Control Methods 

The results presented in the previous sections show that, in all control methods the 
higher the AOA the longer length of control device is required. It is noticed that the 
required length of the vertical fin is the highest among all the control methods. Also, 
using an erected fin instead of fixed fin requires the fin to be larger. The length of two 
side strakes to maintain the flow symmetry at a = 35° was found to be 1 rb while, the 
required length of the four oblique or cross strakes for the same AOA is 0.6 rb. 
Although, the required length of both oblique and cross strakes are the same, the 
surface pressure distributions, shown in Fig. 10, show that the flow stability and lift 
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forces are better in case of using four cross strakes than in case of using four oblique 
strakes. 

CONCLUSIONS 

- The results show that the flow asymmetry around conical bodies occurs when 
the angle of attack exceeds certain critical values. For angle of attack range: 
15° a 25°, the vortical flow was found to be steady asymmetric. At higher 
values of AOA, a 30°, the flow becomes unsteady asymmetric with periodic 
vortex shedding. 
Vertical thin fins, either fixed from the beginning of simulation or erected after 
the development of flow asymmetry, along the plane of symmetry in the 
leeward side of the cone were successful in controlling the flow asymmetry. 
Erecting the fin after the development of flow asymmetry required higher 
length of the fin than that required when for a fixed fin. 
Fin lengths required to control the vortical flow at a 30° were too large to be 
practical. 

- Two side strakes with lengths less than that of the corresponding vertical fins 
at the same flow conditions were capable of controlling the flow at AOA values 
up to 35°. The required strake length at AOA of 35° is 0.8 rb. 

- Four strakes in two different arrangements, cross and oblique, were used to 
control the asymmetric flow at AOA values up to 35°. The required strake 
length to control the flow at a = 35° was found to be 06 rb. 
The four cross-strake method was found to be the best of the tested control 
methods. 
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Fig. 3: a) Total pressure loss contours. b) Residual error versus number of time steps, n,. 
c) Surface pressure coefficient Cp  versus body angle, theta. d) Side force coefficient, Cy, 

versus number of time steps n. (M = 1.8, R-= 105). 

Fig. 4: Snapshots of total pressure loss contours around 
circular cone at a = 30 with time steps. 
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Fig. 5: Total pressure-loss contours and surface pressure coefficient distribution 
versus body angle theta at a = 20° and using fixed fin with lengths a) 0.4 rb. b) 0.6 rb 

and at a. = 30° and using fixed fin with length c) 0.8 rb. d) 1.25 rb 

(a) 
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	 (d) 

Fig. 6: Total pressure-loss contours and surface pressure coefficient distribution versus 
body angle theta at a. = 20° and using erected fins with lengths a) 0.6 rb. b) 0.75 rb and 

at a = 30° and using erected fins with lengths c) 1.25 rb. d) 1.35 rb 

(al 	 (131 	 (c) 	 (dl 

Fig. 7: a) Total pressure loss contours. b) Surface pressure coefficient C, versus body 
angle theta. c) Residual error versus number of time steps. d) Side force coefficient C, 

versus time steps At a = 20° when using 0.3- rb-length side strakes. 



Total pressure loss contours 

Total pressure-loss contours 

Surface pressure coefficient versus body angle theta 
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(a) 	 (b) 	 (c) 	 (d) 
Fig. 8: a) Total pressure loss contours. b) Surface pressure coefficient C, versus body 

angle theta. c) Residual error versus number of time steps n. d) Side force coefficient Cy 

versus number of time steps. At a = 30° when using two 0.3- rb-length side strakes. 

Surface pressure coefficient versus body angle theta 
(a) 	 (b) 	 (c) 

Fig. 9: Total pressure loss contours and surface pressure coefficient versus body 

angle theta at a = 35° using a) 0.3-rb-length two side strakes. b) 0.5-rb-length two side 

Fig. 10: Total pressure-loss contours and surface pressure coefficient at a) a = 20° using 0.3-rb- 
length four oblique strakes. b) a. = 35° using 0.6-rb-length four oblique strakes. c) a = 20° using 

0.3-rb-length four cross strakes. d) a = 35° using 0.6- rb-length four cross strakes. 
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