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ABSTRACT 

Analysis of arbitrarily laminated composite beams is presented based on a higher-
order shear deformation theory. The governing equations are derived by minimizing 
the total potential energy of arbitrarily laminated beams undergoing axial and 
transverse shear strains under laterally distributed load. The exact solution of the 
governing equations is presented for hinged-hinged beam. The displacement and 
stresses of several laminated beams are calculated and compared with published 
results. The results of a parametric study showing the nature of axial and 
interlaminar shear for various ply-stacking patterns, beam aspect ratios and 
transverse shear are demonstrated. 
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NOMENCLATURE 

E 	Young's modulus. 
E22 	Young's moduli in 1 and 2 directions respectively. 

G12, G13, G23 shear moduli in 1-2, 1-3 and 2-3 planes respectively. 
L, b, h 	Beam length, width and thickness respectively. 
u, w 	Axial and lateral beam displacements respectively. 
q 	Lateral distributed load per unit length 
a 	The angle between the fiber axis and the x axis. 

0 	Beam rotation about y-axis 
v 	Poisson's ratio. 
V12 	Poisson ratio for transverse strain in the 2-direction when stressed in 

the 1-direction. 
0.1■ 62, T12 

	In-plane stresses in 1-2 coordinate. 
0x, TV 
	Axial and transverse shear stresses. 
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INTRODUCTION 

Beam structures are among the most important structures in aerospace applications. 
Multilayered composites have wide applications in aerospace industry due to their 
high strength-to-weight and stiffness-to-weight ratios. Conventional analysis of 
beams uses the classical beam theory based on Bernoulli-Euler hypothesis [1], and 
neglects shear deformation. This theory adequately describes the behavior of slender 
beams, but is less adequate for thick beams in which shear deformations are 
important. 

Timoshenko [2] extended the classical theory to produce a first-order shear 
deformation theory. This is an improvement on the classical theory which reduces to 
it as the beam becomes thinner. A defect of Timoshenko theory is that the assumed 
displacement approximation violateas the "no-shear" boundary condition at the top 
and bottom of the beam. Levinson [3] introduced a higher-order theory to correct the 
drawback of Timoshenko theory. It is based on a cubic in-pane displacement 
approximation that satisfies the no-shear condition. 

Bickford [4] noted that the derivation used by Levison was variationally inconsistent, 
and derived a corrected version from Hamilton's principle. In addition, he presented 
some representative solutions for simple beams. 

Heyligher and Reddy [5] presented a finite element solution for Bickford's theory 
using polynomial shape functions. J. Petrolito [6] presented a finite element for 
isotropic beams based on a higher-order shear deformation theory. Solutions of the 
governing differential equations are derived and used as element shape functions. 

For laminated beams, the classical lamination theory [7, 8, 9] is adequate to predict 
the global response of laminates with relatively small thickness. Because of the low 
shear modulus to in-plane stiffness ratio, the important role of transverse shear 
deformation, which is not contained in classical lamination theory, cannot be 
neglected. S. Gopalakrishnan et al [10] derived a refined 2-node, 4-DOF beam 
element based on a higher-order shear deformation theory in asymmetrically stacked 
laminates. V. G. Mokos and E. J. Saountzakis [11] developed a boundary element 
method for the solution of the general transverse shear loading of composite beams 
of arbitrary constant cross section. Exact solution for the bending of thin and thick 
cross-ply laminated beams was presented by Khedir and Reddy [12 and 13] using 
the state space concept. 

In the present work analysis of arbitrarily laminated composite beams is presented 
based on a higher-order shear deformation theory. The governing equations are 
derived by minimizing the total potential energy of arbitrarily laminated beams 
undergoing axial and transverse shear strains under laterally distributed load. The 
exact solution of the governing equations is presented for hinged-hinged beam. The 
displacement and stresses of several laminated beams are calculated and compared 
with published results. A parametric study showing the nature of axial and 
interlaminar shear for various ply stacking, beam aspect ratios and transverse shear 
is discussed. 
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MATHEMATICAL FORMULATION 

Kinematics Relations 

Assuming that the beam is subjected to lateral load only as shown in Fig. (1), the 
deformation of the beam is described by two displacements u and w, and a rotation, 
(). These displacements are assumed to be of the form [6]: 

3 
u = u(x, z) = z0 – –4 —z (0 + —aw) 

3 11 2 	Ox 
= 0(x) 
	

(1) 
w = w(x) 

where h is the depth of the beam. 

Strain-Displacement Relations 

The beam is considered as a wide beam. So, The only non-zero strains are [6] 

au 	ae 4 z3  ae 52w, = — = Z— ---( 	) 
ax 	ax 3 1:2  ax ax2  

Y= = au + =(1– 4)(0+ ('$) 
OX ax 	h2 	ax 

Stress-Strain Relations 

The laminate stresses are 

r ..=011 6.r 

r= = Q 55 r. 

where CI„ and 055  are given in the Appendix. 

GOVERNING EQUATIONS 

Differential Equations 

Minimizing the total potential energy of the beam can derive the governing equations 
for static analysis of the beam. In the present case, the total potential energy, II, is 

1  A/2 b L 
r1=– 5 5(Cr., e.,+r yjdxdydz– fqwdx 

2  -h/2 0 0 	 0 

(2)  

(3)  

(4)  
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where q is the applied transverse load per unit length of the beam, b is the width and 
L is the length of the beam. Taking into consideration that the variation in the 
potential energy is due to the variation in the displacement and strain, the first 
variation of the potential energy, 511, can be written as: 

h/2 b L 

811= 5 55(v, Se + ery,„)clx y dz - fq Sw clx 	 (5) 
-h/ 2 0 0 	 0 

Substituting equations (1)-(3) into equation (5) and integrating over the width and 
depth of the beam equation (5) becomes 

11=
L
itEr,

a9 ase  + El ( 	+ 	)+ El . 	 
o 	

ae a'sw 	a'w 	a2w  a2aw  

ax ax 	 ax ax e 	lax OX 	aX2  axe  
(6)  

+ GA' (850 + 
05w 

 + 80 + 
aw 08w  )]dxq ow dx 

ax 	& ax ax 	0 

where EI0 ,E1,„El. and GA.  are the bending and shear stiffness of the laminated 
composite beam, and are defined in the Appendix. Integration by parts and equating 
to zero gives the equilibrium equations of arbitrarily laminated beam 

[EI,,O.  + El w" 	(0 + )]' - q 0 

(7)  
[EI 90' + EI 	- GA* (0 + w. ) 	=0 

where a prime denotes —d . The procedure also leads to the definition of the 
dx 

generalized forces used in expressing the beam boundary conditions 

F, 4E4.0' + El w ae (0 + w) 

• = 	+ El w 
	 (8) 

• = El 60' + El „ 

The force F, can be interpreted as a generalized shear force, while F2  and F., are 
generalized moments. With these definitions, the appropriate boundary conditions for 
the beam are as follows: 

1) either w or F, is specified; 
2) either 0 or F, is specified; 
3) either w or F, is specified; 
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For most practical problems the properties of the beam are constant along the length 
of the beam. In this case, equations (7) and (8) reduce to 

El w -GA' + 	=q 	 (9a) 

EIS 	 -GA'W + EI80" -GA*0 =0 	 (9b) 
and 

	

+GA'W - El o 0" +GA*0 	 (10a) 

F2 = El,,,w" + EI80 	 (10b) 

= El,, + 	 (10c) 

Therefore, the higher-order beam theory is represented by a system of ordinary 
differential equations of order six. 

Boundary Conditions 

Fixed end 

w =0; 8 = 0; 14; = 0 (11)  

Hinged end 

w = 0; F2  =0; F, = 0 (12)  

Free end 

F, = 0; F2 =0; = 0 (13)  

GENERAL SOLUTION OF THE GOVERNING EQUATIONS 

Uncoupled Differential Equations 

To obtain the exact solution of equation (9) the uncoupled differential equations 
are derived. Differentiating equation (9b) and subtracting from (9a) lead to 

-E10 )0 +(EI,, - EIG.)w°' 

Also from equation (9b): 

El 	. 
w = El ° + --°•=w  

GA' 	GA' 

=q (14)  

(15)  
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Differentiating equation (15) and substituting for 0" from equation (14), equation (15) 
becomes: 

	

0
. 
= 

El' -El, 	 wi" - w. + 	
El, 

 
GA.  (EI - El 8 ) 	GA• 	-EIB )

q  

Substituting for 0' and 0 " from equation (16) in equation (9a), the resulting 
uncoupled equation for w is 

EI, 	A2 

El 2  - EIB EI 	 EI 

In a similar way the uncoupled equation for 0 is 

A2 
0" -220.,   - 	EIS 	

q + 	q 

	

EI 20, 	 El 

where; 

A2 GA.  (2E19,, - El, - El,") 
El 2  - EI,E1„ 

El = El , + 

General Solution 

The general solution of differential equation (17) comprises homogeneous and 
particular solutions. 

Homogeneous solution 

The homogeneous solution of equation (17) [6 ] is 

C, sinh(2x) + C2  cosh(Ax) + C,x3  + C,x2  + Csx + 

0,, = C, sinh(Ax) + C, cosh(A.x) + C9  x2  + C,O x + C„ 
(20) 

where C,,C„...,C„ are unknown coefficients to be determined from the boundary 
conditions. Since the theory is of sixth-order, only six of these coefficients are 
independent and the remaining five are dependent. For convenience, C„C„...,C, 
are chosen as the independent coefficients. To find the dependencies, equation (20) 
is substituted into equation (9b), giving the following relationships between the 
coefficients: 

(16) 

(17a)  

(17b)  

(18)  

(19)  
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C, = R C, 	 Cs  = R C, 

C9  = -3C3 	• ' 	C10  = -2C4 	 (21) 

C„= QC, -05 

6(R, -1) 
where R=

R - 
Q= 

	

R,- 	 R, 
El 

R, =
GA' 

R 	 2 Eio  

Particular solutions 

Particular solutions can be derived once the loading function is specified. 
Particular solutions are derived for three different loading cases. 

Load case 1 

Assuming the load q(x) is given by,  

q(x)= 2-c q, 	 (22) 

where q, is the magnitude of the load at the beam end and L is the beam length. A 
particular solution of equation (22) is 

5 

- (   	x + 	 )41 

— 
120E1 L

q, 

24E1 L 2GA.  El L 	(GAT El L 

X 

	

X 4 	El - 	2 El 6,(E1 „„- El e ) 
	 (23) 

It can be seen from equation (23) that the solution reduces to the classical beam 
theory with 0 = 	in the limit as GA' tends to infinity. 

Load case 2 

Assuming the load q(x) is given by 

q(x)= c  q, + (1-1-)q, 	 (24) 

where q, and q 2  are the magnitude of the load at the beam ends. For this case the 
solution of equation (24) is 

w2 =[1+—
q,

(
5L  - w, 

q1 x 

0 = (1 - -
q2

)0, +[- 	
x' 	El, 

x]q2 
6E1 Gir El 

(25) 
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Load case 3 

The solution in case of uniform distributed load q can be obtained from equation (25) 
by putting q,=q2 =q 

x°  
w, - 	q 

24E1 
0 	x' ± E1,,- El, x) 

6E1 GA* El 	q  
(26) 

General solution 

The general solution is obtained for Hinged-Hinged beam under load case 3. 
Application of boundary conditions of the type (12) at the beam-ends (x=0 and x=L) 
gives the integration coefficientsC,, 	C6  . It was found that for small aspect ratios 
(even forL/ h 	the solution is unstable since sinh and cosh terms go to infinity as 
the aspect ratio increase. So, without loss of generality the coefficients C, and C2  
are set equal to zero. Setting w and F2  equal to zero at x=0 and x=L the remaining 
four coefficients are 

L 	 El, 
C3 	

12 12E1 q 	 2GA.  El 

El, 
CS 
	q+ = 
24E1 2GA El q 
	 C, =0 

 

The general solution is 
4 

w=C2 x3  +C,x 2  +Cs x+ 	 q 
24E1 

.x3 
q +

(El „„- El,)x 
0 =C,x2  +C,„ 	,,x+C 	 

	

6E1 	GA' EI 

where the coefficients C3 ,C4  and C6  are given by equation (27) and coefficients 
C,,C,„ and C„ are given by equation (21). 

RESULTS AND DISCUSSIONS 

The general solution (28) is applied to isotropic as well as arbitrarily laminated 
beams. 

Problem 1 

In this problem a simply supported isotropic beam of length L and depth h under 
uniform load is analyzed. The Poisson's ratio of the material is 0.3. Table (1) shows 
the results for the maximum displacement and normal stress for various values of the 
aspect ratio, L/ h. The results are compared with those in Ref. [6]. In all cases the 

(27)  

(28)  
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results have been normalized by dividing by those of the classical isotropic beam 
theory. 

The results show that, even for small aspect ratio L /h 5, ignoring sinh and cosh 
terms does not affect the solution. Also, it is clear from the results that the higher-
order beam theory reduces to the classical isotropic beam theory as the beam 
becomes thinner. In Table 1 the difference in the displacement is attributed to the 
difference in stiffness, so use presented results with replacing E in beam theory with 

E— 	
E in plate theory. 

1—v 2  

Problem 2 

In this problem a hinged-hinged laminated composite beam under uniform load as 
shown in Fig. 2 is solved. The material of the beam is carbon/epoxy with a [04/454/-
454]s  layup. The material properties are 

Ell= 131 GPa; 	E22= 131 GPa; 	G12=6.55 GPa, 	v12 =0.28 
Since in the presented solution G13 and G23 are included, they are assumed equal to 
G12. The data for the problem are summarized as follows: 

Length 	L= 25.4 cm 	Width 	b= 1.27 cm 
Thickness h= 0.315 cm 	Distributed load q= 380 N/m 

The axial strain and in-plane stresses are calculated at mid span and compared with 
those calculated according to the classical lamination theory of Ref. [9], and are 
presented in Table 2. The results show good agreement because Llh=80, which 
gives a thin beam. 

Problem 3 

In this problem the beam of Problem 2 is reconsidered with the following changes in 
width and load: 

Width b= 5.08 cm 	 Distributed load q= 3500 N/m 

The interlaminar shear stresses are calculated at the beam-ends and compared with 
those in Ref. 191 and presented in Table 3. The interlaminar shear stress in Ref. [9] is 
calculated from equilibrium of forces in x-direction, and the classical lamination theory 
is applied. The results show that the axial stresses are nearly coincident because the 
beam is sufficiently slender. The shear stress, however, has a discrepancy. The axial 
and interlaminar shear stress distributions through the beam thickness are shown in 
Figs. 3 and 4. 

Parametric Study 

A parametric study is conducted to understand the behavior of laminated beams 
under uniform distributed load. The material properties of Problems 2 and 3 are 
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considered. To show the limits of the higher-order shear deformation theory in 
laminated beams with different ply stacking pattern, numerous aspect ratios are 
considered. Table 4 presents the central displacement normalized to the well-known 
central displacement of hinged-hinged beam (5qL4 /384E1). It can be seen from the 
Table that the Euler-Beroulli beam theory underestimates the deflection of laminated 
beams by a factor depending on the ply-stacking. 

In order to bring out the effect of shear deformation in case of laminated beams, 
three different shear moduli are considered: 

1) Gi3=G237-"Gi2 	2) G13=-G23=103  G12 	3) G13=G23=1 05  G12 

The interlaminar shear at the mid-plane of the beam-ends and the axial stress on the 
top surface at the mid-span are calculated for different ply-stacking, beam aspect 
ratios and transverse shear moduli. In all cases the length to width ratio is 10. The 
results are normalized to the classical lamination theory presented in Ref. [9], and 
are presented in Tables 5 and 6. It is clear from the results that the higher-order 
theory for laminated beam reduces to the classical lamination theory as the beam 
becomes thinner and the transverse shear moduli increase. Also, the values of the 
stresses as predicted by the classical lamination theory show a discrepancy with 
those calculated by the higher- order theory. The shear stress results are found not 
to be significantly affected by changes in the values of the shear moduli G13 and G23. 

CONCLUSION 

A higher order shear deformation theory is proposed for the exact analysis of 
arbitrarily laminated composite beams. Several case studies are considered. Results 
show superiority of the proposed theory over the classical lamination theory, 
particularly for thick stubby beams. 
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Fig. 1. Beam Geometry 
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Table 1. Normalized central displacement, Iv' , and normalized central stress, cr * s of 
isotropic beam, v = 0.3 

L/h 

Displacement Stress 

Present Present/(1-v2 ) Ref. [6] Ref. [6] Present 

1 3.436 3.776 3.434 1.408 1.347 
2 1.541 1.694 1.620 1.102 1.087 
3 1.191 1.309 1.277 1.045 1.039 
4 1.068 1.174 1.156 1.016 1.022 
5 1.011 1.111 1.100 1.004 1.014 
10 0.935 1.027 1.025 1.001 1.003 
25 0.914 1.004 1.004 1.000 1.001 
50 0.911 1.001 1.001 1.000 1.000 
100 0.910 1.000 1.000 1.000 1.000 
1000 0.910 1.000 1.000 1.000 1.000 

Table 2. Comparison of axial strain and in-plane stresses with those in Ref. [9] 

Ply 
Group 

z 
mm  

6.,% al  [tV1Pa] a2 [ MPa] 1-12[ MPa] 

Present Ref. [9] Present Ref. [9]Present Ref. [9] Present Ref. [9] 

0 1.575 0.138 0.138 181.9 181.5 4.356 4.353 0 0 

45 1.050 0.092 0.092 62.05 62.07 6.631 6.634 -6.019 -6.021 

-45 0.525 0.046 0.046 31.01 31.03 3.314 3.3178 3.008 3.011 

Table 3. Comparison of axial and shear stresses with those in Ref. [9] 

Ply Group 
z 

mm  

0-x  [We] z 

mm  

r.. [A4Pa] 

Present Ref. [9] Present Ref. [9] 

0 1.575 418.84 418.73 1.050 2.236 2.885 

45 1.050 92.94 92.96 0.525 3.557 3.461 

-45 0.525 46.46 46.48 0.000 4.024 3.654 
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Table 4. Normalized central displacement of hinged-hinged composite beam 

L/h 
Ply group 

1 2 3 4 5 10 100 103  

[04/454/-454/454/-454/04] 15.56 4.65 2.62 1.912 1.584 1.146 1.002 1.0 

[454/-454/04], 8.23 2.81 1.80 1.452 1.289 1.072 1.001 1.0 

[154/3041041$ 16.72 4.93 2.75 1.983 1.629 1.157 1.002 1.0 

[154/304/454/-454/-304/-154] 16.01 4.75 2.67 1.938 1.600 1.150 1.002 1.00 

104/154041, 19.42 5.61 3.05 2.151 1.737 1.184 1.002 1.0 

[012/9012] 11.62 3.65 2.18 1.664 1.425 1.106 1.001 1.0 

[08/904], 19.58 5.65 3.06 2.161 1.743 1.186 1.002 1.0 

[904/08], 9.48 3.12 1.94 1.530 1.339 1.085 1.001 1.0 

Table 5. Normalized shear stress 1",,, at the middle plane in different beams with 

different laminates 

L/h <10 100 103  

[04/454/-454/454/-454/04] 1 .1 01 1.101 1.101 

[4541-454/04]4  0.892 0.892 0.892 

[154/304/041$ 1.005 1.005 1.005 

[1 54/304/454/-454/-304/-1 54] 1.065 1.065 1.065 

[04/154/304], 1.033 1.033 1.033 

[012/9012] 0.543 0.543 0.543 

[08/904], 1.067 1.067 1.067 

[904/08], 0.801 0.801 0.801 
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APPENDIX 

Bending and Torsion Stiffness of Laminated Beam 
According to Higher-order theory 

The stress-strain constants appearing in equation (3) are 

Q.= C4  Qii+ S4  Q22 ± 2S2C2 	+ 2Q33) 
Q55= C2  Q55 +.32  

E,, 
1-v,,v2, 

Q33 = G,2 
C = COS a 

v21Ell  Q12   
1- v,21,  2, 

Q.= G23 
S = Sin a 

Q 
E
" 22=  .-v,2v2, 

Q55= G13 

a is the angle between the fiber axis and the x axis. 
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The bending stiffness appearing in equation (6) are 

El 0  =El, +2E1,1+ El,2 
EIk  =EI„+ El „ 
E „ = El,2 

where 
h/2 

(El ,,E1 ,,,E1 „)= b fd11(z 2 ,24 ,Z6 )(12 
-h/2 

EI• =bEQ„k [(Zk) 2 1k + (tA 
k=1 	 12 

4b 
—  	k [5(ik)4  tk  + 2.5( k)2  003  

	

15 h 2  k1 " 	 16 

16b  N— 
El ,2  = 	EQ„kmik)6/k4--(Ykrtok)3 4-- 1(ik (tk)5  

63h4  k=1 	 4 	16 	 64 

The shear stiffness GA* appearing in equation (6) is 

GA' = GA, + GA2  + GA, 

h/2 

(GA„GA,,GA,)= b f-d55(1, z2,z4 )dz 
-k/2 

N  k GA, =bEQ „ 

817 N N 	 k GA2  ,-:—EQ,sk[EQ„k Rzo2 t, 
n' fr=1 	k=1 	 12 - 

16b N   
GA, 	EQ„k[EQ„k [5(Z k)4  t, +2.5(Z k)2  (03  +(rk)5 ) 

Sh k-1 	kml 	 16 

(Al) 

(A2)  

(A3)  

(A4)  

(A5)  

(A6)  
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