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ABSTRACT 

A numerical simulation algorithm has been developed to investigate the effects of 
geometric nonlinearities on dynamic aeroelastic behavior of wing-like cantilever 
structures. 

A geometrically nonlinear finite element formulation relevant to flexible structures has 
been adopted to model the structure using a degenerate-continuum shell element along 
with total Lagrangian formulation. Subsonic doublet lattice method (DLM) has been 
used to model the unsteady aerodynamics. To ensure full coupling between the 
structural and aerodynamic networks, infinite plate spline technique has been 
employed. This has facilitated the transfer of loads and displacements during the 
nonlinear analysis where the aerodynamic load is applied incrementally through a 
unique two-level time stepping procedure developed in the present work. The results 
obtained highlighted the effectiveness of the suggested numerical algorithm in capturing 
geometrically nonlinear behavior. Geometric nonlinearities showed additional nonlinear 
features that are not predicted by the linear approach. 

KEY WORDS: Degenerate-continuum shells, geometric nonlinearity, unsteady 
aerodynamics, flutter and nonlinear aeroelasticity. 

Nomenclature 

Bni 	 Displacement- strain matrix 

D 	 Displacement vector 
F 	 Aerodynamic force vector 
H 	 Boolean matrix 
Kt 	 Tangent stiffness matrix 

kr 	 Reduced frequency 
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INTRODUCTION 

Nonlinear aeroelasticity had bubbled to the surface as a response to the continuous 
demand for faster airplanes and the consequent need to push the flight envelope 
further. When wings are very flexible, then wing flexibility coupled with relatively long 
span leads to the possibility of large deflections during normal flight operations [1]. 
These can no longer be analyzed solely within the standard linearized aeroelasticity 
theory; instead a nonlinear approach is preferable. Nonlinearities may introduce certain 
new types of phenomena which are not even indicated by the linear theory; limited 
amplitude oscillations were observed which could lead to long time fatigue failure [2]. 

As a consequence to the lack of effective nonlinear analytical models, research has 
turned toward the development of integrated computational models capable of capturing 
such possible interactions [3]. It had, thus, become necessary to re-examine and re-cast 
classical problems in the light of the possible effects of nonlinearities [2]. Unfortunately, 
computational approach models are faced with the fact that computational unsteady 
aerodynamics and computational structural dynamics are quite different. A suitable 
interfacing technique must be used. And the time scales are different [4]. 

In the context of nonlinear aeroelastic analysis, the previous efforts in the field either 
seem to lack a sufficiently power-full nonlinear structural models or/and are relatively 
complex and costly and most importantly are not amenable to preliminary design. These 
facts enhanced the demand to seek a simple and effective solution that is capable of 
performing nonlinear aeroelastic analyses. 

STRUCTURAL MODEL 

Element Choice 

Classical shell theories are not useful for nonlinear, large displacement analysis of 
structures since the elements become distorted and the changes in the structural 
geometries cannot be accounted for accurately [5]. On the other hand, the degenerate 
shell element which does not resort to any shell theory is efficient, inherently general 
and simple compared to elements based on shell theories [6]. Degenerate shell element 
formulation accounts for full geometric nonlinearity, as they admit arbitrarily large 
displacements and rotations of the shell. 

Incremental Deformation of a Continuum 

A total Lagrangian formulation where all terms refer to the initial configuration has been 
adopted in the formulation in the nonlinear FEM model. The equilibrium is established 
using the principle of virtual work, which is expressed in terms of the well known 
energetically conjugate 2nd  Piola-Kirchhoff stress tensor and the Green-Lagrange strain 
tensor. 
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Nonlinear Finite Element Formulation 

Element geometry 
The basic element geometry is constructed using the co-ordinates of the middle surface 
nodes and the mid-surface nodal point normals, as in Figure (1), and is expressed in 
vector form as [7]: 

r = 	hi ( 
	

. Ek > 17)aivi 
	 (1) 

where k are the standard shape functions for a quadrilateral 8-node shell element. The 
unit vector v, is defined by two parameters yr and co„ as shown in Figure (2) where: 

vT = {cosw,sinigcosco,sinwsinct} 	 (2) 

This choice of rotation variables is due to Ramm [8] and was proven to perform well in 
geometrically nonlinear analyses. It accommodates for large rotation capability during 
the large deformation process and permits large rotations between successive load 
increments as it retains nonlinear nodal rotation functions (trigonometric) in the normal 
vector expression [9]. 

Displacement field 
For any generic point of the degenerate shell elements, the displacement components, 
referred to the global co-ordinate system can be separated into the displacement of the 
shell mid-surface; and the relative displacement related to the rotations of the shell 
normal. The deflections follow as isoparametric: 

d = d + Ad = Ehk,Oci, + —21  4-Eh,a,(v, — v,„ 	 (3) 

where v,,, represents the initial unit vector in normal direction. 

Green's strain 
The compacted expression of the Green strain is given by 
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with A (0) 

A (0)= 

where 

H = 

matrix 

au
ax 

0 

0 

au 
ay 
au 
az 
0 

0 	is 

1 	0 	0 	0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	1 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	0 	0 	1 
0 	1 	0 	1 	0 	0 	0 	0 	0 
0 	0 	1 	0 	0 	0 	1 	0 	0 

0 	0 	0 	0 	0 	1 	0 	1 	0 

form 

Dv 	 aw 
0 	0 	0 	0 

ax 	 ax 
au 	 av 

0 	0 	0 	0 
ay 	 ay 

au 	 av 
0 	0 	0 	0 

az 	 az 
au 	av 	av 	aw  0 	 0 
ax 	ay 	ax 	ay 

au 	av 	av 	aw 
o 	 o 

ax 	az 	ax 	az 
au 	au 	av 	av 

0 	 o 
az 	ay 	az 	ay 

the displacement gradient vector. 

0 	0 

aw 0 
ay 

aw 
0 

az 
aw 

o 
ax 

aw 
o 

ax 
aw 	aw 
az 	ay 

The 

(5)  

(6)  

change in the displacement 
derivatives gradient (00) is related to the change in the nodal displacement derivatives 
(op) as follows [7] 

where 
ak  = 2(J-1(k,1)ik + J -1(k,2)h,l ) 

	
(8) 



Proceeding of the 11-th ASAT Conference, 17-19 May 2005 
	 ST-05 321 

bk  = —Masin 1')zk 
	 (9) 

zk  = 	(k,O+ 417.1J -1(k,2)+ h./ -1(k,3) 

ck  = D(ct cos cos co)z k  
d k  = DO cos Iii sin a )zrk 	 (10) 
ek  -•-• —D(a sin sin co )z, 
fk  = D(a sin cos Ozk  

D represents a diagonal matrix with diagonal terms between brackets. 

Virtual work and internal force vector 
The principle of virtual work has been employed to derive the equilibrium equations at 
any fixed time during the loading process. The virtual work (V) expression is defined 
as; 

V=JST BE„dV,— V Q  

For small virtual displacements 

(Ey  = B„1()811. 
	

(12) 

The first term contains the virtual work performed by the internal loads and V, contains 
the virtual work performed by the external loads. Substitution from eq. (13) into the 
virtual work expression eq. (12) leads to; 

V = op,7; f B7,;(p)SdV0  — 8p;, g, = 	g 	 (13) 

The term .513,T  g represents the incremental virtual work during a time interval At The 
out-of-balance force vector, g, is thus obtained as 

g = q, — q, = JBLSdVo  q, 	 (14) 

where for three-dimensional case the 2nd  Piola- Kirchhoff stress, S, is given as 

ST  ="(S,,,,Syy ,S,,,S,,y ,Sy,,Si=(Sti ,S22 ,S33 ,S12 ,S23 ,S13 ) 	 (15) 

Stress and strain vector are to be substituted in a suitable constitutive relation. 
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Tangent stiffness matrix 
The tangent stiffness matrix is derived by direct differentiation of the internal force 
vector in order to be fully consistent with the kinematic assumptions inherent in the 
model [7]. The final expression is given as 

K, = Kn + Kol + K0.2 	 (16) 

where 

-11311DB,AdV, =1G111-1+ A(0)f D[14 + A(0)PdV, 	 (17) 

with D being the constitutive matrix. The other contributions to K are given as [7]: 

K-01 = SGT  S'GdVo 	 (18) 
where 

S 	0 	0 S„ 	S12 	S13 
S = S 	0 = S21 	S22 	S23 

(19) 

and 

0 S13 	S23 	S33 _ 

K „28p = 	iFOOK kdV, 	 (20) 
K=1 

where Ky', is the variation of the k,„ component of matrix G 	and F (k) is the km  
component of the vector 

F =[H + A(9)]7  S 	 (21) 

System's Nonlinear Dynamic Equations 

A Newmark's time integration scheme has been used to establish an algebraic system 
of pseudostatic equilibrium equations. The resulting nonlinear dynamic equations of 
motion are solved at each load step using modified Newton Raphson method. The 
general nonlinear dynamic equations of motion are as follows 

Kd + md +Cci — F = 0 	 (22) 

where M is the consistent mass matrix defined as in a standard FEM form [1O]. 
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developed by Harder and Desmarais [13] proved to be the most successful and has 
been adopted herein. 

NUMERICAL IMPLEMENTATION 

An Integrated System Routines for Aeroelastic Analysis (ISRAA) is a software system 
that integrates the essential disciplines required by time domain aeroelastic analysis. A 
unique two-stage time scale - as sketched in Figure (4) - has been used. Actually a local 
and a global time steps have been developed by the author. The local time stepping is 
related to the structure. The global time step is connected to the aerodynamics whereby 
the aerodynamic pressure is applied gradually. 

Description of Input 

A cantilevered rectangular wing-like structure is considered for this case. The geometry 
and material properties data are given in Table (1). 

Table 1. 	Geometry and Material Properties of Cantilevered Rectangular Wing 

Youn.'s modulus GPa 69 
Poisson's ratio 0.3 
Shear modulus GPa 27 
Densi 	k gm ) 2765 
Thickness m 0.0127 

Flight Conditions and Wing Discretization 
An air density of 1.2247 kg I In3  corresponding to sea level is used. The free stream 
Mach number is 0.50. A velocity list contains values from 150-225 m/s with 5 m/s 
increment per global time step and twenty reduced frequencies set from 0.8 to 0.0 has 
been used. The wing is divided into 7 chord-wise and 11 span-wise evenly cut divisions, 
which generate 6 by 10-aerodynamic boxes. Root and tip chord lengths are both 
1.0089-m with a 2.0178-m semi-span length. 

RESULTS AND DISCUSSION 

-oduction 
The 

'emphasis of the present work is on establishing the methodology and checking the vark'ionality of the proposed numerical algorithm rather than presenting results for real 
A/C's-% as the latter need in one concern detailed structural and aerodynamic data of real 
form 
car 
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wings and in the other concern they need tedious and costly computer work which is not 
justified for such unreal cases. 

Unsteady Aerodynamic Pressure Calculations 

Figure (5) shows the variation of the real part of the unsteady aerodynamic pressure 
with dynamic pressure in the range of 0-14000 Wm'. As the aerodynamics is jump 
started using a steady aerodynamic load, this jump-start is reflected as the jump at the 
beginning of the curve. This sudden jump declares the 'birth' of the unsteady 
aerodynamic load. However, at these low dynamic pressure values, the amplitudes of 
the unsteady aerodynamic pressure loads are infinitesimal. Between 13600 - 20000 
N/m2  dynamic pressures as shown in Figure (7) for the real part, low amplitude random 
oscillations commence with the mean of oscillation being continuously shifted towards 
lower values while divergent oscillations continue to grow. This is natural since as 
dynamic pressure increases, and so does the load, the wing deforms and different 
loaded equilibrium positions are reached. 

Figure (9) gives the plot of the real part of the unsteady aerodynamic pressure force for 
the range of 20000-25000 N/m2  dynamic pressure. Limited amplitude oscillations 
commence with more regular pattern, till at above 23500 N/m2  dynamic pressures, 
motions tend to be more sinusoidal and divergent indicating approaching an instability 
boundary. However, as amplitudes of vibration increases geometric nonlinearity 
becomes increasingly important and in fact dominant. 

In Figure (11) the real part of the unsteady aerodynamic pressure for the range of 
dynamic pressure between 25000 and 27500 N/m2  is displayed. This range is 
characterized by a sinusoidal motion for the whole range. It exhibits an amplitude 
modulation whereby oscillations diverge and then converges for the dynamic pressure 
ranges of 25000 — 26000 N/m2, then keeps nearly constant amplitude oscillations in the 
range between 26000- 27000 N/m2. This reflects the instantaneous interaction between 
elastic and aerodynamic forces and may be attributed specifically to the gain of an 
additional stiffness due to the nonlinear formulation of the structure stiffness. The 
unsteady aerodynamic forces had dropped and could no longer pump the required 
amount of energy into the structure and thus the amplitude of oscillation and the total 
energy level out. However, beyond 27000 N/m2  dynamic pressures divergent behavior 
with rapidly increasing amplitudes is observed. 

Above a dynamic pressure of 27500 N/m2  as shown in Figure (13) a pure sinusoidal 
behavior is observed with continuing divergent motion. From here and forward in time 
rapid increase in pressure amplitudes is observed. The divergent motion observed in 
these plots indicates that the restoring forces could no longer support the structure, and 
the unsteady aerodynamic pressures become dominant. At about 30700 N/m2  dynamic 
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pressure, Figure (15), which corresponds to a flight speed of 224 m/s loss of 
convergence is observed and the program stops with singularity of the stiffness matrix 
indicating that the structure is not perfectly restrained now. However, the flutter or 
dynamic instability may be regarded as occurring at somewhat lower than 224 m/s 
speed. 

Comparison between Linear and Nonlinear Cases 

The unsteady aerodynamic pressures for both nonlinear and linear cases are 
demonstrated. At lower dynamic pressures (>0-14000 N/m2), unsteady pressure build-
up trend is identical for both linear and nonlinear cases as shown in Figures (5) and (6). 
This may be attributed to the fact that at these lower values of dynamic pressure the 
aerodynamic loading —which builds-up with increasing dynamic pressure-, is small and 
has no contribution to the stiffness. However, the situation is quite different for higher 
than 14000 N/m2  dynamic pressure as apparent from Figures (7) and (8). In these plots, 
the linear case curve serves as a mean of oscillation for the corresponding nonlinear 
case. The oscillatory response appearing in Figure (7) for the nonlinear case reflects the 
influence of nonlinear formulation. The used algorithm succeeded in capturing such 
infinitesimal changes, while the linear approach failed to predict such oscillatory motion. 
This points out the fact that geometrically nonlinear formulation becomes increasingly 
important as dynamic pressure, and hence the load, increases. 

The linear solution displayed in Figure (10), however, shows a linear slow reduction in 
the unsteady aerodynamic force with increasing dynamic pressure which is also correct 
for the nonlinear case as can be observed from Figure (9). These amplitude oscillations 
only become divergent above a dynamic pressure of 23500 N/m2. Inspecting Figures 
(11) and (12) for a higher range of dynamic pressure (25000- 27500 N/m2), almost 
identical observations can be concluded compared to the dynamic pressure range 
20000-25000 N/m2  shown in Figures (9) and (10). 

At still higher dynamic pressure values, as shown by Figure (13) the real part of the 
unsteady aerodynamic pressure force for the nonlinear case continues to grow in a 
purely sinusoidal motion while gaining more and more energy indicated by the larger 
pressure amplitudes. The structure is extracting more energy from the free stream. This 
extra energy was known to induce more wing motions (elastic deformations) and thus 
causing continuous changes (increasing) in the unsteady aerodynamic loading till at a 
critical value of the dynamic pressure a dynamic instability occurs. Driving back to the 
linear solution and near a preseure of 28500 N/m2  some fluctuating motion with 
sinusoidal type commences and further manifested for higher dynamic pressure values 
as shown in Figure (14) for the real part. An interesting observation here is that the 
curve oscillates about a continuously linearly decreasing mean of oscillation, and 
gradually at higher pressure values the curves start oscillating about a horizontal mean 
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under the influence of the elastic restoring forces and this is more obvious in Figures 
(16) for the real part where pure sinusoidal motion with divergent amplitudes is 
observed, and even at these high dynamic pressures the values of the unsteady 
aerodynamic pressures are very much smaller compared to those predicted by the 
nonlinear solution. 

From the above, it is that the nonlinear formulation reveals a type of response which the 
linear solution fails to indicate and that the nonlinear formulation becomes increasingly 
important as dynamic pressure increases. Linear solution does overestimate the 
dynamic aeroelastic instabilities. This agrees with the well known fact that, unlike the 
predictions from linear analysis, in real situations it is possible for self-excited 
oscillations to develop even at speeds less than the flutter speed. 

Wing Response Calculations 

Time response curves give an idea about the behavior of the wing under the effect of 
unsteady aerodynamic loading and tell when a dynamic instability could occurs. A set of 
curves is shown that covers the whole range of dynamic pressure under consideration. 

Figure (17) shows the time response curve of the structure for a dynamic pressure 
range between 0 - 14000 N/ma. It is observed that a sudden rise in response occurs at 
the beginning of the curve due to the initial steady loading and it is this displacement 
that causes the sudden jump in the unsteady aerodynamic pressure as appearing in 
Figure (5). However, due to the dynamic equilibrium this does no longer continue and a 
constant equilibrium state is observed for the remaining of the dynamic pressure range. 
At about 13600 -N/m2  dynamic pressure as shown in Figure (18) small random 
oscillatory motion with diverging amplitudes commences and continues as dynamic 
pressure increases. The mean of oscillation is gradually shifted towards lower values 
indicating a changing equilibrium state. However, random oscillations continue and 
cover the whole range of dynamic pressure between about 13600- 20000 N/m2. This 
oscillatory motion is responsible for the type of unsteady aerodynamic pressure shown 
in Figure (7). 

For the wing response shown in Figure (19) a pure oscillatory divergent motion for the 
whole range shown whereby the mean of oscillations is still fixed about the previous 
equilibrium position. This trend continues till at a value of 30700 N/ma dynamic pressure 
(Figure (20)) the stiffness of the structure could no longer supports the structure and the 
unsteady aerodynamic forces grow to much higher values that ultimately and naturally 
lead to structure failure. 
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Mid-wing Unsteady Pressure Calculations 

An important feature of unsteady aerodynamic calculations is that due to the oscillatory 
nature, different locations in the wing are not necessarily in phase. This is apparent by 
comparing the process of building up of the unsteady aerodynamic pressures with 
increasing dynamic pressure for the wing-tip cases by that of mid-wing case shown in 
Figures (21), (22), (23) and (24) for real parts. Actually the character is similar but in the 
reverse order, i.e., as dynamic pressure increases, the unsteady aerodynamic pressure 
increases negatively for the real parts, till at the same value of dynamic pressure, i.e., 
about 14000 N/m2, oscillatory motion commences with the mean of oscillation being 
continuously shifting indicating a changing equilibrium position under dynamic loading. 

An interesting phenomenon observed in the dynamic pressure range between 25000-
27500 N/m2  as shown in Figures (11) and (23) is that the character is almost identical 
with the same amplitude modulation, i.e., the two points are in harmony. However, the 
two cases correspond to a sub-critical stage before the commencing of the divergent 
sinusoidal motion that grows rapidly and exponentially. 

One observation, and indeed important, which is derived from plots for mid wing case-
namely from Figure (24) is that wing tip goes unstable first. Also, after the critical 
dynamic pressure for the wing tip has passed, unsteady aerodynamic pressure 
amplitudes grows very rapidly within a small range of dynamic pressure and actually 
becomes many times higher than that at the wing tip at the moment when it had first 
gone unstable. This is a direct consequence of high and strong oscillatory unstable 
motion (high energy transfer) that commences after wing tip has gone unstable. 

Mid-wing Response 
Mid-wing response curves are given in Figures (25), (26), (27) and (28) for a pressure 
range from 0 < q < 31000 N/m2. After the jump-start (q>0), the wing response is 
constant at a fixed mean value for the whole dynamic pressure range (>0 — 14000 Wm') 
shown in Figure (25). 

However, at these lower dynamic pressure values it appears that the wing restoring 
forces balances the induced unsteady aerodynamic loads and a state of a 'static' 
equilibrium is attained, which very slowly shifts towards lower values indicating some 
effect of stiffening. This response is, however, typical in nature to that for the wing tip 
response shown in Figure (17) where tip deflection is higher. In the dynamic , pressure 
range 14000 - 20000 N/m2, as shown for the mid wing response, Figure (26), small 
random finite oscillations are observed with the mean of oscillations being very slowly 
shifted towards lower values. This response is, however, typical to that observed for the 
wing tip case shown in Figure (18) for the same dynamic pressure range. Same type of 
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response continues with highly and rapidly increasing oscillations that are getting 
sinusoidal for the dynamic pressure values up-to 31000 N/m2  where failure occurs. This 
is evident from Figures (27) and (28). By comparing wing tip and mid-wing response 
during build up of dynamic loading, it is observed that both responses are almost 
identical with amplitudes of oscillation of mid wing being roughly an order of magnitude 
lesser than those observed at the wing tip. 

Unsteady Aerodynamic Contour Plots 
Contour plots give an idea about the unsteady aerodynamic pressure distribution over 
the wing surface at pre-selected dynamic pressures (time). The important features that 
can be observed from this set of results can be drawn as follows: 

At low dynamic pressures as shown in Figure (29), unsteady pressures have small 
values with random distribution over the wing surface in accordance with wing 
response. Figures (30) and (31) display imaginary parts of unsteady pressures for both 
FE nodal points and aerodynamic control points at V= 150 m/s. As obvious from figures, 
contours almost reveal identical distributions for the unsteady aerodynamic pressure. 
This proves the effectiveness and correctness of the surface spline used. In fact this 
was the main motivation for drawing the contour plots, since one of the main sources of 
errors in aeroelastic analysis is in the interpolation between the structural and 
aerodynamic networks. 

At much higher velocities, e.g. at a velocity of 224 m/s as shown in Figure (32) , the 
progressive built up of the unsteady aerodynamic pressure is clearly observed. Almost 
the whole of the wing is involved in this oscillatory motion, which spreads out with the 
magnitudes of the unsteady aerodynamic pressures growing exponentially. The wing is 
now involved in a dynamic instability, or rather flutter instability. 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The main problems that have been investigated include; 

1. The geometrically nonlinear formulation along with the technique developed to apply 
the unsteady aerodynamic loads incrementally through the technique of 'local' and 
'global" time stepping developed in this work has lead to an effective stiffness-
updating scheme, which has proven to be very effective in capturing nonlinear 
behavior. 

2. With such scheme inherent nonlinear effects have been explored and highlighted 
whereas the conventional linear solutions tested in this work failed to predict such 
types of behavior. The dynamic aeroelastic behavior predicted herein has proven to 
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agree with the well known mechanism with which dynamic aeroelastic instabilities 
usually occur; namely that, for small dynamic pressure values random oscillations 
are observed, where as the critical dynamic pressure had passed, oscillations 
become nearly sinusoidal with rapid amplitude growth on to the order of the plate 
thickness when the dynamic pressure is increased from 25% to 100 % beyond the 
value at which flutter had begun. 

3. Full system simulation during the whole range of analysis has become possible. This 
is achieved through monitoring the process of build up of the unsteady aerodynamic 
pressures and wing motions up-to the point of instability if it does exist. 

Recommendations for Future Work 

1. Use of real wing configurations and/or with different plan-form parameters. 
2. Establishing fatigue failure criteria from knowledge of stress amplitudes. 
3. Aeroelastic tailoring using composite materials. 
4. Inclusion of external disturbances and gust loads. 
5. Higher order doublet lattice method needs to be implemented. 
6. Further extension to include supersonic regime in the analysis. 
7. Developing a criterion for optimizing the choice of time scales. 
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Fig.4. Block Diagram of Suggested Numerical Algorithm 
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Fig.29. Contour Plot for Real Part of Unsteady 
	Fig.30. Contour Plot for Imaginary Part of Unsteady 

Aerodynamic Pressure Interpolated at FEM 
	

Aerodynamic Pressure Interpolated at FEM 
Nodal Points (V= 150 m/s) 

	
Nodal Points (V= 150 m/s) 

Fig.31. Contour Plot for Imaginary Part of 
	

Fig.32. Contour Plot for Real Part of Unsteady 
Unsteady Aerodynamic Pressure at 

	
Aerodynamic Pressure Interpolated at FEM 

Aerodynamic Control Points (V= 150 m/s) 
	

Nodal Points (V=224 m/s) 
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