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Abstract 

Modulation recognition plays a key role in analysis of the intercepted signals 
by electronic warfare receivers. A hybrid approach for modulation recognition 
is introducd. This approach consists of two main classification and decision 
algorithms. The first is a pattern recognition algorithm for reconstruction of the 
constellation shape as a stable modulation signature of the intercepted signal. 
The second is a threshold detection logic algorithm for identification of the 
modulation type of the intercepted signal. These two algorithms are connected 
through a feature extraction procedure The complex envelope, which 
represents both the in phase and quadrature phase components of the 
received signal after carrier estimation [1,2,11] is utilized as the input of the 
pattern recognition algorithm. The proposed algorithm shows a robust 
behavior for identification of single tone digital modulated signals for a 
relatively low signal to noise ratio (SNR) compared with the ordinary 
modulation recognition algorithms. Experimental results are shown for various 
modulation standards including M-ASK, M-PSK, and M-QAM only for M= 8 or 
16, received through an AWGN channel and in the presence of carrier 
recovery errors. 

1- Introduction 

Vector space representation of digitally modulated signals provides a 
graphical insight into the underlying signal structure. Constellation 
representation is obtained by projecting the signal onto an orthogonal vector 
space the dimensionality of which is determined by the specific modulation 
type. Two dimension constellations are by far the most common ones with 
sizes vary from a two point BPSK to the 768 point QAM modulated signals 
and beyond. 
The approach presented in this paper differs from the existing modulation 
recognition approaches in one fundamental way; Constellation shape, not the 
signal, is considered as the data to be processed. The premise of the 
approach is the following: If a modulated signal can be uniquely characterized 
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by its constellation it should also be identifiable by the recovered constellation 
at the receiver. The recovered constellation is of course distorted in a variety 
of ways depending on the specific receiver structure as well as channel 
random noise, which disturbs the constellation vertices. Loss of phase lock in 
a coherent receiver causes a fixed rotation or slowly spinning of the 
reconstructed constellation vertices. Errors in carrier frequency tracking cause 
a local spin of individual constellation points. However, the reconstructed 
constellation built from the received signal will most likely be similar to the 
original shape .We demonstrate that constellation shape as a global 
signature, provides a robust, stable and broad means of modulation 
classification. 
Early on, it was recognized that modulation classification is, first and foremost, 
a classification problem well suited to pattern recognition algorithms [1-4]. The 
researchers used 8th  order moments and normalized matrices to create 
graphs of signals in terms of moments versus SNR. Modulation types could 
easily be distinguished at SNRs where the moments had zero slope. 
However, below some threshold SNR the moments became unstable and the 
modulation types were not easily determined for BPSK and QPSK the 
threshold SNR was about 9 dB [3]. In [14], the pattern recognition algorithm 
used a likelihood function to decide the correct modulation type such that, its 
reconstructed constellation shape has been more rationally matched to one of 
reference constellation shapes for different modulation types. Thus, this 
algorithm needs a training period to know the number of signal states before 
matching its constellation shape to any modulation type that has this number. 
Moreover, this classifier operates at 10dB SNR. The current state of the art in 
modulation classification is the deciion theoretic approach using appropriate 
likelihood functional or approximations [5-10]. The decision theoretic approach 
depends on extracting some features from the signal of interest. These 
features included the maximum value of the power spectral density of the 
instantaneous amplitude, the standard deviation of instantaneous amplitude, 
standard deviation of instantaneous phase, and standard deviation of 
instantaneous frequency. The authors also proposed feature parameters 
based on the expectation of the second, third, and fourth order cumulants at 
zero lag. Decision theoretic classifier operates at SNR of 15 to 20 dB. The 
researchers have taken a hybrid approaches. Once the feature set was 
extracted from the signal of interest, it is fed to an artificial neural network 
(ANN). A recently reported ANN classifier operates at SNR of 10 to 20 dB with 
one or two hidden layers of perceptrons [11]. 
The analysis of most of modulation recognition algorithms showed that there 
are some common shortcomings reduce the behavior of the modulation 
recognition algorithms [11]. The first shortcoming is that, assumption of exact 
knowledge of the carrier frequency. Indeed, the carrier frequency of the 
intercepted signal is unknown and has some instability. This instability will 
create a noisy component in the instantaneous phase of the intercepted 
signal. Consequently, signals having amplitude modulation only may be 
erroneously classified as signals having both amplitude and phase 
information. To overcome this problem, we can use one or more of the 
following solutions: (1) on — line estimation of the carrier frequency, (2) 
increasing the phase threshold used in isolating phase signals, and (3) using 
the high order statistics to reduce the effects of noisy phase component. The 
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second shortcoming is that, the ordinary modulation recognition algorithms 
assume the use of sampling frequency that is synchronized with the carrier 
frequency. In practice, hostile transmitter generates the carrier frequency 
whereas the sampling frequency is generated at the interception receiver. 
Consequently, the two frequencies are not synchronized. Therefore the 
simulations should be redone as long as the two frequencies being 
asynchronous with each other. The third shortcoming is that, the use of high 
sampling frequency that is equal to eight times the carrier frequency. This 
assumption requires big storage and computation requirements. This 
shortcoming may be overcomed by the use of band-pass sampling instead of 
the low pass sampling used in the previous algorithms. It may also be 
overcomed by the use of key features that may require less storage and 
computation requirements such as that derived from the complex envelope of 
the intercepted signal. The fourth shortcoming is that most of the digital 
modulation recognizers which utilize the pattern recognition approach such as 
[4] and [14] , require long signal duration and the processing time may be very 
long: This leads to the use of these algorithms in off-line analysis. 
Furthermore, some of those recognizers, such as [4], require excessive 
computer storage to ensure correct modulation recognition. Also, the practical 
implementation for some of these recognizers, such as [4],[11],and [14] , is 
excessive complex. However, the work on some of these recognizers 
attempts to identify digital modulations with a number of levels larger than 
four. 
In this work, we introduce a hybrid approach for single-tone digital signal 
modulation recognition. The complex envelope, which represents the in-phase 
and quadrature components of the intercepted signal after frequency 
estimation [11], is considered as the input data to be processed by modulation 
recognition algorithm. This in turn overcomes the third shortcoming. The 
proposed approach consists of two structures which are connected to each 
other through a feature extraction process. The first structure is the pattern 
recognition classifier. The function of this classifier is to recover the 
constellation shape from the complex envelope data of the intercepted signal 
in short processing time with less complex computation. Thus, this classifier 
enables the use of the proposed approach in on-line analysis in trial to 
overcome the fourth shortcoming. All the key features used are extracted only 
from the graphical positions of the signal states of the recovered constellation 
shape using the conventional signal processing tools. The second structure is 
a threshold detection logic classifier. This classifier uses the extracted 
features to decide about the modulation type of the intercepted signal that has 
the recovered constellation shape. A detail pictorial representation of the 
proposed approach is shown in Fig1 in the form of a flowchart. 
The rest of the paper is organized as follows: Section II represents the 
intercepted signal and the corresponding receiver system model. Section III 
introduces a detail description of our proposed approach. Section IV is 
dedicated to the simulation for testing and qualifying the performance of the 
proposed approach where signals generation and the band limitation of both 
simulated signals and their corrupted noise are considered as a type of 
realizing the practical situation of real signals and receivers. Section V 
provides a set of experiments that evaluate the performance of the proposed 
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approach and introduces its capabilities over previous ones. Finally, the paper 
is conclude in section VI . 

2- Signal and system model 
Let the envelope of the received signal is given by 

Rkei(61' +0' )  P(1-(k-1)T,)±1M1 )e49,(0) 
	

(1  ) 
k=1 

where N is the number of observed symbols, Rk is the kth  symbol amplitude 
and°, is the corresponding le symbol phase, T, is the symbol duration, T 
=NT, is the observation interval, 0, is the carrier phase tracking errors and 
p(t) is the basic base band unit amplitude pulse which is defined for 0 5..Ts  . 

Noise is assumed to be white Gaussian with a time varying amplitude Rn(t) 
and a time varrying phase 0,,o) • The asynchronous receiver generates the 
following decision statistics. 

e)=T-0,( „c) + ji-;„(0 ,E)= 	ii-(t,0„)dt 	 (2) 

(m-c)T. N 
Rk ei(4  ec)  p( t- (k -1)T5 )+ R n(t)ej(e (̂1))  dt J 

(.11-1-E)r,k = 1 
wherec is the timing error of the asynchronous receiver. If that carrier lock 
error is stable for the duration of integration, equation (2) can be rewritten 
as: 

(m-I)1; 	 (m-E)7: 
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where m=1, 2 , 	, N , 0 5_ lel 5. g Ts  and g <<1 is the peak symbol 

timing error as a fraction of the symbol duration. 
Equation (3) shows that clock recovery error has expanded the integration 
interval across the adjacent symbol. However, this clock recovery error is 
not significant for small timing errors and can be absorbed into the 
constellation model. Carrier phase tracking error has a different effect on the 
recovered symbols. Clearly, e'°' in (3) introduces a rotation of the symbol. 
The nature of this rotation varies where 0, could be fixed for all N symbols, 
which are needed to make a single reconstruction. This case represents the 
carrier-non coherent case where, a random constellation rotation occurs 
each reconstruction iteration as shown in Fig.2-b. On the other hand, ec 

may remain fixed for the symbol duration only; this case is called symbol-
non coherent. This leads to random arcing of each constellation vertex 
about its nominal position as shown in Fig.2-a. This arcing will eventually 
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cause a deformation of the constellation shape once it is reconstructed. The 
combined effects of phase lock error, clock recovery error and random noise 
has the net effect of moving each vertex of the reconstructed constellation 
from its nominal position causing a distortion of the constellation shape. 

3- The proposed algorithm 

a- Constellation recovery algorithm 
The in-phase and qudrature components of the complex envelope data 
represent the two dimensions, vectors, of the constellation shape which is 
called the feature space. This feature space will be clustered in order to 
recover the constellation shape of the intercepted signal. The constellation 
recovery algorithm divides that feature space into any number of clusters, 
groups, through a sequence of subdivision processes. The subdivision 
process divides its input group of data into only two subgroups. The 
subdivision process calculates the farest two points between a group of Ni 
points, feature vectors, that will be divided and considers them as the initial 
seeds of the required two subgroups. Next, it assigns each of the feature 
vectors to a seed by minimum distance criteria. The subdivision process 
produces two separate subgroups of (Pi) and (N1-P1) members where (Pi) 
is the number of points in the first subgroup which is called its size. The 
second subgroup has a size of (N1-P1) members. Each subgroup has its 
members, points in the feature space, which forms a cluster in that space. 
The centroid of this cluster represents a signal state on the constellation 
shape, which is to be recovered. Fig.3 shows noisy intercepted signal 
constellations of different single tone digital modulated signals at SNR 5 dB. 
Fig.4 shows those constellations after clustering process. Inadequate 
selection of the initial prototypes, centers, of the two subgroups, generated 
from the subdivision process, causes bad clustering. Thus, a problem in 
clustering process to be considered is the fact that outlier points in a cluster 
can deviate the center when it is obtained from the cluster average (by 
averaging each component). Medians can be used in place of averages, 
although they may throw away good points as well as outliers. We use a 
type of fuzzy averaging here that puts the center prototype among the more 
densely situated points by using a weighted average (WFA) [13] and [14]. 
Fig.5 shows the constellation shapes of Fig.4 after getting the centers of 
each cluster by using WFA of each cluster. 
According to the expected number of the intercepted signal states, the 
pattern recognition classifier will divide the feature space into this number. 
The expected number of clusters must be a modulo 2 number larger than 
the right number of the intercepted signal states. Thus, it is required to use a 
clustering validity measure in order to know if the clustering is sufficient or 
not. A clustering process is good if the clusters are relatively compact 
(packed closely about the center). Let 0-,2  be the mean square error 
(variance) of distance between any point , member, xk(i) , of kth  cluster 

and its center ,mk, V k =1,2, ...... ,K and it can be defined as 

iV  1 	' , 	 m  
k = 	v

k l$ 	k ) 	 (4) 
Nk 

where Nk is number of the kth  cluster members. 
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If the values of v,2 are relatively small then the corresponding clusters are 

compact. Let Dmin be the minimum distance between all pairs of cluster 
centers, where center is a single prototype for a cluster. It is desirable for 
this distance to be larger in which case the clusters are well separated. The 
initial value of Dm', is the distance between the first two cluster center points 
in the feature space for the first time of dividing it. For any pair of clusters, 
Q„ is a measure of their closeness from being far as: 

2 	2 
= 	(a +0  j) ;Vimj (5) 

where o and o are the variance of two different clusters and a is a 

coefficient that controls the resolution of the reconstructed constellation 
shape. For example, if a =1.25 then the maximum allowable overlap reign 
between two neighboring clusters is 25%. It is clear that, as a value 
decreases, the resolution increases. Clearly, the value of a should increase 

as the signal to noise ratio increases. 
An emerging process should be done between any too close pair of cluster 
centers, seeds, to form a new cluster. The test threshold of closeness of any 
pair of clusters centers is that, their o is less than Dmin  . The center of the 

new cluster equals to WFA of its members. The emerging process and finding 
the new center is called the reassignment process. Whenever emerging 

process done, the number of centers, K, will be reduced accordingly. Now, 
the Xie-Beni (XB) cluster validity measure [12Ican be used for measuring the 
performance of clustering process. The smaller this measure is, the better is 
the clustering and it can be defined as : 
XB=(cr; +c4+ 	o-D I D„„„ 	 (6) 

After each emerging process, XB measure is calculated for the new set of 
clusters. 

Thus, we move K in the direction that decreases XB until its minimum value 

is obtained and accept the corresponding K . 
For communication signals, it is possible to assume uniform distribution of 
number of samples, N, which were taken during the observation time, over all 
the expected number of the intercepted signal states, K. In other words, 
assuming the signal states are equiprobable. We use the cluster size, P, as 
anther cluster validity measure. For noise free environment, P is equal to N / 

K . For a noisy environment, we can define the cluster size threshold as: 

t = (1-6)
N  (7 ) 

where /3 is a fractional number which controls the cluster size. It is clear that, 
as /3 value decreases the cluster size increases. The value of /3 should 
decrease as the signal to noise ratio increases. The cluster size validity 
measure is used only the first time of clustering the feature space where 
empty clusters or any cluster of size less than t p  are eliminated and k will 

be reduced accordingly. Let kint  be the initial expected number of the 

intercepted signal states that was provided to the pattern recognition 
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algorithm and Kcur  is that number after each reduction iteration. The 
reduction of the chosen number of the expected signal states occurs 
however due to cluster size validity measure, P, which is used only for the 
first iteration, or due to XB validity measure calculation after each emerging 
process. 

The pattern recognition algorithm will stop its processing whenever does 

not belong to the integer number interval {kin, k 'm 	 +1 , K +  n't  } and 
2 	 2 

restart itself with new Kier 	is equal 	 the o which il to the half of thid kint and so on 

. Finally, the pattern recognition algorithm will provide a set of k centroids 
which represent the expected signal states of the intercepted signal to the key 
feature extraction stage of our proposed approach. 

b- Decision theoretic algorithm 

All the key features extracted from the estimated K signal states, the output 
of pattern recognition algorithm, and will be the input data to decision theoretic 
algorithm, are derived from two simple conventional qualifying parameters. 

The first parameter , A°NL (i)  , is the absolute deviation of the direct value of 

the non linear component of each phase of the recovered K signal states 
from the mean value of them , 0- , and it is defined as: 
A0m. OHO NI.(1 )—  0.1 V 	 (8) 

0„ 0) where 	is the value of nonlinear component of ith  recovered signal 

state and 0,,, is the average value of nonlinear components of K signal 
states phases which is defined as 

" 
0. = -- 

1 
 - E011,L() • 	 (9) K 

The second parameter, AA,(i), is the absolute deviation of the normalized 
amplitude of each recovered signal state from the mean value of them , Am  , 
and it is defined as: 
AA„(i)=1A„(i)— 	 (10) 
where A„(i) is the normalized amplitude of ith  estimated signal state and A,, 

is the average value of K signal states normalized amplitudes which is 
defined as : 

A. = 17, 	) 	 (11) 

In general, each decision rule is applied to a set of modulation types, G, 
separating it into non-overlapping subsets (A and B) according to : 
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A 

›- 
KF —xopt  

where KF is the measured value of the chosen key feature and Xopt 
is the 

corresponding optimum threshold value. The determination of the optimum 
key feature threshold, Xopt , follows the rule : 

Xopt = arg mins{ K(x) } 	 (13) 

P(A(x)1 B) P(B(x)1 A)  + [1- P(A(x)I B)- P(A(x)1 A)] where 	K(x)=  P(A(x)1 A) P(B(x)1 B) 
The implementation of threshold detection logic algorithm for classification 
and decision requires the determination of the two key features 
thresholds: St , 	and 	t 	In this decision theoretic algorithm, the choice 

9n1 

of AO„(i) and A21„(i) key features for single tone digital modulation 

recognition is based on the following facts: AA„(i) is used to discriminate 

between MQAM and MPSK signals as a subset and MASK signals as a 
second subset. Ideally, MPSK signals have constant instantaneous amplitude. 

So, AA,,(i) will be zero and AA„(i)< 	Furthermore, MPSK signals have 

amplitude variation because the band limitation of those signals imposes 
amplitude variation especially at the transition between successive symbols. 
So, this key feature can be used to discriminate between the signals that have 
amplitude information {MASK and MQAM} over the threshold value, S ta , 

and that of limited amplitude variation under this threshold. AO„ (i) is used to 

discriminate between MQAM and MPSK signals where MASK signals have 
constant instantaneous phase . So, any phase variation of MASK will be less 
than threshold value St 

	

	. The optimum key features threshold values are 
A0n/ 

A„, 
chosen to be St 	= 

K
and 	= —k . A detail pictorial 

AOnl 
representation of the Decision theoretic algorithm is shown in Fig.1 

4-Computer simulation 

This section is divided into three subsections. In first subsection, software 
generation of test signals is discussed. Simulation conditions for the proposed 
algorithms are presented in the second subsection where the effect of band 
limitation of the simulated signals is considered. In the third subsection, the 
band limitation of the simulated noise signal with controlling its SNR points of , 
view is discussed. 

a- Single tone digitally modulated signals simulation 
The carrier frequency, fc  , the sampling rate , fs  , and the symbol rate , rs , 
were assigned the values 150 KHz , 1200 KHz , and 12.5 KHz respectively. 

(12) 
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The modulating digital symbol sequence duration is chosen to be 1.707 msec 
(equivalent to 2048 samples ). The simulated signals ( MASK , MPSK , 
MQAM ) ,as presented in Table 1, are derived from a general expression : 

/r f 
Sk (i)=ak  COS I 2 	* 	Ok 	 b  and k =0,1,2, 	k-1 	(14) 

.f; 

where K is the expected number of signal states and Nb is the number of 
samples per symbol duration, which is equivalent to the ratio between the 
sampling frequency ,f, , and the symbol rate , r5  . 

Table 1 the simulated signal parameters of various modulation types of interest 

modulation type Instantaneous 
frequency (fk) 

Instantaneous 
Amplitude (ak ) 

Instantaneous 
Phase ( Ok  ) 

MASK fc , 	,, 
{- K +1 : 2 : K -1 } 

Zero or Constant 
value 

MPSK fc Constant value 2n- 
k—,- 

K 
MQAM fc {- K+1 : 2 : K-1 } 

 2ir 
k, 

K 

b- Band limiting of simulated modulated signals 
Every communication transmitter has a finite transmission bandwidth. 
Consequently the transmitted signal is band limited . Therefore, the simulated 
signals are band limited in order to make them represent more realistic test 
signals. The modulated signal is band limited to bandwidth Bs  which 
comprises 95% of the total average power. Thus, Bs  can be defined by: 

=  f
I 

82 	
' 

, G,(f) df =0.95 f 	G,(f) df 	 (15) 
fr-T  

where Gs(f) is the power spectral density of the modulated signal S(t). 
The analytic expressions of the 95% bandwidth for different types of digital 
signals are introduced in [11].Bandwidth limitation of the signal was simulated 
through nulling some of the values of the corresponding FFT sequence and 
then evaluating the inverse FFT . 

c- Noise simulation and SNR adjustment 
The procedures for generation of a bandpass complex Gaussian noise 
sequence comprise the following steps: 

(1) Generation of two mutually independent sequences { n1  and n2 }each 
of 2048 independent random numbers uniformly distributed in the 
interval [0,1]. 

(2) Calculation of a zero-mean unity-variance sequence{n5}according to 

113  = — 21n(n, ) cos(22rn, ) 	 (16) 

n4  = 	2In(n, ) 	sin(2/rn, ) 	 (17) 

= n, + j n4 	 (18) 
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In order to enhance the quality of the generated Gaussian sequence { n5 }, its 
value is normalized as Nn  = (n5 — Y ) I a where p and a are respectively the 
mean and the standard deviation , estimated from much larger sequence. 
Usually in practice, the bandwidth of the interception receiver is slightly larger 
than the signal bandwidth. So, in order to increase the degree of realism of 
the simulated dative Gaussian noise, it is band-limited to a bandwidth equal to 
1.1 times the simulated modulated signal bandwidth. Finally, any desired 
signal-to-noise ratio (SNR) is adjusted by multiplying the generated noise 
sequence { Nn  } by a coefficient V which is determined from 

11 V = Sp (10-SNR 110 ) 

NR  
where SNR is substituted in decibels , the signal mean power is given by: 

Sp  = 1ES2  (i) 
N i=1  

and the noise mean power is given by : 

N  P = 	(012  

d- Performance evaluation: 
In this section, we simulate two experiments for performance evaluation of the 
proposed algorithm. Initially, energy normalization process must be done in 
order to make the modulation recognition algorithm scale independent and 
invariant to the channel gain. In first experiment, the performance evaluation 
of the proposed approach for digital modulation recognition is derived from 
400 realizations at 5 and 10 dB SNR for each modulation type of interest 
(MASK , MPSK , MQAM) with the same control coefficients of the pattern 
recognition algorithm ( /3 = 0.1and a =1.25). For testing, The generated 
signals states, M, only equal to 8 and 16 states. 

The success rate of identifying the correct modulation type among types of 
interest is shown in Table 2. It is clear that all types of digital modulations of 
interest have been correctly classified with 100 % success rate except MPSK 
( = 92 % ). Moreover, all types of digital modulations of interest have been 
correctly classified with 100 % success rate with the same parameters of 
pattern recognition algorithm as shown in Table 3 . 

Table 2 Estimated success and error rates for the developed approach based 
on 400 realizations at SNR = 5 dB, R = 0.1, a =1.25, and M=8 or M=16. * 

Decided 
type 

Generated type  

MASK MPSK MQAM 

MASK  100 % 0 0 	 

MPSK  0 92% 8 % 

MQAM 0 0 100 % 

* Entry in row x and column y is the rate of c assi yin 

(19) 

(20) 

(21) 
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Table 3 Estimated success and error rates for the developed approach based 
on 400 realizations at SNR = 10 dB, /3 = 0.1, a =1.25, and M=8 or M=16. * 

Decided 
type 

Generated type 

MASK MPSK MQAM 

MASK 100 % 0 0 
MPSK 0 100% 0 
MQAM 0 0 100 % 

* Entry in row x and column y is the rate of classifying  e modulation type x as y 

In second experiment, We examine the additional impact of carrier phase lock 
error. This error is random but remains constant for the duration of each 
symbol. The peak error is assumed to be ir/8 for MQAM, M=8. Thus, the 
distortion agents are both random noise and carrier phase recovery error. 
Correct recognition rate versus SNR is shown in Fig.6 where the robustness 
of the constellation shape recognition paradigm is evident from this plot. Even 
in the presence of large peak phase error, the classifier achieves performance 
levels exceeding 90 % at SNR as small as 0 dB. Performanc0 improvement 
slope vs. SNR is notable. In a span of 5 dB, (-5 dB to 0 dB), correct 
classification rate increases to 90 % from a low level of 60 %. 

5- Conclusion 

The aim of this paper is to introduce an approach for digital modulation 
recognition that uses the shape of the rebuilt constellation as a key signature 
which is a stable feature of unknown signal and more resilient to channel 
effects and receiver imperfections. This task is done by using the key features 

derived from the complex envelope of reconstructed K signal states which is 
the output of a pattern recognition algorithm. It is worth noting that all the 
suggested key features can be extracted by using the conventional signal 
processing 	tools. So, the proposed algorithms can be implemented at 
extremely low cost and it seems to be suitable for the on line analysis. 
Extensive simulations of three digital modulation types have been carried out 
at different signal to noise ratios. Sample results have been presented at SNR 
of 5dB and 10 dB only. It is found that the threshold SNR for correct signal 
classification is about 5 dB. Thus, the proposed modulation recognition 
algorithm reduces the required SNR to achieve high performance level 
compared to ordinary modulation recognition algorithms [5-9]. Furthermore, 
the proposed approach is successful under a carrier phase recovery error up 
to 45 degrees for 8-QAM signal, which is a fairly large number. 
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Fig.1 Functional flow chart of the proposed approach 
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Fig.2 The effect of Carrier phase tracking error on the constellation shape 
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Fig.6 Recognition in the presence of noise and carrier recovery error for 8 
QAM signal 
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