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ABSTRACT 
This paper presents a proposal for an attitude control system for Low Earth Orbit 
(LEO) satellite antenna that keeps tracking of an existing geo-stationary (GEO) 
communication satellite as a data relay satellite. The proposed scheme can increase 
the communication availability with a remote sensing LEO satellite. Moreover, the 
proposed system improves both the communication coverage area of the LEO 
satellite and its scanning availability in the real time. This improvement is a real need 
in the remote sensing application. The use of cross-link in data relay systems 
requires accurate control system in order to enable tracking the data relay satellite 
(GEO satellite). The proposed system permits the data relay system to work properly 
and efficiently. The proposed data relay system provides the real time data 
accessing, data integrity, and wider coverage area than the obtained one from typical 
LEO-ground station scheme. 
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1. INTRODUCTION 
The attitude control system for a typical LEO-ground station scheme is simpler and 
has less complexity than the LEO satellite, which used in data relay systems. The 
tracking and maneuverability is almost rare and the location of the ground station is 
predetermined along with the orbit parameters [1, 2]. On the other hand, in data relay 
systems the maneuverability and tracking of the GEO satellite by the LEO satellite 
requires complex algorithm in order to keep tracking with the GEO satellite for almost 
the whole satellite period [3, 4]. This paper contains five sections. Section two 
presents a proposal scheme that controls and updates the attitude of the LEO 
satellite antenna system to maintain its directivity towards GEO antenna. This system 
has two modes, a coarse alignment mode, where a LEO satellite antenna is used to 
track the GEO satellite using the ground track simulator. Furthermore, a fine 
alignment mode using monopulse-tracking techniques is also discussed. When the 
tracking antenna is aligned with the GEO satellite, it sends "COMMUNICATE ON" 
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signal to the communication antennas to initiate ordinary data transmission session 
with the GEO satellite. When the antenna becomes out of alignment, it sends 
"COMMUNICATE OFF" signal to the communication antennas to shut down 
communication sessions. 
This paper consists of six sections. Section two deals with the proposed control 
system architecture. Section three deals with studying the analysis and derivation of 
the equations required for establishing the tracking antenna control system. 
Moreover, section four contains the simulation results. These results are considered 
as a measure of performance for the proposed control system. Finally, section five 
highlights the obtained results. 

2. PROPOSED ANTENNA CONTROL SYSTEM 
A proposed scheme for antenna control system is depicted in Figure 1. The 
proposed scheme is based on Kalman filter implementation during the period when 
LEO satellite in GEO coverage area. The role of the Kalman filter is to estimate and 
predict the GEO satellite direction. It also extracts and smoothes the measured 
relative angles between the GEO-LEO satellites from noisy observations [6]. 

Fig.1. The proposed control antenna scheme 

The basic module for the proposed antenna control system is mainly a monopulse 
sensor [4-7]. It is used to track the GEO direction as the LEO satellite is in the 
coverage area of the GEO satellite. It delivers the measured value to the kalman filter 
module in order to smooth and estimate the GEO direction. The Kalman filter delivers 
the estimated direction to a decision circuit module. This decision circuit provides an 
alignment correction values (AT) to keep tracking of GEO satellite [3]. 
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3 ANALYSIS OF THE PROPOSED SYSTEM 
The output of the monopulse transponder can be written as: 

S 	= kW n( t) 
	

(1) 

Where 
cp k(t)....is the relative direction angle of the GEO satellite with respect to the LEO 

satellite tracking antenna. 
n(t).... represents the additive white noise due to the LEO orbit perturbations. 

Then, the state vector-40 of the LEO satellite can be expressed as: 

X(t) = Ax (t) + Bu (t) + w(t) 	(2) 
y = Cx (t) + Du (t) + v(t) 

Where 
x 	 is a state vector of size nx 
	control vector of size nu  

y 	output vector of size ny  
w 	 disturbance (process noise) vector of size n,, 
v 	 sensor noise vector of size :iv  
A 	 state transition matrix of size nxxnx  
	penalty vector of size nxxn, 

The Kalman filter output 0, ) can be expressed as [5-6]: 

Sk 0)= CX(t) 	 (3) 

Where 
x(t) 	 is known as the state vector of the state space model of the LEO satellite. 
C 	 is the output matrix giving the ideal (noiseless) connection between the 

measurement and the state vector at time (t). 
The state vector x(r)can be updated according to following equation [6, 8, 9] and it is 
defined as [10]. 

• k+1 	k G  k(4ef 4) 
	 (4) 

Where 
Gk 	 is the optimal Kalman filter gain, defined as: 

Gk  = PCT  (CPCT  Rey' 	 (5) 

P 	 is known as an error covariance matrix associate with the state ik , and 
expressed as 

(6) 
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Re 	 is defined as a covariance matrix of measurement error due to output noise 
V(n), which is assumed to be white Gaussian sequence with known 
covariance structure. It is given by [9-10]: 

R e  = Etri k )n k T I 
	

(7) 

The direction misalignment in the LEO satellite antenna platform can be written as: 

	

e (t) = 	— (t)re( 
	

(8) 

Where 
e(t) 	 misalignment error at any instant of measurement period 
(Prof 	the GEO satellite original direction. 
rp (t) 	 the estimated direction at any instant of measurement period 

MeasErr = S (t) – q (t) 	 (9)  

MeasErrCov = 1 —E(MeasErr 	 (101 

EstErr 	ref 

EstErrCov = —1 E(EstErr )2 	(121 

An improvement factor (IMP) in the output signal to noise ratio is written as: 

IMP= EstErrCov-- MeasErrCoi 	(13) 

Where 
MeasErr 	the misalignment error along the measurement period 
MeasErrCov 	the error covariance before filtering (measurement error) 
EstErr 	 the instantaneous estimated error 
EstErrCov 	 the error covariance after filtering (estimation error) 
N 	the number of time samples 

4. SIMULATION RESULTS 
The proposed antenna control system depicted in figure 1 is preformed and 
evaluated using computer simulation. A Matlab software package is used for system 
implementation and performance evaluation [9, 10]. The proposed system is 
assumed to have a second order transfer function [11]. It is defined as: 

1 

	

H(s)= 	 (14) 
S2  + 2S +1 
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The state space model of the proposed system can be expressed as: 

[ — 2 	— 0.251f x 	, 	[ 0 . 5 (15) 
4 	0 	2 	0 

The system output can be written as 

y = [0 	0.5]  (16) 

The Simulink block diagram of the proposed system in figure 2 shows the actuator 
antenna system model and the proposed control system using the optimal Linear 
Quadrature Regulator (LQR) [10]. The quadratic cost function is given by: 

00 

J(u)= ixT  Q x + u r  Ru + 2xr  Nu dt 
0 

Solving the quadratic cost function gives the optimal gain matrix K that satisfies the 
feedback law, 

u = — kx 	 (18) 

In order to obtain the solution of the associated Ricatti equation (S), equation (17) is 
differentiated and the resultant equation can be expressed as: 

AT  S + SA — (SB + N)RABT  S + )+ Q =0 
	 (19) 

Where 
N 	= 0 For the continuous-time state-space model, x = Ax + Bu 
S 	solution of the associated Ricatti equation. 
R 	penalty weight matrix 
	 state weight matrix 

(17) 
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Fig.2. Simulink Representation of the Proposed System Attached with LQR controller 
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The performance of the proposed system depicted in figure 2 is measured and 
evaluated using different values for the state weight (Q) and penalty weight (R). 
These matrices are controlling the solution of the cost function (Ricatti) equation as 
shown in equation (17). The proper choice of these matrices ensures good 
performance of the proposed system such that the critical response is achieved. In 
figure 3, different values are assigned to (Q, R) and the system noise-free response 
is evaluated for these values, while the reference angle remained constant. 

(c) 	 (d) 
Fig.3. Simulation Results for Closed Loop Noise—Free System 

with different values of Q, R 

Figure (3.a) represents the reference input (antenna direction) as function of time. 
This input will remain constant while varying the state and penalty weight matrices 
respectively and monitor the output response. Figure (3.b) represents transient 
overshoot response when Q is set to [250 0; 0 0.05] and R is set to 2 respectively. 
Figure (3.c) depicts the transient response without overshoot (critical response) with 
settling time of 3 seconds, while Q is set to [1 0; 0 1], R is set to 0.5 respectively. 
Figure (3.d) depicts transient over damped response with settling time of 5 seconds, 
while Q is set to [0.05 0; 0 5] and R is set to 0.2. 
The best choice for R and Q is the second case, where it represents the best 
convergence to the desired pseudo angle tracking with fast settling to the steady 
state in 3 seconds with the compromise to keep the control torque in the range of 
1Nm [11]. The margins where R and Q are tested were based on analogies for the 
environment, where this control system will be used [9]. 
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The sources of simulated noise that might encounter the proposed system can be 
either from orbit perturbations or due to thermal noise generated due to antenna 
operation [8]. 
In figure 4, the sources of noise are depicted. It is compulsory to study the effect of 
both the process and the sensor noises effects on system response. 

u(t) 
	

Proposed 

System 

Process Noise w(n) 	 Sensor Noise v(n) 

Fig.4. The proposed System Sources of Noise 

Both process and sensor noises are represented by white Gaussian noise in a form 
of vectors w(n) and v(n) respectively. These vectors are represented as follows: 

w(n) = QI  * randn (n,1) 	 (20) 

v(n) = 	* randn (n,1) 	 (21) 

Where 
n 	The length of the time vector (t) 
Q1, R1 	=1, the noise covariances ,which represent the noise spectrum over the 

sampling period [10] 

In figure 5, the noise-free system response is plotted without using Kalman filter, 
where the ripples are obvious. The response is smoother in the following curve, 

y(t) 
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where Kalman filter is being used. The third curve shows the amount of error which 
had been eliminated by the use of Kalman filter. 

It is obvious that the proposed optimal LQR controller still have a great effect in 
reducing the effect of the process noise as well as sensor noise as depicted in Figure 
5. it is shown that the noise level is low and its range is between (-0.5007 , 0.5825) 
along the time frame. This is confirmed by calculating the error covariance 
(MeasErrCov). This parameter indicates the amount of difference in evaluating the 
system response in the presence of noise and the system response without taking 
the noise in consideration [10]. 
Equation (10) yields that; 

MeasErr Cov = 1.1138 

This is considerably low and can be tolerated, since it represents 0.0111 error 
probability per sample along the time frame. The Kalman filter outputs are the state 
estimate (1(n)) and the filtered output (ye). In order to evaluate the filtered response 

(ye), another subroutine is added to the control program [11]. This subroutine 
contains simulated functions, which return a state-space model of the desired 
Kalman filter (kalmf). Finally, close the sensor loop by connecting the plant output (yv) 

to the filter input (y,) with positive feedback. 
So to evaluate the response of the proposed enhanced system, the following Matlab 
code is executed in the main control algorithm in order to evaluate the true response 
and the filtered response: 

output = Isim (SimModeljw,v,u]) 	 (22) 

Computing the error covariance after filtering yields the amount of remaining error 
after filtering. This is expressed as: 

EstErrCov = 0.8075 

Comparing (EstErrCov) with (MeasErrCov) evaluates the amount of improvement of 
the system response after filtering, as stated in equation (13). 

!MP= 1.1138 — 0.8075 = 0.3063 

This means that there will be 0.003063 error probability per sample along the time 
frame after using Kalman Filter. 

In order to measure the effectiveness of the Kalman filter insertion to the system, 
different levels of the noise are used. As the noise level increases at the input, the 
system response is affected. This effect is propagated at the system output. As 
shown in Figure 6, three different cases are illustrated for system output response, 
where the overall noise level (process noise and measurement noise) are -5db, - 
10db,-15db respectively. It is obvious that the error in output response is directly 
proportional to the noise level. At 5 db noise level, the ripples level in the output 
response is the lowest for the three cases shown. Its range is between (-0.5007, 
0.5825) along the time sampling period. 
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levels the aforementioned noise levels. 
Figure 7 shows the system output response using Kalman filter at different noise 

System Response with Noise Level-5M 
1--  

20 so 100 0 
I  

10 20 30 40 50 80 70 
System Response at NoNoisiest -51/ 

I TT 

 	' 
10 20 30 40 50 60 70 

Output Response Using Kalman filter 40 

80 go 100 

10 20 30 40 50 60 70 80 90 100 

10 -- 

5 

0 

20 _1 
100 30  40 50 80 

No. of samples 
20 30 40 50 

... 

10 

5 

0 	10 70 so 90 100 0 	10 60 70 80 90 

50 

45 

40 

as 

30 

25 

Si 20 

o  15 

Fig.6. The noise effect on the system 
response noise Level of 

(5db, 10db,15db) 

Fig.7.The System output using 
Kalman Filter 



b 

9/ 3 „7777 

/ 	• 	t 0, 13130 

co33 

.31Covaoanc at 30 7313,17, 

00- N. ay Serr3•7 

AV-03 812 
Proceeding of the 11-th ASAT Conference, 17-19 May 2005 

The covariance of the estimation error is illustrated in Figure 8 in order to check when 
the system reaches steady state. It is clear that the convergence time when the 
noise level was 5 db (first curve) is minimum (2 seconds). The convergence time is 
directly proportional to the noise level as shown in figure 8. 

Fig.8. Error Covariance of the Estimation Error 

From these figures, it can be deduced that as the noise level gets higher, the system 
takes more time in reaching steady state. So for noise level of 5db, the system will 
reach steady after about two seconds, while for noise level of 10, 15db, it takes about 
tree seconds to reach the steady state. So, this means that approximately at the 
third second of the specified time period, the fine alignment begins, and the tracking 
antenna assembly starts locking on the GEO satellite according to the field of view of 
the LEO tracking antenna. 

5. CONCLUSION 
It is apparent that that the proposed system is stable and robust. Moreover, the 
system response is performed and evaluated for different levels of Signal to Noise 
Ratio (SNR). The system output with Kalman filter is significantly improved and 
exhibits large improvement in the output response. It is proved that the proposed 
optimal Linear Quadrature Regulator (LQR) controller has a great effect in reducing 
the effect of the process and sensor noises. The LQR controller is implemented for 
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various values of the state weight matrix (Q) and the penalty weight matrix (R). 
Hence the optimal proposed system can be applied as the backbone of any data 
relay system utilizing LEO-GEO cross-link scheme. It can be also implemented for 
real time reconnaissance system, so as to ensure data transfer terminal in the real 
time. It will be also of greater effect on early warning networks and fast data 
accessing systems. 
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Chaotic systems With Only One Nonlinear Term of one Variable 
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Abstract 

In this paper, we present a new algorithm for controlling a class of chaotic system 
that contains only one nonlinear term of one variable. Coupling depends on the 
choice of the drive signal or its configuration .The coupling term depends upon the 
nonlinear term which makes the largest conditional Lyapunov exponents of the 
response system negative. The comparison between the implementation of the 
present method and the Pecora and Carroll method is given. This comparison shows 
the advantages of the present method 

Keywords: Chaotic dynamical system, synchronization, control of 
Chaos, Lyapunov exponents. 

1-Introduction 

There are many methods for controlling chaos such as feedback and synchronization 
techniques [1],[2] [3],[4]. The synchronization of two chaotic dynamical systems 
occurs when the trajectories of one of the systems will converge to those of the other 
system at the same time or the two systems show the same behavior at the same 
time. Different methods for synchronization such as complete synchronization, 
phase synchronization, lag synchronization and generalized synchronizations have 
been presented in [3 ],[5 ],[ 6],[7]. 

To achieve synchronization, there are many methods for linking chaotic systems. 
Two of these methods are the linear diffusive coupling, as initially suggested by 
Fujisaka and Yamada [8 ],[9], and driving coupling, introduced by Pecora and 
Carroll[5], [ 6],[7]. Another additive coupling is offered by the open-plus-closed-loop 
method to control and synchronize chaotic systems developed by Jackson and 
Grosu[10 ],[11] [12 ] . 

*Faculty of engineering, Alexandria, Egypt 
**Egyptian Armed Forces 
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Concerning stability, there are two criteria which are most commonly used for 
stability of synchronized chaotic motions, these two criteria are the Lyapunov function 
criterion [13] ,[17]and the conditional Lyapunov exponents . In many practical cases, 
Lyapunov functions cannot be found, even for systems that possess a stable 
manifold of synchronized motions for a broad range of parameters of coupled 
systems, and/or the coupling itself. In contrast with Lyapunov functions, the analysis 
of conditional Lyapunov exponents [13],[14] is quite straightforward and can be easily 
employed, even for rather complicated systems. The presence of synchronization 
can occur if the conditional Lyapunov exponents of the response system are 
negative. 

The control of chaotic system by synchronization is the aim of this work. This method 
is suggested to force the largest Lyapunov exponent of the response system to be 
negative. This is achieved by combining the open -loop-closed –loop method and 
Routh –Hurwitz criteria [15], [16]. 

2.Synchronization  
This section reviews the Pecora and Carroll method and introduces the proposed 
method for synchronization of chaotic system . 

2.1 Pecora and Carroll method. 
This method is a widely used approach synchronization problem [5],[6], [7]. 
Consider an n-dimensional autonomous system governed by equation 

dx — f 	 x=(x„x2,...,x„) 	 (1) 
dt 

Divide the system into two parts in an arbitrary way, thus dividing the state vector into 
X=IxD,xRIF  . Where, D refers to as the driving subsystem, and R refers to as the 
response subsystem respectively, then 

x'D g(xp,xR), 	 (2) 

x•R = h(x„,x,), 	 (3) 

Where, 

T 

g =[f,(x),...,f,„(x)Y , 

h 	 f,(x)1T  . 
Pecora and Carroll suggested building an identical copy of the response subsystem 
and driving it with the X„ variable coming from the original system. 
In such a method, we have the following compound system of equation 

x.  D = g(x„,,x,), (m-dimensional)-drive 	 (4) 

x* R = h(X D ,X R ) (k-dimensional)- drive 	 (5) 

X' D = 17(X „ 4), (k-dimensional)- response 	 (6) 
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2.1.1Theorem 1[ 5] 
The subsystems X, and X,' will synchronize only if the conditional Lyapunov 
exponents are all negative. 
Where, X, is the response of the master system and X,' is the response of the slave 
system. Under the right conditions, the X'„ variable will converge asymptotically to 
the X, variable and continue to remain in step with instantaneous value of X,(t). 
Here the drive or master system controls the response or slave system through X„ 
component. If all conditional Lyapunov exponents of the response system are 
negative then the synchronization occurs otherwise the synchronization does not 
occur if at least one of the conditional Lyapunov exponents is positive. 

2.1.2 Lyapunov exponents 131114 .1,[15] 

The Lyapunov exponent measures the growth of small perturbation of the difference 
between two systems. We shall introduce briefly how to calculate the Largest 
Lyapunov exponents of the whole system after synchronization. 
The largest Lyapunov exponents of the whole system can calculate the distance 

2  
between the aided system and the original system which is 	I.02 .xo (i). With the 

,1

—  

evaluation of time, the distance will be expanded along the largest eigenvalues 
directions, so the largest Lyapunov exponents A can be obtained as follows 

	

1 12N 	 Ai2N_ 	_ . 
X.. lim- In Ea2; (i) 	2.; (3,2 x ow 	 (7) ' t 	,.=1  

z
2N 

where, 2N is the dimension of the whole system , 	a2xow is the initial distance li  
,-] 

12,v 	 
between the aided system and the original system and 1  Ea2x,w is the distance 

between the aided system and the original system after time t. 

2.2 The proposed method of Synchronization 

Some undesirable characteristics of the Pecora and Carroll method are the 
existence of the positive conditional Lyapunov exponent and the dependence on the 
configuration of the drive signal. The proposed method avoids this problem by 
choosing the values of system parameters that make the largest Lyapunov 
exponents negative using the concept of Routh- Hurwitz criteria and the dependence 
on the choice of drive signal is discarded. 
The method depends upon the method of open- plus-closed-loop for control of 
dynamical systems (OPCL) [10],[11],[12]which is summarized as follows 
Consider the dynamical system is given by: 
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dx = F(x,t), 	R" ) . 	 (8) 
dt 

If one wants to entrain the solution of a dynamical systems to some goal behavior, 
g(t), using linear feedback , in order to obtain iim(x(r)-,g(t)) =0, then the dynamics are 

in the form 
dx 

-= F(x,t)+ 	x g) 
dt 

where, D(t,x,g) is the drive term and is given by: 

dg 
x , 	- F(g,t) A - ark 	- g), 	 (10) 

dt 
Where A is a constant matrix with eigenvalues having negative real part also D is 
some suitable matrix in this case g(t) has to be restricted to some solution of 

dg 
=F(g,t) 	 (11) 

dt 
for more details see [ 10 ],[11 ],[12]. 

The idea of our proposed method is replacing the nonlinear term in the constant 
matrix of the jacobian of the master system with the parameter P. Then choosing the 
value of the parameter P that makes the eigenvalues having negative real part and 
also satisfying the Routh - Hurwitz criteria for stability then driving the slave system 
by the drive term as follows 

( A- - - )(x-y) 
	 (12) 

Consider the dynamical system given by ; 
dx 

=F (x,t) 	 (13) 
dt 

then the slave system 
dy 

=F(y,t)+(A- - 	)(x-y) 	 (14) 
dt 	do 

where A is a constant matrix with eigenvalues with negative real parts. Then x(t) 
converges to y(t) for any 11 x(0) - y(0)11 small enough. 

The algorithm of the proposed method is given by:- 

1-Find J = - the Jacobian matrix of the master system 
ac 

2-Find the matrix A by replacing the element containing the variable in the matrix J 
by the parameter P (coupling term) 

3-Find the characteristic equation of the matrix A 
4-Apply the Routh- Hurwitz criteria to find the range values of P and substitute it in 

the matrix A 

(9) 
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5-Find the drive term ( A- qFl )(x-y) 
ac 

6-Create the synchronization algorithm according to the range of parameter P as 
follows 

The master system 

The slave system 

dx 
dt 

=F(x,t) 

dy 
= 

dr 
F(y,t)+ ( A- 	)(x-y) 	 (15) 

7-Test for the synchronization (calculate the largest Lyapunov exponents), the 
algorithm is coded in C' 

2-2-1 Parametric Analysis 

The proposed method is based on the analysis of the characteristic polynomial 
coefficients of the matrix A. Let the characteristic polynomial of A be denoted by: 

A(s)= ao sn  +a1 	an=0, ao>0 	 (16) 

As presented in [16 ], it is possible to derive necessary and sufficient conditions for 
the existence of eigenvalues with negative real part by applying Routh- Hurwitz 
conditions. By applying these conditions, it is possible to determine the numerical 
interval of parameter that insure the eigenvalues in the left hand plane 

3 Example of Application  

The following system will be analyzed using the suggested method and the P C 
method 

3-1 Chua's circuit with cubic nonlinearity (autonomous system) 
The Chua's circuit with cubic nonlinearity is described by: 

dx --=a (y-cx-x3) 
dt 

dy 
- =x-y+z 
dt 

dz =-1Y 
dr - --PY  

where, a , 13 and c are the parameters of Chow circuit, and the system has three 
equilibrium points (-11-1C c),(0,0,0), (-11  c ,0,- Letting a =10, f3=16 
and c=-0.143 this values gives the chaotic behavior namely double scroll attractor 
with largest Lyapunov exponent (0.1317) and shown in Figure (1) 

(17) 
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Fig (1-a) The time response of x(t) of Chua system 

0.1 

x(t) 

Fig (1-b) The phase plan plot of x(t) versus y(t)(double scrolls) 

by applying the concept of The Pecora and Carroll to the system using x- drive 
configuration we get 

x = a (y-cx-x3) 

y = x-y+z 

= 
	 (18) 

Yi = 

= _pyi  

and the conditional Lyapunov exponents of the subsystem are (-0.5, -0.5) i.e. the 
synchronization occurs. Also the Largest Lyapunov exponents of the whole system 
is zero and the system after synchronization is periodic. 
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Figure (2) shows the synchronization of the chaotic system in case of x- drive using 
PC method 

1.5 

0.5 
0 

-0.5 
-1 

-1,5 
wniWiOrNwIwM 

Fig (2-a) The time response of y(t) of synchronized system 

'1,5  
1 

o_ s 
0 

-0.5 
-1 

vy 

1.5 

Fig (2-b) The time response of y 1(t) of synchronized system 

y-yl 
1 , 

0.5 

0 

-0.5 

-1 

20 4C 60 
t 

80 

Fig (2-c) The error of synchronization between y(t), yi(t) 

  

-1.5 

-1 - 

Fig(2-d)The phase plan(x(t) versus y(t)) of whole system after synchronization 
(periodic) 

It is noticed from the above that, using Pecora and Carroll (PC) method, the 
synchronization does not occur if the conditional Lyapunov exponent of the response 
system is positive. It is also dependent on the configuration of the drive system. The 
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following explains the synchronization using the PC method for different drive signal 
of the Chua system that is shown in table 1. 

system 
Drive 	Response 
si nal 	s stem 

Conditional 
L asunov exponents 

Synchronization 

Chua 
system 

x 	(y, z) 
-ve 

(-0.5) 
yes 

y 	(x, z) 
-ve 

j- 0.0011 
+ve 

(0.021) 

yes 

No 
z 	(x, Y) 

TABLE5. I. Conditional Lyapunov exponents for Chua system for different drive 
signal 

To avoid the previous mentioned problems, we now apply the suggested algorithm 
for the synchronization of the chaotic system. The algorithm selects the drive signal 
directly from nonlinear part and uses it. 
Applying the method outlined above, the master system is given by equation (17). 
The Jacobian matrix is given by 

J 
—30x2  + 1.430 	10 

1 	-1 
01 
1 

-16 	0 0 (19)  

The coupling terms are deduced from the matrix 
1.430 	10 0 

A:—  1 	-1 1 

-16 	0 0 (20)  

where P is a parameter that has to chosen to cause the eigenvalues of A to have a 
negative real part. The characteristics equation is 

A 3  + (30 p-0.43)A2  + (30 p-11.43)A+160=0 	
(21) 

with a l  = 30P-0.43 	, a2  30 P-11.43 	and a3  =160 

	

The Routh — Hurwitz condition al, a3  > 0 	and at a2 - a3  > 0 
Given the condition P > 0 (numerical interval for parameter P) 	, then the slave 

system is given by 

=.0L (}11-CX1-X13  ) 	(-1)*( P-30*X2)(X-X1) 
dt 
dy, 

	x1-yi +z, 	
(22) 

dt 
dz, --- i 
dt 

Figure (3) shows the synchronization behavior of the Chua system using the 

proposed method 
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time 

Fig (3-a)The time response of x(t) 

time 

Fig (3-b)The time response of x1(t) 

0.4 
0.3 
0.2 

O 	0.1 
time 

-0.1 40 80 . 120 -0.2 
-0.3 

Fig (3-c) The error of synchronization between x(t), xl(t) 

Fig(3-d) The phase plan plot of x(t) vs y(t) whole system after synchronization 
(Periodic behavior, the Largest Lyapunov exponents of the whole system equal to 

zero) 
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From the above figures we note that the synchronization process is achieved without 
the need to select the type of drive signal. The error of synchronization in the 
proposed method is smaller than that of the method of Pecora and Carroll. 

4- CONCLUSION 

The proposed method for control and synchronization chaotic system with only one 
nonlinear term of one variable can be achieved without depending on the 
configuration of the drive signal besides minimizing the error of synchronization 
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