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ABSTRACT 
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In this paper adaptive control of a brushless DC motor (BLDCM) using neural network 
identification and pole shifting (PS) controller is presented. Proper system identification 
is one of the important factors that gives a good controller performance. This means 
that when the model parameter estimates are good, the controller output is good, 
whereas if the model parameter estimates are bad then almost surely the computed 
control will be bad. Proper selection of the identified system model order is also 
investigated. A comparison study between fuzzy logic controller and the proposed 
controller is also investigated. 
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1- Introduction 

An automatically adapting controller becomes a very attractive proposition where a real 
plant is changing with respect to time and little is known about the plant. Self-tuning 
control is one form of adaptive control. Essentially, the self-tuning control algorithm 
consists of two stages: first a fairly simple model of the plant (generally a third order 
model in the case of a BLDCM application) is identified. The parameters of the model 
are updated regularly in order to make the model of the plant. Second, the updated 
parameters of the plant model are used in the controller to obtain an appropriate 
feedback control signal based on the assumption that the updated plant model 
parameters define the plant. In this paper, adaptive neural network identification is 
investigated. 

Neural networks are a special kind of network that can learn from examples. This 
involves adjusting the weights that define the strength of connection between the 
neurons in the network. This can be interpreted as a system identification problem [1-4] 
with the advantage that many of the ideas and results in estimation theory can be 
applied to provide insight into the neural network problem irrespective of the specific 
application. 

System identification and control using neural networks was proposed in an archival 
contribution in the 1990 [2]. It was demonstrated that neural networks can be used 
effectively for the identification and control of non-linear dynamical systems. 

The problem formulation is described next without reference to any particular network. 
This is followed by a discussion of the architectures and learning algorithms in 
relevance to the BLDCM identification. In this paper adaptive linear neural network 
(ADALINE) will be used. The ADALINE network first proposed by Widrow [5] consisted 
of a non-linear limiting function in the output. To formulate the linear regression problem 
as an ANN, a linear transfer function has been used instead of the limiting function in 
the output of the ADALINE. 

2- System Model 

Fig.(1) shows the structure of the adaptive control system connected to a brushless DC 
motor drive. The adaptive control system consists of neural network identification and a 
pole shifting controller. In the proposed adaptive controller, the brushless DC motor is 
identified by a third order discrete model of the form: 

A(z.-')y(t) B(e)u(t)+ c(t) 	
(1) 

where A(Z1) and B(z-1) are polynomials in the backward shift operator Z1  and are 

defined as: 

2 
A(7-)=1+ 	+ 	+ ci3 z 3 (2) 
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B(z')= 	+ 	+ b3 z 3 
	

(3) 

and the variables y(t), u(t) and c(t) are the system output, system input and white noise 
respectively. 

The continual on-line model parameters, a, and b,, is called recursive parameter 
estimation such that, at the commencement of each sample interval, the estimations 
obtained during the previous recursion are made available and form a startup point 
ready to be updated. Many different techniques exist for updating these parameter 
estimates. 
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Fig.(1) Block Diagram of a Self-Tuning Controller 

3- Modeling of Brushless DC Servo Motor 

The brushless DC servo motor considered in the paper is a three-phase permanent 
magnet synchronous motor with sinsoidally back EMF. The stator windings are 
identical, displaced by 120°  and sinusoidal distributed [6]. The block diagram of the 
brushless dc motor is shown in Fig.(2). 
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4- Problem Formulation 

Consider the non-linear relationship: 

y(t)= (y(t -1), 	y(t - n,), u,(t -I), 	ui (t - n„))+ 

where 
Y(r)= fy,01, 	y,„(t)I r  

uft) = [u,(t), 	, u,(t)11 , 

C(t) = Kit). 	, c,„(of 

Fig.(2) Block diagram of the brushless DC motor 

are the system output, input and noise vectors respectively and f(.) is some vector 

valued nonlinear function. In order to keep the discussion focused on neural networks in 
this section, the analysis will relate to the model of Eqn. (4) with the aim of 
approximating the underlying dynamics f(.) using neural networks. Throughout the 
paper, the network input/output relationship will be defined as: 

y(t)= f(V(t)) 	
(8) 

where V(t) is the neural network input vector, and the model predicted output is defined 

as: 

;(t). f (y(t -1 ), 	y(t - n ), u(t -1 ), 	u,(t -n„ )) 
	

(9) 
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5- ADALINE Architecture and Learning Algorithm 

The ADALINE structure is shown in Fig.(3). The output of the ADALINE can be 
expressed as a linear combination of the input signal.' 	'11." 	r,  

Fig.( 3) ADALINE Network 

y = WV +b 	 (10) 

where V is the ADALINE input vector, W is the weight vector and b is the bias. 

The neuron uses a linear transfer function which simply outputs the value passed to it. 
This can be trained to learn affine (allocating finite values to finite quantities) function of 
the inputs, or to find a linear approximation to a non-linear function. 

Widrow-Hoff learning 

The Widrow-Hoff learning algorithm [51 adjusts the weights and bias, b, of the ADALINE 
so as to minimize the mean-squared error (MSE) given by Eqn. (11): 

MSE = —1  ie 2(n)=-1  i(y(t)-;(t))2 	 (11) N 	N  

The MSE performance index for the ADALINE network is a quadratic function. Thus, the 
performance index will either have one global minimum, a weak minimum or no-
minimum. Specifically, the characteristics of the input vectors determine whether or not 
a unique solution exists. 

The learning algorithm is obtained using the following equations: 

ae2(n) 	ae(n)  --=2e(n) 
awo 	awo  (12) 
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and 

ae'(n)  – 2e( n)—ae(n–)  
ab 	ab 

Next looking at the partial derivatives with respect to the weights: 

ae(n) _ aLY(t) Y  (t)1 aty(t)–(WV(n)+b)]  

aw, 	aw,;  

a[y(t)–(iwlivfn)+ 
ae(n) 
aw, 	aw,, 

Here vi(n) is the 	element in the input vector V(n) in the nth  iteration. From Eqn. (14) 

the following equations follow: 

de(n) – –v1n) 

and 
ae(n)  
ab 

These results form the learning rule and can be written in the matrix form as: 

W(n + I) =W(n)+ 277 e(n) (n) 

b(n +1 ) = b(n)+ 2)) e(n) 

where n, the learning factor, decides the speed of convergence of the iterative 

procedure. If  rl is large, learning occurs quickly, but if q is too large it leads to instability 
and the errors may even increase. To ensure stable learning, the learning rate must be 
less than the reciprocal of the largest eigenvector of the correlation matrix [7]. 

6- ADAPTIVE POLE-SHIFTING CONTROLLER 

Consider the system shown in Fig. (3) is modeled by: 

A(z 1 )Y(t)= B(z-')u,(t)+ C(t) 	
(18) 

(13)  

(14)  

(15)  

aw,, 

(16)  

(17)  
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where y(t), udt), j(t) are system output, system input and white noise respectively. A(z 
1), B(1) take the form: 

A(z-') = + acz -1  +...+a,z- 	 (19) 
B(z -')= bi z -1  +...+b,z -' 	 (20) 

where na 	+ L 

The system parameters a1, b, are fixed or obtained on-line using a system parameter 
identifier. The computation of the control signal u(t) using the pole-shifting (PS) 
algorithm[8, 9] is briefly described below. Assume the feedback loop has the form: 

(21)  

(22)  

1 Controlled Y 
System  

Controller 

Fig.(3) Block diagram of the controller 

u(t)  _ G(z -')  
y(t) 	F(z-I  ) 

Where 

F(z-')= I + 	+...+ 	+...+f 
G(z')= g„ + g l z' +...+ g,z' 	 (23) 

and 

n g  = n,, -I, 	n g  =ng  -1 	 (24) 

From Eqns. (21 to 24) the closed-loop characteristics polynomial T(i i) can be derived 
as: 

T(z-1 )-= A(z -1 )F(z ')+ B(z -1 )G(z-') 	 (25) 

The PS control algorithm makes T(z-I ) take the form of A(I1) but the pole locations are 
shifted by a factor a, i.e. 

A(z -1  )F(z -' )+B(z-' )G(z -' )= A(a z-') 	 (26) 
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Expanding both sides of Eqn. (26) and comparing the coefficients gives: 

      

 

I 	0 	0 	b, 	0 	0 
a, 	I 	0 	b, 	b, 	0 
. 	a, 	 . 	b, 

a„., 	 I 	b 	. 	. 	b'  , 
o 	a, 0 b . b2  
. 	0 	. 	0 	. 	. 

6 6 

A „ 

 

(27) 

     

     

      

or in a matrix form: 

    

M .w(a)= L(a) 

Parameters ai and b, are known or identified every sampling period. If a is known, Eqn. 

(28) can be solved for control parameters 6 and g;. Hence, control signal u(t) can be 

obtained from Eqn. (18). For optimum performance, it is desirable to modify a on-line 
according to the operating conditions of the controlled system. 

7- SIMULATION RESULTS 

The effectiveness of the proposed adaptive control using neural network identification 
and poll shifting controller on the transient and dynamic characteristics of the rotor 
speed of the brushless dc motor is investigated. The speed control of the drive was also 
designed and simulated with fuzzy control, in order to compare the performance with 
the respective proposed controller. The BLDCM was also operated at full load for 0.3 
second, then the load torque was decreased to 70% of its full load value for a period of 
0.4 second and the load torque return to its full load value for a period of 0.3 second. 
The simulation results are shown in Fig.(4) and Fig.(7). From the above Figures, we find 
that the speed overshoot with adaptive controller is smaller than that with fuzzy 
controller. Also the recovery time with adaptive controller is shorter than that with fuzzy 
controller. 
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