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ABSTRACT 

In this paper, we present a novel test pattern generator for pseudoexhaustive testing. 
This generator bridges the gap between convolved LFSR/SR and permuted LFSR/SR. It 
is considered to be the optimal pseudoexhaustive test pattern generator as far as the 
lengths of test set and hardware overhead are concerning. We present an efficient 
search to assign the residues for the inputs of the CUT to increase the chance to get 
several solutions and reduce the hardware overhead. With small number of 
permutations in the assigned residues, the chance of obtaining efficient results may be 
increased. The novel generator is considered the general form of the pseudoexhaustive 
test pattern generator. The simple LFSR/ SR, the permuted LFSR/SR, and convolved 
LFSR/SR are considered the special case of the novel generator. The experimental 
results indicate the superiority of this generator and the efficiency of our approach. 

Key words: Design for testability of VLSI design, pseudoexhaustive testing. 

1. INTRODUCTION 

The pseudoexhaustive test retains almost all benefits of an exhaustive test [2-6]. The 
choice of pseudoexhaustive test technique depends on whether or not any 
combinational circuit outputs depend on all of the circuit inputs. If any circuit output 
depends on all of its inputs, a partitioning (or segmentation) test technique must be used 
to test these circuits [4-5, 17]. For circuits with restricted output dependency, the 
pseudoexhaustive test techniques provide an alternative test method. The combinational 
circuit with n inputs and m outputs is modelled as a direct acyclic graph. The nodes 
represent gates and the interconnection signals are represented by edges. Each output 
cone of the circuit forms a subgraph need not be disjoint. The dependency set, a, of the output cone i is considered the set of the primary inputs and the pseudo-primary inputs 
that feed it directly or affect it through another node. The dependency, 	of the output 
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cone i is the cardinality of its dependency set. Let k be the maximum value among the 

dependencies of the m output cones. The circuit can be characterized as an (n, m, k) 

circuit. The circuit is segmented into m output cones, and each cone is tested 
exhaustively. The test ensures detection of all irredundant combinational faults with a 
single pattern within individual cones of the circuit without fault simulation. The time 
required for pseudoexhaustive testing depends on the sizes of the output cones. So 
pseudoexhaustive testing reduces the testing time to a feasible workable value while 
retaining many of the advantages of exhaustive testing. Many test pattern generators 
have been proposed for pseudoexhaustive testing. Examples are syndrome driver 

counters (SDCs) [7], constant-weight counters (CWCs) [8], condensed LFSRs [9], cyclic 

LFSRs [10], combined LFSR and XOR gates (LFSR/X0Rs) [11-12], combined LFSR 

and shift register (simple LFSR/SRs) [13], permuted LFSR/SRs [18], convolved 

LFSR/SRs [14], and modified convolved LFSR/SRs [6]. It has been found the generators 
based on the universal test set method require longer test lengths than the generators 
based on the output-specific test set method. Convolved LFSR/SR is a generator based 
on the output-specific approach. It is considered to be the optimal pseudoexhaustive test 
pattern technique as far as the lengths of test set and hardware overhead are 
concerning. In [14], the size of shift register segment is constrained to have a desired 
minimum length to reduce the number of feed forward stages. This constraint weakens 
the potential of using convolved LFSR/SR and in a lot of cases, the number of XOR 
gates needed for convolved LFSR/SR is high [4, 6]. The algorithm presented in [6] 
presents search iteration for assigning residues to the inputs of the CUT so as to 
increase the number of potential solutions and thus reduce the hardware overhead. It 
reduces the constraint in the size of the shift register segment and makes an efficient 
search to restrict on the number of feed forward stages into two stages at most and no 
restriction on the size of the shift register (SR) segment. The residues are assigned such 
that minimum hardware overhead is achieved. This search generates several possible 
solutions for each case, from which the minimal hardware solutions may be chosen. 
Sometimes, the required search time to generate the minimal test set (if w = k, where, w 

is the order of the primitive polynomial) is large, or the search procedure requires test 

set length of greater than 2k. 

Dimitrios Kagaris and Spyros Tragoudas [18] have suggested a permuted LFSR/SR 
which is a simple LFSR/SR that drives a permuted set of inputs. A simple LFSR/SR, 
which is not capable of generating the optimal test set length because of fixed assign-
ment of residues, may become feasible through reassigning the residues. From the 
results in [18], additional segmentation cells are required to find an applicable primitive 

polynomial. 
This paper introduces an efficient approach to design a generator that generates a 
pseudoexhaustive test pattern set. It is required to design a generator with minimal test 
length and minimal hardware overhead. A new generator which bridges the gap 
between convolved LFSR/SR [4, 6] and permuted LFSR/SR [18] is presented. With 
small number of permutations in the assigned residues, the chance of obtaining efficient 
results may be increased. A simple efficient heuristic approach for permutation is 
introduced. The novel generator is considered the general form of the pseudoexhaustive 
test pattern generator. The simple LFSR/ SR, the permuted LFSR/SR, and the 
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convolved LFSR/SR are considered the special case of the novel generator. The 
experimental results indicate the efficiency of this generator. The results also show that 
the insertion of additional segmentation cells required by the method outlined in [18] is 
not required. 

We will begin with a background survey of the convolved LFSR/ SR as test pattern 
generator for pseudoexhaustive testing in section 2. Search for residues assignment will 
be in section 3. The algorithm is given in section 4. The experimental results will be in 
section 5 and the conclusion in section 6. 

2. OVERVIEW OF THE STRUCTURE OF THE NOVEL GENERATOR 
Let Iro  be an index default permutation of the n inputs of the CUT which signifies the or- 
der in which the corresponding flip-flops (stages) of the convolved LFSR/SR are linked. 
Consider an (n, m, k) CUT along with the notation that input is assigned a unique index 
(label) i where 0 	The default permutation,r0 of the inputs of the CUT is specified 
completely by n-tuple (0, 1, 2, 3,..., n - 1), let the set A = {/0. 1,,12, /•z and re,,= {0, 1, 2, 3 	 n - 1}. 

Fig 	 1 is considered more general scheme of the pseudoexhaustive test pattern 
generator. In a convolved LFSR/SR [4, 61 and using the default permutation 	inputs 0 
through i are assigned to the residues R0  through R,, and inputs i + 1 through n - 1 are assigned to the residues R,+i  through Rfrn_2. In the novel generator, it is possible to 
change the default permutation to another permutation n . In Fig. 1 using permutation n-
(for example), every CUT inputs are assigned to the residues according to permutation 
go  except 4.2 assigned R,1, 1,1  assigned Rw.2, 4.2 assigned Rpi, and 	assigned 

So, the convolved LFSR/SR is considered a special case of the novel generator. 
The simple LFSR/SR and the permuted LFSR/SR are considered special cases of the 
novel generator as well. 

LFSR portion 
w stages 

feed forward stage 
From previous stages 

Default permutation no  for the inputs of the CUT 
0 	 w-I w w+I w+2 	 i 	i+I i+2 	 n-I 

Permutation it for the inputs of the CUT 
0  	w-I w w+2 w+1 	 i 	i+2 i+I 	 n-I 

Fig. 1 Novel generator for pseudoexhaustive testing with permutation. 
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Using a specific primitive polynomial, let /3 be the set containing all dependency sets of 

the output cones whose assigned residues are linearly dependent and I /3 be the 

number of the dependency sets in ig . In the case of the convolved LFSR/SRs, all 
dependency sets of the output cones must satisfy certain condition that all assigned 
residues for dependency sets of the output cones must be linearly independent so that 
/3 is an empty set. This restriction can be reduced to get a solution even if is not an 
empty set. This is done by a small number of permutations of the assigned residues to 
the inputs of the CUT to make /3 an empty set. The permutation of the residues means 

the permutation of the CUT inputs assigned to those residues. The permutation of the 
CUT inputs may be useful in obtaining a pseudoexhaustive test pattern generator 
(PETPG) with minimal test set length. The permutation of the inputs results in a routing 
overhead so we assume that the generator synthesis is done prior to the layout phase of 
the CUT, and that, therefore any rewiring issues are tackled in the overall layout of the 
CUT and the BIST circuitry as a whole. 

3. THE SEARCH TO OBTAIN MINIMUM 1p 1 

The search to obtain the minimum 	I, referred to as I ig imin , is carried out either by 

searching in the candidate primitive polynomials or by using the proposed residue 
assignment, discussed in [6] for a specific primitive polynomial. Choosing a small value 

of I /3 Imnwill reduce the required number of permutations which reduce the routing 

overhead. First, two useful definitions need to introduce. 

Condition 1: For each output cone i, all residues RI, je Di, 0 <i <m, must be linearly 

independent. 
Definition 1: An applicable primitive polynomial for permutation is the polynomial for 

which at least (m - I /9  imin) 
before permutation. 
Definition 2: The proper residues for permutation are produced by the residue 

assignment for the CUT inputs before permutation such that at least (m - 1 p Imin) 

dependency sets of the output cones satisfy condition 1. 
The algorithm to design the novel generator (the steps of this algorithm will be discussed 
in section 5) consists of two phases. The first phase is dedicated to search from the 
candidate primitive polynomials to find the applicable primitive polynomial for 
permutation and, with a small number of permutations, the set /3 may be an empty set. 

The generator resulting from this phase is the permuted LFSR/SR (the simple LFSR/SR 

with permutation ir). In the second phase, the proper residues for permutation can be 
found using the proposed residue assignment, discussed in [4, 6] and, with a small 
number of permutations, the set /3 may be an empty set. The generator resulting from 

this phase is the novel generator (convolved LFSR/SR with permutation). A combination 
of changing the assigned residues with a small number of permutations may increase 
the chance of obtaining a solution for the case where the convolved LFSR/SR cannot 
get a solution with minimal test set lengths and minimal hardware overhead (i.e, reduce 
the required number of XOR gates). 

dependency sets of the output cones satisfy condition 1 
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For simplicity, the algorithm divides the length of the generator into two parts. The first 
part is the LFSR portion with size w and the second part is either a simple LFSR/SR with 
size n - w (n-w 	or shift register with size n - w (n-w < w). The residues of the second 
part of the generator can be changed according to the residue assignment, discussed in 
[4, 6] (refer to the convolved LFSR/SR in form A [4, 6] (Fig. 2)). This division is 
practically adequate and the experimental results in section 6 will indicate that situation. 

Feed forward stage 

LFSR portion 

Fig. 2 Convolved LFSR/SR in form A [4, 6]. 

4. IDEA OF THE PERMUTATION 

In this section, the idea of the permutation of one dependency set, whose assigned resi-
dues are linearly dependent, will be explained. The permutation approach of all depend- 
ency sets, whose assigned residues are linearly dependent, will be explained in section 
5.  

It is known from condition 1, that all residues assigned to the dependency set must be 
linearly independent. If the residues assigned to the dependency set are linearly 
dependent, one or more residues will exist which are linear combinations of the each 
other. The idea of the permutation will be demonstrated by an example. 
Example 1: The (24, 6, 10) CUT with its dependency sets according to following table is 
considered. 

Do  (0, 1, 3, 4, 8, 9, 10, 13, 16, 22} 
Di  (0, 2, 3, 5, 6, 8, 11, 14, 17, 23} 
D2 (1, 2, 4, 5, 7, 9, 12, 15, 18, 22} 
D3 (0, 1, 2, 6, 7, 10, 11, 12, 19, 23} 
04 (3, 4, 5, 6, 7, 13, 14, 15, 20, 22} 
D5 (8, 

23) 
9,  10,  11, 12, 	13, 	14, 	15, 21, 

This example consists of two phases. The first phase indicates the solution using the 
applicable primitive polynomial for permutation. The second phase indicates the solution 
using the proper residues for permutation for a specific primitive polynomial. 

4.1. The first phase: The primitive polynomial with minimum terms, and I ,6 Imin is 
determined. This polynomial is 1+x2+/+x8+x1°, I fi km equals 1 so the polynomial, 1+x2+x71-x8+x l°, is an applicable primitive polynomial for permutation. The dependency 
set whose assigned residues are linearly dependent, b, is (0 1 2 6 7 10 11 12 19 231, let 71-0  = (0, 1, 2,...., 231. First, construct set b' = (0, 1, 2) (b' c b) and check if its assigned 
residues are linearly independent or not. If the residues are linearly independent, add to 
b' the next element which is 6 in b (b'= b'u (6)). The set b' is now (0, 1, 2, 6) (b' c b). If 

SR segment 



IV 

1 , 2 3 4 5 	6 	7 8 9 10 11 12 	13 14 15 16 17 	18 	19 20 21 22 23  

0  0 10 10 01010 0 10 1 0 111 110 011111110111110 

1 2 3 4 5 	6 	7 8 9 10 11 12 	23 14 15 16 	17 18 	19 20 21 22 13 

aft 

Residue 
0 

I►  1  
Input 0 
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its assigned residues are linearly independent, add to b' the next element. This process 
is continued until the assigned residue for last added element to b' causes linear 
dependence with other assigned residues of elements in b'. The residue assigned to last 
added element is the first residue that causes the linear dependence of b. In this 

example, this residue is the residue assigned to 123  in b (input 23) which is R23. Now, it is 
required to permute this residue with another residue, assigned to input p such that p 

c 7r, and p 0 b. The first choice is the residue assigned to 122. The residues assigned to 

set b will be linearly independent but this permutation will generate linear dependence 
for three other dependency sets of the output cones. This permutation is ignored. The 
residue assigned to 121 is then considered but again the residues assigned to set b are 

linearly dependent. The residue assigned to 120 is then considered, followed by 118 and 
so on until the residue assigned to 113 is permuted by the residue assigned to 123 and all 
residues assigned to all dependency sets of the output cones are linea independent. 
The new input assignment of the permuted LFSR/ SR, 71 " , is {0, 1, 2, Sr, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 23, 14, 15, 16, 17, 18, 19, 20, 21, 22, 13). In this case, three XOR gates are 
required, and the required number of permutations is 1. The permuted LFSR/SR for that 
CUT with its initial seed and new permutation of the CUT inputs, a , is shown in Fig. 3. 

Fig. 3 Permuted LFSR/SR of phase 1. 

4.2. The second phase: Set 1 filmin to 1 and limit the number of terms of the primitive 
polynomial to 3 so as to use one XOR gate in the LFSR stages. The number of primitive 
polynomials of degree 10 with one XOR gates is 2 [4]. Unfortunately, I )0 I of these 

primitive polynomials are greater than one (greater than I /3 	So, it is required to 

divide the generator into two parts, the first part with length 10 which is LFSR portion 
and the second part with length 14 which is a (14, 10) simple LFSR/SR (convolved 
LFSR/SR with form A). The residues of the second part are changed to find which 
equals 1 as in the search using pattern group A in [4, 6]. The solution in this case is the 
primitive polynomial 1+x74-x70, and the residues of the generator are: 0-9, 40-53. The 
residue assignment, 0-9, 40-53, is the proper residues for permutation. By permuting 
residue 49 with residue 53, all dependency sets of the output cones satisfy condition 1 
(teiis permutation is carried out as in the first part). R49, assigned to 119, is now assigned 

to 123 and R53, assigned to 123, is now assigned to 119. The number of required XOR gates 
for this generator is 2 and the required number of permutations is 1. The generator with 
its initial seed and permutation of the CUT inputs, 7r , is shown in Fig. 4. The convolved 
LFSR/SR designed using algorithm [4, 6] requires three XOR gates to test all output 
cones exhaustively. The novel generator needs just two XOR gates. 
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Retildu e 
0 1 2 3 4 5 	6 7 8 9 

 Residue 
40  - 	 48 49 50  51 52 53 

11101010 101 0101010101 	*401011 1 1 111 0 0 1 OFTT Input 0 1 2 3 4 5 	6 7 8 9 Input 10 	 18 23 20 2122 19 

Fig. 4 Novel generator of phase 2. 

5. THE PERMUTATION APPROACH AND THE ALGORITHM 

Each phase in the novel generator design consists of other two phases. The first one 
searches for either the applicable primitive polynomial for permutation or the proper res-
idues for permutation. The second is the permutation phase. In this section, the 
permutation approach for all dependency sets whose assigned residues are linearly 
dependent is presented. 

All dependency sets whose assigned residues are linearly dependent are collected in 
/3. (The number of the sets in /3 is fi 	The first dependency set in /3 is chosen, referred to as set b, and the first assigned residue causing linear dependence in b is determined. Let input s be the input whose assigned residue is the first residue in b causing linear dependence. Let set b' (b' c b) be the set that covers the elements of b from the first element to element s. Now, it is required to permute the residue assigned 

to input s with the residue assigned to another input, p, such that p e no  and p ob. The residues assigned to set b', after permuting the residue assigned to input p, are checked 
for linear independence. In the case that the residues assigned to set b' are linearly independent and the residues assigned to set b after the previous permutation are linearly dependent, store p in buffer pp as the first permuted element in set b. The search to find other permuted elements in b to make the residues assigned to b linearly independent is repeated. 

For example, if b = {0, 2, 3, 6, 7}, and no  = {0, 1, 2,...., 9) where these numbers are the 
indices of the CUT inputs. Let the residues assigned to set b be linearly dependent, and the first residue in b causing linear dependence be the residue assigned to input 6 (for 
example). It is required to permute the residue assigned to input 6 (which is input s) with another residue assigned to input p such that p e 770  and p ob. If the residue assigned to 
input 6 is permuted with the residue assigned to input 8 (which is input p) and the res-idues assigned to set b', which are {0, 2, 3, 8), are linearly independent and the residues assigned to set b, which is {0, 2, 3, 8, 7), are still linearly dependent after permutation, 
then store p, which is input 8, in buffer pp as the first permuted element in set b. The first residue, causing linear dependence in b after the first permutation, is the residue 
assigned to input 7 (for example) and it is required to permute it with another residue 
assigned to input p such that p E no'and p b until the residues assigned to set b are 
linearly independent. (Generally, input p is considered in the discussion as the permuted element.) 
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In the case that the residues assigned to b are linearly independent, there are three 

options: 
(1) Where the number of linear dependence sets of the dependency sets of the 

output cones is less than I p Imin• A new /3 is constructed with a low number of 

dependency sets such that their assigned residues are linearly dependent and 
update with the new. 

(2) If 1)31 .1,8 Im,n and there are possibilities for other inputs to be permuted, then 

ignore the last permutation in b and try the next possible input. 

(3) If ip I P 1.in and there is no possibility for other inputs to be permuted, then 

ignore all previous permutations applied to b and retrieve the stored input from 

buffer pp (first permuted element in set b) and select the possible input next to 

the stored input, let this input be p, such that p E 2r0  and p ob. 

I will state the steps of algorithm Novel gen to design the novel generator. 

Algorithm Novel_gen 
Input: The dependency sets of output cones, w ( k), I /31rnm, Q (number of 

generated residues), and S (number of required solutions). 

Output: Residue assignment for the CUT inputs, the initial seed value, IT and 

the required number of permutations. 

1. Phase 1  
1.1 Retrieve all primitive polynomials or the subset of all primitive polynomials of 

degree w from a stored file and put them in queue L, set buffer pp to -1. 

1.2 If L is not empty, then select the primitive polynomial, p(x), from L. If L is empty, 

then go to phase 2. 
1.3 Residues from 	Ro  through Rn_1 are generated, based on p(x) [4, 61. 

1.4 Condition 1 is checked for all dependency sets of the output cones. 
1.5 If condition 1 is satisfied for at least (m - )6 imin) dependency sets of the output 

cones, then the corresponding primitive polynomial is an applicable primitive 
polynomial for permutation and set /3 is constructed. If p(x) is not an applicable 

primitive polynomial for permutation, go to step 1.2. 
1.6 Take the first set in , referred to as b, and set buffer pp to -1. 

1.7 Determine the first residue (assigned to input s) in b causing linear dependence. 

Let set b' be a subset of b containing all elements in b from the first element up 

to input s. The residue assigned to input s is permuted with the residue assigned 

to input p such that p c go  and p ob. 

1.8 If the residues assigned to b' are linearly dependent, there are two options: 

1.8.1 If buffer pp equals -1, try next possible input to be permuted. If there is no 
possibility for other inputs to be permuted, then go to step 1.2. 

1.8.2 If buffer pp does not equal -1, try next possible input to be permuted. If 
there is no possibility for other inputs to be permuted, then ignore all 
previous permutations applied to b and retrieve the stored input from buffer 

pp (first permuted element in set b) and select the possible input next to the 

stored input, let this input be p, such that p e rro  and p b, construct b', set 
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the buffer pp to -1 and go to step 1.8. If there is no possible input next to the 
stored input as a permuted element, then go to step 1.2. 

1.9 If the residues assigned to b' are linearly independent and the residues assigned 
to b are linearly dependent after the permutation, then store p in the buffer pp 
when p is the first permuted element (input) in b then go to step 1.7. 

1.10 If the residues assigned to b are linearly independent and the number of 
linearly dependent sets of the dependency sets of the output cones is less than 
III Imin and do not equal zero, then construct the new /3 , update I P Imin with the 
new /3 , and go to step 1.6. 

1.11 If the residues assigned to b are linearly independent, and the number of 
linearly dependent sets of the dependency sets of the output cones is greater 
than or equal to I fi Imin and there are possibilities for other inputs to be permuted, 
then ignore the last permutation in b, try next possible input, construct b', and go 
to step 1.8. 

1.12 If the residues assigned to b are linearly independent, and the number of 
linearly dependent sets of the dependency sets of the output cones is greater 
than or equal to I,Q Imin and there is no possibility for other inputs to be permuted, 
then ignore all previous permutations applied to b and retrieve the stored input 
from buffer pp (first permuted element in set b) and select the possible input next 
to the stored input, let this input be p, such that p ego  and p b, construct b', set 
buffer pp to -1 and go to step 1.8. If there is no possible input next to the stored 
input as a permuted element (or buffer pp equals -1), then go to step 1.2. 

1.13. If /3 is an empty set, print the residue assignment for the inputs, 7r, and store 
it as a solution and go to the subroutine that determines the initial seed of the 
generator [4, 6]. 

1.14 If the number of solutions is less than S and there are other primitive 
polynomials in L, select the next primitive polynomial in L and go to step 1.3. If 
the number of solutions is equal to S, exit. 

1.15 If L is empty and no applicable primitive polynomial for permutation exists, go 
to phase 2. 

2. Phase 2  
2.1 Select a primitive polynomial with minimum terms from L, and generate all 

required residues (residue 0 through Q - 1) [4, 6]. 
2.2 Using the residue assignment [4, 6], find the proper residues for permutation. 
2.3 Construct set /3. 
2.4 Repeat steps 1.6 through 1.13. (In step 1.8 and step 1.12 of phase 1, there is 

possibility to branch to step 1.2 but this step in phase 2 will branch to 2.1 when L 
is not empty) 

2.5 If the number of solutions equals S, exit. 
2.6 If the complete set of the generated patterns [4, 6] is finished and L is not empty, 

go to step 2.1. 
2.7 If the complete set of the generated patterns [4, 6] is finished and L is empty, 

exit. 
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6. EXPERIMENTAL RESULTS OF THE NOVEL GENERATOR 

Using algorithm Novel gen, novel generators were designed for all combinational 
benchmark circuits in [1], after they had been segmented using the new algorithm pre-
sented in [5]. Table 1 presents the design of the novel generators for the segmented 
benchmark circuits with a cone size reduction, /, of 16, 20, 24, and 28 inputs. (After 
segmenting the circuit with the segmentation cells, the resulting k for the segmented 

circuits may be less than 1. The difference between I and k, obtained after segmenting, is 
due to the nature of the circuit.) The first two columns provide the characteristics of the 
segmented circuits. The exponent terms for the primitive polynomial, p(x), is given in the 
third column. The residue assignment for the stages of the generator, the total number 
of required XOR gates to realize the generator, and the run-time in seconds on a SUN 
Sparc II workstation are shown in the fourth and fifth column, respectively. The required 
number of permutations is given in the sixth column. For example, for the segmented 
c432 circuit in the first row, the primitive polynomial, p(x), is 1+x3+x4+x5+x16. Stages 0 

through 62 have residues Ro through R62, respectively. The total number of XOR gates 
required to realize the generator is 3 in < 1 second with 4 input permutations. Referring 
to the corresponding design in [4, 6], the required number of XOR gates was 6 in 2 
seconds. 
The number of permutations in the last column, referred to as num_per, is calculated as 

follows. Let go  be {0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and is be (1, 0, 2, 3, 4, 9, 6, 7, 8, 5). Then, 

a is {1, 1, 0, 0, 0, 1, 0, 0, 0, 1). The elements in a are either 0 or 1. If element i of no  

equals element i of it , then element i of a = 0, if the elements are not equal then 

element i of a = 1. The number of the permutations in g equals the number of 1's in a 

divided by 2 which equals 2 in this example. 

From Table 1, note the following: 

1. The test set lengths designed for all combinational benchmark circuits in Table 1 are 
optimal (minimal) test set lengths (the degree of p(x), w, equals k) without requiring the 
insertion of segmentation cells. From the results in [18], additional segmentation cells 
are required to find an applicable primitive polynomial. 

2. Comparing the number of XOR gates and the required run-time between the con-
volved LFSR/SR using COV G in [4] and the novel generator in Table 1 indicates the 
efficiency of the novel generator where the required hardware overhead and the run-
time are always less than that produced in [4]. In every case, there are several possible 
solutions which increase the chance of obtaining a result with minimal hardware 

overhead. 

3. The number of required permutations of the CUT inputs is small compared to the 
length of the generator, n. 

4. The novel generator has found solutions in cases where the convolved LFSR/SRs 
[4] could not find a solution in reasonable time. In c5315 and c7552, the algorithm in 
[4] does not provide any solution when k = 16 for any primitive polynomial with degree 
16 (the algorithm in [4] found a solution when w = 17) but the novel generator 
succeeds with low hardware overhead. All results in Table 1 prove the efficiency of 
the novel generator where a solution in all cases is achieved. Table 1 demonstrates 
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the potential of the novel generator approach, generating optimal (minimal) test set 
lengths with low hardware overhead for the segmented combinational benchmark 
circuits [5]. 

7. CONCLUSION 

The novel pseudoexhaustive test pattern generator, that bridges the gap between the 
convolved LFSR/SR and the permuted LFSR/SR, has been introduced and 
demonstrated. An efficient heuristic approach has been introduced. It permutes the CUT 
inputs after the proper residues for permutation become available. The changing 
residues assigned to the CUT inputs followed by permutation gives the novel generator 
a special character in that the convolved LFSR/SR and the permuted LFSR/SR are 
special cases of the novel generator. The approach is successful because: (1) The test 
set lengths designed for all combinational benchmark circuits in Table 1 are optimal 
(minimal) test set lengths without requiring additional segmentation cells. (2) The 
required hardware overhead and the run- time are always less than that produced by the 
convolved LFSR/SR using COV G. (3) The number of required permutations of the CUT 
inputs is small compared to the length of the generator, n. (4) The novel generator has 
found solutions for those cases where the convolved LFSR/SRs using COV G could not 
find a solution (as in c5315 and c7552, the algorithm COV G does not provide any solution when k = w = 16 (COV G found a solution when w = 17)). Finally, the practical 
results indicate that a generator with minimal test set length, minimal hardware 
overhead, minimum routing overhead, and good performance can be obtained. 
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