Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 989

Military Technical College “ 11-th International Conference
Kobry El-Kobba, ==ASA Tii-}- on Aerospace Sciences &

Cairo, Egypt Aviation Technology

A NEW SINGLE TEST PATTERN GENERATOR FOR
PSEUDOEXHAUSTIVE TESTING

1Mohamed H. EI-Mahlawy*, Winston Waller**

ABSTRACT

In this paper, we present a novel test pattern generator for pseudoexhaustive testing.
This generator bridges the gap between convolved LFSR/SR and permuted LFSR/SR. It
is considered to be the optimal pseudoexhaustive test pattern generator as far as the
lengths of test set and hardware overhead are concerning. We present an efficient
search to assign the residues for the inputs of the CUT to increase the chance to get
several solutions and reduce the hardware overhead. With small number of
permutations in the assigned residues, the chance of obtaining efficient results may be
increased. The novel generator is considered the general form of the pseudoexhaustive
test pattern generator. The simple LFSR/ SR, the permuted LFSR/SR, and convolved
LFSR/SR are considered the special case of the novel generator. The experimental
results indicate the superiority of this generator and the efficiency of our approach.

Key words: Design for testability of VLS| design, pseudoexhaustive testing.

1. INTRODUCTION

The pseudoexhaustive test retains almost all benefits of an exhaustive test [2-6]. The
choice of pseudoexhaustive test technique depends on whether or not any
combinational circuit outputs depend on all of the circuit inputs. If any circuit output
depends on all of its inputs, a partitioning (or segmentation) test technique must be used
to test these circuits [4-5, 17]. For circuits with restricted output dependency, the
pseudoexhaustive test techniques provide an alternative test method. The combinational
circuit with n inputs and m outputs is modelled as a direct acyclic graph. The nodes
represent gates and the interconnection signals are represented by edges. Each output
cone of the circuit forms a subgraph need not be disjoint. The dependency set, D;, of the
output cone i is considered the set of the primary inputs and the pseudo-primary inputs
that feed it directly or affect it through another node. The dependency, |Dj, of the output

*Egyptian Armed Forces,
** Senior Lecturer, VLSI group, Kent University at Canterbury

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 1ES-01 990

cone i is the cardinality of its dependency set. Let k be the maximum value among the
dependencies of the m output cones. The circuit can be characterized as an (n, m, k)
circuit. The circuit is segmented into m output cones, and each cone is tested
exhaustively. The test ensures detection of all irredundant combinational faults with a
single pattern within individual cones of the circuit without fault simulation. The time
required for pseudoexhaustive testing depends on the sizes of the output cones. So
pseudoexhaustive testing reduces the testing time to a feasible workable value while
retaining many of the advantages of exhaustive testing. Many test pattern generators
have been proposed for pseudoexhaustive testing. Examples are syndrome driver
counters (SDCs) [7], constant-weight counters (CWCs) 18], condensed LFSRs [91, cyclic
LFSRs [10], combined LFSR and XOR gates (LFSR/XORs) [11-12], combined LFSR
and shift register (simple LFSR/SRs) [13], permuted LFSR/SRs [18], convolved
LFSR/SRs [14], and modified convolved LFSR/SRs [6]. It has been found the generators
based on the universal test set method require longer test lengths than the generators
based on the output-specific test set method. Convolved LFSR/SRis a generator based
on the output-specific approach. It is considered to be the optimal pseudoexhaustive test
pattern technique as far as the lengths of test set and hardware overhead are
concerning. In [14], the size of shift register segment is constrained to have a desired
minimum length to reduce the number of feed forward stages. This constraint weakens
the potential of using convolved LFSR/SR and in a lot of cases, the number of XOR
gates needed for convolved LFSR/SR is high [4, 6]. The algorithm presented in [6]
presents search iteration for assigning residues to the inputs of the CUT so as to
increase the number of potential soiutions and thus reduce the hardware overhead. It
reduces the constraint in the size of the shift register segment and makes an efficient
search to restrict on the number of feed forward stages into two stages at most and no
restriction on the size of the shift register (SR) segment. The residues are assigned such
that minimum hardware overhead is achieved. This search generates several possible
solutions for each case, from which the minimal hardware solutions may be chosen.
Sometimes, the required search time to generate the minimal test set (if w = k, where, w
is the order of the primitive polynomial) is large, or the search procedure requires test
set length of greater than 2".

Dimitrios Kagaris and Spyros Tragoudas [18] have suggested a permuted LFSR/SR
which is a simple LFSR/SR that drives a permuted set of inputs. A simple LFSR/SR,
which is not capable of generating the optimal test set length because of fixed assign-
ment of residues, may become feasible through reassigning the residues. From the
results in [18], additional segmentation cells are required to find an applicable primitive
polynomial.

This paper introduces an efficient approach to design a generator that generates a
pseudoexhaustive test pattern set. It is required to design a generator with minimal test
length and minimal hardware overhead. A new generator which bridges the gap
between convolved LFSR/SR [4, 6] and permuted LFSR/SR [18] is presented. With
small number of permutations in the assigned residues, the chance of obtaining efficient
results may be increased. A simple efficient heuristic approach for permutation is
introduced. The novel generator is considered the general form of the pseudoexhaustive
test pattern generator. The simple LFSR/ SR, the permuted LFSR/SR, and the

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 991

convolved LFSR/SR are considered the special case of the novel generator. The
experimental results indicate the efficiency of this generator. The results also show that
the insertion of additional segmentation cells required by the method outlined in [18] is
not required.

We will begin with a background survey of the convolved LFSR/ SR as test pattern
generator for pseudoexhaustive testing in section 2. Search for residues assignment will
be in section 3. The algorithm is given in section 4. The experimental results will be in
section 5 and the conclusion in section 6.

2. OVERVIEW OF THE STRUCTURE OF THE NOVEL GENERATOR

Let 7z, be an index default permutation of the n inputs of the CUT which signifies the or-
der in which the corresponding flip-flops (stages) of the convolved LFSR/SR are linked.
Consider an (n, m, k) CUT along with the notation that input /; is assigned a unique index
(label) i where 0 <i <n. The default permutation 7, of the inputs of the CUT is specified
completely by n-tuple (0, 1, 2, 3,..., n - 1), let the set A = {lo. 11,15, . In.}, and z,={0, 1, 2,
3,...,n-1}

Fig. 1 is considered more general scheme of the pseudoexhaustive test pattern
generator. In a convolved LFSR/SR [4, 6] and using the default permutation 7z, inputs 0
through / are assigned to the residues Ry through R;, and inputs i + 1 through n - 1 are
assigned to the residues Riyj through Ri,2. In the novel generator, it is possible to
change the default permutation to another permutation . In Fig. 1 using permutation x
(for example), every CUT inputs are assigned to the residues according to permutation
7, except lys2 assigned Ry+1, ly+s assigned Ry.», Iz assigned Ry, and /. assigned
Risj+1. So, the convolved LFSR/SR is considered a special case of the novel generator.
The simple LFSR/SR and the permuted LFSR/SR are considered special cases of the
novel generator as well.

_ feed forward stage
'(‘%Ef)apgegomm From previous stages 5

n ’ w.‘]'L w : ’ i :-é_>
Ry E}R:FIRW B % Ri

Default permutationmy for the inputs of the CUT
0 ... w-l w wtlw+2...... i bl 2.0 n-1

Permutation © for the inputs of the CUT
0 o w-1 w w+2w+l........ i H2 il n-1

Fig. 1 Novel generator for pseudoexhaustive testing with permutation.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 1ES-01 992

Using a specific primitive polynomial, let g be the set containing all dependency sets of
the output cones whose assigned residues are linearly dependent and | §| be the
number of the dependency sets in #. In the case of the convolved LFSR/SRs, all
dependency sets of the output cones must satisfy certain condition that all assigned
residues for dependency sets of the output cones must be linearly independent so that
p is an empty set. This restriction can be reduced to get a solution even if g is not an
empty set. This is done by a small number of permutations of the assigned residues to
the inputs of the CUT to make /# an empty set. The permutation of the residues means
the permutation of the CUT inputs assigned to those residues. The permutation of the
CUT inputs may be useful in obtaining a pseudoexhaustive test pattern generator
(PETPG) with minimal test set length. The permutation of the inputs results in a routing
overhead so we assume that the generator synthesis is done prior to the layout phase of
the CUT, and that, therefore any rewiring issues are tackled in the overall layout of the
CUT and the BIST circuitry as a whole.

3. THE SEARCH TO OBTAIN MINIMUM | 5|

The search to obtain the minimum | A, referred to as | 3 |min, is carried out either by
searching in the candidate primitive polynomials or by using the proposed residue
assignment, discussed in [6] for a specific primitive polynomial. Choosing a small value
of | B |mnwill reduce the required number of permutations which reduce the routing
overhead. First, two useful definitions need to introduce.

Condition 1: For each output cone i, all residues R;, jeDj 0 =i =m, must be linearly

independent.

Definition 1: An applicable primitive polynomial for permutation is the polynomial for
which at least (m - | B |mn) dependency sets of the output cones satisfy condition 1
before permutation.

Definition 2: The proper residues for permutation are produced by the residue
assignment for the CUT inputs before permutation such that at least (m - | /8 lmin)

dependency sets of the output cones satisfy condition 1.

The algorithm to design the novel generator (the steps of this algorithm will be discussed
in section 5) consists of two phases. The first phase is dedicated to search from the
candidate primitive polynomials to find the applicable primitive polynomial for
permutation and, with a small number of permutations, the set /i may be an empty set.
The generator resulting from this phase is the permuted LFSR/SR (the simple LFSR/SR
with permutation 7). In the second phase, the proper residues for permutation can be
found using the proposed residue assignment, discussed in [4, 6] and, with a small
number of permutations, the set f may be an empty set. The generator resulting from
this phase is the novel generator (convolved LFSR/SR with permutation). A combination
of changing the assigned residues with a small number of permutations may increase
the chance of obtaining a solution for the case where the convolved LFSR/SR cannot
get a solution with minimal test set lengths and minimal hardware overhead (i.e, reduce
the required number of XOR gates).

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 993

For simplicity, the algorithm divides the length of the generator into two parts. The first
part is the LFSR portion with size w and the second part is either a simple LFSR/SR with
size n - w (n-w =w) or shift register with size n - w (n-w < w). The residues of the second
part of the generator can be changed according to the residue assignment, discussed in
[4, 6] (refer to the convolved LFSR/SR in form A [4, 6] (Fig. 2)). This division is
practically adequate and the experimental results in section 6 will indicate that situation.

Feed forward stage
SR segment

L LFSR portion j li[[T

Fig. 2 Convolved LFSR/SR in form A [4, 6].

4. IDEA OF THE PERMUTATION

In this section, the idea of the permutation of one dependency set, whose assigned resi-
dues are linearly dependent, will be explained. The permutation approach of all depend-
ency sets, whose assigned residues are linearly dependent, will be explained in section
5.

It is known from condition 1, that all residues assigned to the dependency set must be
linearly independent. If the residues assigned to the dependency set are linearly
dependent, one or more residues will exist which are linear combinations of the each
other. The idea of the permutation will be demonstrated by an example.

Example 1: The (24, 6, 10) CUT with its dependency sets according to following table is
considered.

, 10, 13, 16, 22}

Do [{0,1.3.4,8.9.1

Dy [{0,2, 3,5, 8, 8,11, 14,17, 23}

D; 1{1,2,4,5,7,09, 12, 15, 18, 22}

D; 1{0,1,2 6, 7,10, 11, 12, 19, 23}

Ds |{3,4,5,86,7, 13, 14, 15, 20, 22}

Ds. | {8, 9, 10, 11, 12, 13, 14, 15, 21,
L 123 ,

This example consists of two phases. The first phase indicates the solution using the
applicable primitive polynomial for permutation. The second phase indicates the solution
using the proper residues for permutation for a specific primitive polynomial.

4.1. The first phase: The primitive polynomial with minimum terms, and | B |mi is
determined. This polynomial is 1+x%x"+x%x™, | g Imn equals 1 so the polynomial,
T4x*x"+x?+x™ is an applicable primitive polynomial for permutation. The dependency
set whose assigned residues are linearly dependent, b, is {0 126 7 10 11 12 19 23}, let
7,= {0, 1, 2,...., 23}. First, construct set b’ = {0, 1, 2} (b’ < b) and check if its assigned
residues are linearly independent or not. If the residues are linearly independent, add to
b’ the next element which is 6 in b (b= b’U{6}). The set b’is now {0, 1, 2, 6} (b’ cb). If

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 994

its assigned residues are linearly independent, add to b’ the next element. This process
is continued until the assigned residue for last added element to b’ causes linear
dependence with other assigned residues of elements in b’. The residue assigned to last
added element is the first residue that causes the linear dependence of b. In this
example, this residue is the residue assigned to /23 in b (input 23) which is Rzs. Now, it is
required to permute this residue with another residue, assigned to input p such that p
e m,and p ¢ b. The first choice is the residue assigned to Iz The residues assigned to

set b will be linearly independent but this permutation will generate linear dependence
for three other dependency sets of the output cones. This permutation is ignored. The
residue assigned to /27 is then considered but again the residues assigned to set b are
linearly dependent. The residue assigned to Iz is then considered, followed by /15 and
so on until the residue assigned to /13 is permuted by the residue assigned to I3 and all
residues assigned to all dependency sets of the output cones are linearly independent.
The new input assignment of the permuted LFSR/ SR, 7, is {0,1,2,3,4,5,6,7, 8,09,
10, 11, 12, 23, 14, 15, 16, 17, 18, 19, 20, 21, 22, 13}. In this case, three XOR gates are
required, and the required number of permutations is 1. The permuted LFSR/SR for that
CUT with its initial seed and new permutation of the CUT inputs, 7, is shown in Fig. 3.

10 11 12 13 14 15 16 17 18 19 20 2122 23

o J1l111lo oTi[ilalelal1]o]

7 % 9 10 11 12 23 1415 16 17 18 19 2021 22 13

Input o '1

o
w
p =N
wh
o

Fig. 3 Permuted LFSR/SR of phase 1.

4.2. The second phase: Set | f3 | to 1 and limit the number of terms of the primitive
polynomial to 3 so as to use one XOR gate in the LFSR stages. The number of primitive
polynomials of degree 10 with one XOR gates is 2 [4]. Unfortunately, | | of these

primitive polynomials are greater than one (greater than | g |min)- So, it is required to

divide the generator into two parts, the first part with length 10 which is LFSR portion
and the second part with length 14 which is a (14, 10) simple LFSR/SR (convolved
LFSR/SR with form A). The residues of the second part are changed to find which
equals 1 as in the search using pattern group A in [4, 6]. The solution in this case is the
primitive polynomial 1+x’+x'° and the residues of the generator are: 0-9, 40-53. The
residue assignment, 0-9, 40-53, is the proper residues for permutation. By permuting
residue 49 with residue 53, all dependency sets of the output cones satisfy condition 1
" (this permutation is carried out as in the first part). Rag, assigned to /g, is NnOwW assigned
to I»3 and Rs3, assigned to /23, is now assigned to /1. The number of required XOR gates
for this generator is 2 and the required number of permutations is 1. The generator with
its initial seed and permutation of the CUT inputs, 7, is shown in Fig. 4. The convolved
LFSR/SR designed using algorithm [4, 6] requires three XOR gates to test all output
cones exhaustively. The novel generator needs just two XOR gates.

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 995

Residue Residue ?
g 0 1.2 3 4 5 6 8 40 - 48 4950 5152 53
0]

ulololololololg(olﬁ o Lo a1 i o] 1o]olo] 1]

Input o 1 2 3 45 ¢ 7 3 9 Input 10 - 1823 202122 19

Fig. 4 Novel generator of phase 2.

5. THE PERMUTATION APPROACH AND THE ALGORITHM

Each phase in the novel generator design consists of other two phases. The first one
searches for either the applicable primitive polynomial for permutation or the proper res-
idues for permutation. The second is the permutation phase. In this section, the
permutation approach for all dependency sets whose assigned residues are linearly
dependent is presented.

All dependency sets whose assigned residues are linearly dependent are collected in
B . (The number of the sets in B is | Blmin.) The first dependency set in g is chosen,
referred to as set b, and the first assigned residue causing linear dependence in b is
determined. Let input s be the input whose assigned residue is the first residue in b
causing linear dependence. Let set b’ (b’ c b) be the set that covers the elements of b
from the first element to element s. Now, it is required to permute the residue assigned
to input s with the residue assigned to another input, P, such that p e z,and p ¢b. The
residues assigned to set b’, after permuting the residue assigned to input p, are checked
for linear independence. In the case that the residues assigned to set b’ are linearly
independent and the residues assigned to set b after the previous permutation are
linearly dependent, store p in buffer pp as the first permuted element in set b. The
search to find other permuted elements in b to make the residues assigned to b linearly
independent is repeated.

For example, if b = {0, 2, 3, 6, 7}, and 7,={0, 1, 2,...., 9} where these numbers are the
indices of the CUT inputs. Let the residues assigned to set b be linearly dependent, and
the first residue in b causing linear dependence be the residue assigned to input 6 (for
example). It is required to permute the residue assigned to input 6 (which is input s) with
another residue assigned to input p such that p myand p gb. If the residue assigned to
input 6 is permuted with the residue assigned to input 8 (which is input p) and the res-
idues assigned to set b’, which are {0, 2, 3, 8}, are linearly independent and the residues
assigned to set b, which is {0, 2, 3, 8, 7}, are still linearly dependent after permutation,
then store p, which is input 8, in buffer pp as the first permuted element in set b. The first
residue, causing linear dependence in b after the first permutation, is the residue
assigned to input 7 (for example) and it is required to permute it with another residue
assigned to input p such that P € mgand p ¢ b until the residues assigned to set b are

linearly independent. (Generally, input p is considered in the discussion as the permuted
element.)

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 996

in the case that the residues assigned to b are linearly independent, there are three

options:

(1) Where the number of linear dependence sets of the dependency sets of the
output cones is less than | B lmin- A NEW f S constructed with a low number of
dependency sets such that their assigned residues are linearly dependent and
update with the new.

(2) If | 8| =|Blmin and there are possibilities for other inputs to be permuted, then
ignore the last permutation in b and try the next possible input.

(3) If | B] =] B |min and there is no possibility for other inputs to be permuted, then
ignore all previous permutations applied to b and retrieve the stored input from
buffer pp (first permuted element in set b) and select the possible input next to
the stored input, let this input be p, such that p 7,and p &b.

| will state the steps of algorithm Novel_gen to design the novel generator.

Algorithm Novel_gen

Input: The dependency sets of output cones, w (=K), | B lmin» Q (number of
generated residues), and S (number of required solutions).
Output: Residue assignment for the CUT inputs, the initial seed value, 7, and
the required number of permutations.

1. Phase 1

1.1 Retrieve all primitive polynomials or the subset of all primitive polynomials of
degree w from a stored file and put them in queue L, set buffer pp to -1.

1.2 If L is not empty, then select the primitive polynomial, p(x), from L. If L is empty,
then go to phase 2.

1.3 Residues from R, through Ry.1 are generated, based on p(x) [4, 6].

1.4 Condition 1 is checked for all dependency sets of the output cones.

1.5 If condition 1 is satisfied for at least (m - | B min) dependency sets of the output
cones, then the corresponding primitive polynomial is an applicable primitive
polynomial for permutation and set /3 is constructed. If p(x) is not an applicable
primitive polynomial for permutation, go to step 1.2.

1.6 Take the first setin /3, referred to as b, and set buffer pp to -1.

1.7 Determine the first residue (assigned to input s} in b causing linear dependence.
Let set b’ be a subset of b containing all elements in b from the first element up
to input s. The residue assigned to input s is permuted with the residue assigned
to input p such that p € 7, and p ¢b.

1.8 If the residues assigned to b’ are linearly dependent, there are two options:

1.8.1 If buffer pp equals -1, try next possible input to be permuted. If there is no
possibility for other inputs to be permuted, then go to step 1.2.

1.8.2 If buffer pp does not equal -1, try next possible input to be permuted. If
there is no possibility for other inputs to be permuted, then ignore all
previous permutations applied to b and retrieve the stored input from buffer
pp (first permuted element in set b) and select the possible input next to the
stored input, let this input be p, such that p € m,and p ¢ b, construct b’, set

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 997

the buffer pp to -1 and go to step 1.8. If there is no possible input next to the
stored input as a permuted element, then go to step 1.2.

1.9 If the residues assigned to b’ are linearly independent and the residues assigned
to b are linearly dependent after the permutation, then store p in the buffer pp
when pis the first permuted element (input) in b then go to step 1.7.

1.10 If the residues assigned to b are linearly independent and the number of
linearly dependent sets of the dependency sets of the output cones is less than
[Bmin and do not equal zero, then construct the new g, update | B Imin with the
new j3, and go to step 1.6.

1.11 If the residues assigned to b are linearly independent, and the number of
linearly dependent sets of the dependency sets of the output cones is greater
than or equal to | £ |min and there are possibilities for other inputs to be permuted,
then ignore the last permutation in b, try next possible input, construct b’, and go
to step 1.8.

1.12 If the residues assigned to b are linearly independent, and the number of
linearly dependent sets of the dependency sets of the output cones is greater
than or equal to | B |min and there is no possibility for other inputs to be permuted,
then ignore all previous permutations applied to b and retrieve the stored input
from buffer pp (first permuted element in set b) and select the possible input next
to the stored input, let this input be p, such that p € =, and p ¢ b, construct b’, set

buffer pp to -1 and go to step 1.8. If there is no possible input next to the stored
input as a permuted element (or buffer pp equals -1), then go to step 1.2.

1.13. If § is an empty set, print the residue assignment for the inputs, z, and store
it as a solution and go to the subroutine that determines the initial seed of the
generator [4, 6].

1.14 If the number of solutions is less than S and there are other primitive
polynomials in L, select the next primitive polynomial in L and go to step 1.3. If
the number of solutions is equal to S, exit.

1.15 If L is empty and no applicable primitive polynomial for permutation exists, go
to phase 2.

2. Phase 2

2.1 Select a primitive polynomial with minimum terms from L, and generate all
required residues (residue 0 through Q - 1) [4, 6].

2.2 Using the residue assignment [4, 6], find the proper residues for permutation.

2.3 Construct set 3.

2.4 Repeat steps 1.6 through 1.13. (In step 1.8 and step 1.12 of phase 1, there is
possibility to branch to step 1.2 but this step in phase 2 will branch to 2.1 when L
is not empty) i

2.5 If the number of solutions equals S, exit.

2.6 If the complete set of the generated patterns [4, 6] is finished and L is not empty,
go to step 2.1.

2.7 If the complete set of the generated patterns [4, 6] is finished and L is empty,
exit. ;

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 998

6. EXPERIMENTAL RESULTS OF THE NOVEL GENERATOR

Using algorithm Novel_gen, novel generators were designed for all combinational
benchmark circuits in [1], after they had been segmented using the new algorithm pre-
sented in [5]. Table 1 presents the design of the novel generators for the segmented
benchmark circuits with a cone size reduction, /, of 16, 20, 24, and 28 inputs. (After
segmenting the circuit with the segmentation cells, the resulting k for the segmented
circuits may be less than /. The difference between / and k, obtained after segmenting, is
due to the nature of the circuit.) The first two columns provide the characteristics of the
segmented circuits. The exponent terms for the primitive polynomial, p(x), is given in the
third column. The residue assignment for the stages of the generator, the total number
of required XOR gates to realize the generator, and the run-time in seconds on a SUN
Sparc |l workstation are shown in the fourth and fifth column, respectively. The required
number of permutations is given in the sixth column. For example, for the segmented
432 circuit in the first row, the primitive polynomial, p(x), is 1433+ x +x%+x™®. Stages 0
through 62 have residues Ry through Rs, respectively. The total number of XOR gates
required to realize the generator is 3in < 1 second with 4 input permutations. Referring
to the corresponding design in [4, 6], the required number of XOR gates was 6in 2
seconds.

The number of permutations in the last column, referred to as num_per, is calculated as
follows. Let 7z, be {0,1,2,3,4,5, 6,78, 9),and = be {1,0,2, 3,4, 9,6,7, 8,5} Then,

ais{1,1,0,0,0, 1, 0, 0, 0, 1}. The elements in ¢ are either 0 or 1. If element i of =

equals element i of 7, then element i of @ = 0, if the elements are not equal then
element i of @ = 1. The number of the permutations in 7 equals the number of 1's in a
divided by 2 which equals 2 in this example.

From Table 1, note the following:

1. The test set lengths designed for all combinational benchmark circuits in Table 1 are
optimal (minimal) test set lengths (the degree of p(x), w, equals k) without requiring the
insertion of segmentation cells. From the results in [18], additional segmentation cells
are required to find an applicable primitive polynomial.

2. Comparing the number of XOR gates and the required run-time between the con-
volved LFSR/SR using COV_G in [4] and the novel generator in Table 1 indicates the
efficiency of the novel generator where the required hardware overhead and the run-
time are always less than that produced in [4]. In every case, there are several possible
solutions which increase the chance of obtaining a result with minimal hardware
overhead.

3. The number of required permutations of the CUT inputs is small compared to the
length of the generator, n.

4. The novel generator has found solutions in cases where the convolved LFSR/SRs
[4] could not find a solution in reasonable time. In 5315 and ¢7552, the algorithm in
[4] does not provide any solution when k = 16 for any primitive polynomial with degree
16 (the algorithm in [4] found a solution when w = 17) but the novel generator
succeeds with low hardware overhead. All results in Table 1 prove the efficiency of
the novel generator where a solution in all cases is achieved. Table 1 demonstrates

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 999

the potential of the novel generator approach, generating optimal (minimal) test set
lengths with low hardware overhead for the segmented combinational benchmark
circuits [5].

7. CONCLUSION

The novel pseudoexhaustive test pattern generator, that bridges the gap between the
convolved LFSR/SR and the permuted LFSR/SR, has been introduced and
demonstrated. An efficient heuristic approach has been introduced. It permutes the CUT
inputs after the proper residues for permutation become available. The changing
residues assigned to the CUT inputs followed by permutation gives the novel generator
a special character in that the convolved LFSR/SR and the permuted LFSR/SR are
special cases of the novel generator. The approach is successful because: (1) The test
set lengths designed for all combinational benchmark circuits in Table 1 are optimal
(minimal) test set lengths without requiring additional segmentation cells. (2) The
required hardware overhead and the run- time are always less than that produced by the
convolved LFSR/SR using COV_G. (3) The number of required permutations of the CUT
inputs is small compared to the length of the generator, n. (4) The novel generator has
found solutions for those cases where the convolved LFSR/SRs using COV_G could not
find a solution (as in ¢5315 and €7552, the algorithm COV_G does not provide any
solution when k = w = 16 (COV_G found a solution when w = 17)). Finally, the practical
results indicate that a generator with minimal test set length, minimal hardware
overhead, minimum routing overhead, and good performance can be obtained.

1000

IES-01

Proceeding of the 11-th ASAT Conference, 17-19 May 2005

-

e — —

. _— - o
I s ELA ETE ssi-0 287/ 1T | PLT-OLT 99T-OFT ETT-0 | IS OFT/+9 Sr-pOF €170 0LEFFL (7 ‘€€ ‘987 | |
| £ s 1/ € 197-0 298 1>/ €1 LOT-ESTOFT0 | 938 (91 /9 | 987-T€7907-0 | 076510C | |
| £ WS 1920 *235 [/01 L9T-6¥T THT0 235 $91 / 59 | 797-L0TS0T-0| O0L8SIOT | |
v WS E>IE | 197-0 IS T/EL 87 787197 8520 | 238 EIL 88T-SI1 (80 0¥ LSI eL |
1 ——— 192-0 28 7/91 PRT-097THT-0 | WS TILI/ 9 $9T-LOT E0T-0 | O0FPSSFLOT | |
(4 P>/ 192-0 298 [/91 $92-v97 092117 6070 225 9% /49 | 897-88 080| 01S60Z (o7 ‘or '790) |
s 23S 1K/ 9 | S97-LL S1-0 98 /P 99€-65€ LSE-OPE 8ET0 8 IS/ 26 | G9E-11E 01Z-LT §1-0 | 001 TESI 9T ,
6 E e $9T-0 S T/EL | FIE-90€ 687-TLT LET0 2595 /49 | T6E-PPESIT-0| 01 F99I 01973 |
3 >/ E | ¥97-0 | DS T/LL €87-6LT PLT-LST EVT-ETT 0TT-0 338 LY/ 46 | 8EP-06€ LIZT-BI S10 osbsor| (917w 's9D
| < — - ——— = s
$'6 s pe/E 8F- Ly LT°0 WS/ 6 79€ LYE-LEE LT°0 39S €/ ul THE-TEL 88 LT0 nEST (871107
g 235 1Z71/9 | 985 - 995 07 -0 | -aas gpiz/st | 682-087 LLT-OT 1T-0| 998 0TS /¥l 9Lp-99% T61-EBI 070 01IS1LT (17 '8 ‘1)
.- 59/ 9 | OFT - LOL 61-0 | "3 P66LE/ 6] £6p-760 TRP-TLY 011-001 61-0 | IS 6EY /4¥1 | 9LE-p9E LLT-LOT 61-0 | 0 1S0107|
| £, dsesIn/o) 1691 8991 61-0 998 €8S¥ /91 EPp-IpP 1Z6-71€ 6€-6T 610 235 001 /481 LETHTT LS8BP 6170 015607 i
| 9 38 Q0r /9 LEL-PIL 61-0 IS TLO91/0T| 916-G1E 10E-T67 ELZ-E9T 61-0 335906 / #LL | GrP-LEP SSE-SPE 610 0es90z| | |
, g7| wsgrel/T 0§57 - LOST 61 -0 I35 TE8S /4Gl | LSP-6YP OSE-OTE 61-0 "SI/ 481 LSP-6¥P OEE-9IE 61-0 010t (0T LT°¥0) | W
§5| 9I8SE9T/9 | 0L99 - L£99 ST-0| ‘IS GERL/ 46 612-707 111-96 510 238 €71/ o6 | 617-70T 111-96510 0S9 1191 ” |
59 998 S6T 19 £00-0LS SI-0| S IER/46] PET-6LT POI-GPT LI-0 | IS FIT/+6 opZ-1€7 LYIOLISI-0 DTEITOT | g0613 |
¥y 225 801/ 9 1pS - 80§ SL-0| SOTEL/IL SLE-FOE 1PE-9TE 8170 235 £65 / 46 £9p-9FP SET-0TTSI0 | 0EPSIT (91°2T'08) | |
€| 286/7 ST -9pl LL-0 23 8T/ b1 81p-01% BEE-80E LT0 095 [>/ 4T | T8E-EPE LT0 4 0E8T (87 “rT '89) |
5§ | s[>/ 9 69-ST €1°0 8L/ LL| PE1-0E1 89767 £T°0 ‘338 9€ 1 46 £8-65 8Y-67 €0, OTERFT (7 ‘87 °69)
| s W p /T €21-1L 91-0 398 1/ 01 907-L61 TL1-68 ST0 "398 ThE [#E Z0Z-081 07116 910 | 09l i
| L] s L/T 901 - ¥5 91-0 S L6 POI-981 £T1-06 970 | 8 S6E/ € OEZ-PIT [T198 910 | 05 Ll
| 9, 2956/ 1 6¥1-L6 91°0 | S E/0L | LOF-L6E IST-LIT €70 "398 695 / #€ TET-PIZ EFT-0TT 910 0€LL |
| &% Q1219 p6-Tr 91-0| ST 801-001 9L-1§ FE0 98T-89Z OLLEOI0 | 0TESILL (L1 '8 00 |
I PS>/ € oL-0| 133956/ 01 | 027607 6905 BED | 102-6L1 FS-ETS1-0 | 0% E1SI 01|
| €] 298 1>/9 18-LT SI-0 -2as 1/ 11| 6 76-0L 910 | oPZ-917 540 | 001 TLSI 91 |
Q = 298 T1>/9 001 -9 S1-0 298 7/91 | POP-E6 9L-1S 160 | "I 6LL/ 46 548 9L-9% ST0 | 0LF991 . ey
Qa8 g/ 9 -79 §1- 238 LT81 - -L¥ 6€-L1 §1-0 238 £87 SST-SEE 78°6¥ §1°0 £rS 91821
v Li9) 911-29 51-0 LT8L/ Ll .l-.w.wvm ¥ 6£-L1 ST IRT e ,wﬂlmmmm\mv‘m‘ ?Ic rsol . W:‘,‘l
L 235 €616 /9 $1LT1- 68921 12-0 “ uns sKEp 0M) JAYE SHMEIT OV 228 6SE1 /49 $5778-0€278 120 | 06 TSI LT
| SE 7 WS L/E 8t -0 = unJ sAEP 0MJ 1T NS O | 235 919 / «L1 1827-9T 161-581 170 i o1z (27 ‘6L "8
| € 8149 ¥s-07 €1-0 | 28T/ 46 9R-TL 6E-ET 910 | 2801/ 46 9i-L5 e8I ET0 0TEEIPL| B
| 4 38T/ BS-¥T €1-0 s 1/T1 96°L8 1#-9T TT0 2871/ 46 L01-16 ZE€1 €10 | OTLILPT ssel
z 238 /9 061 98T €1 -0 2857/ 11 0ST-6E1 £8-69 170 | 235 1T/ 26 p81-69[9E-B1 €10 O F LIET ¥T vl
i T 08 1/9 LL-€¥ €1-0 87/l 0618 6955 €20 | 3591/ 26 19-9¢ 0977 €10 | OEBGFI (r1 ‘0 ‘6¥)
| s s T/ T IL-€5 120 238 1/ 01 96£-08€ 670 | 281>/ a8 | S6I-LLL LT°0 0€8T | (87 ‘81 °LP)
z NWS1/9 $eT-807 €2-0| S 1>/1T1 I§1-§€1 £€°0 P8 /49 BeTHITSTO. 0 1EPIT| (p7'72"19)
1 298 1> /€ ¥5-0 PS>/ 99-68 9¥-0 298 1>/ 49 | 19-L2610 0L6LI0T|
z| 28 L>/9 Ss-1T 61-0 s /11| LZE-011 9€-0 25 1>/ 49 86749 61°0 | 015602
9| 28 1/T SB1-IST 61-0 S /L 8ST-EPT LE0 RIS Y4 9€7-917 ££°0 00z
| v a5 [>/9 | 194 61-0 238 [>/ LE 8 §S°€T 070 D 46 | 6EI-OTT 1E-1T 610 O0EV 6107 (07 ‘97 ‘s8)
v S 1>/€ 790 WS> 701 1L-0L 89708 190 | 95 € [49 $8-25 620 0¥ 15101 ,
z E R TR 790 s>/ 70 0L-19 §§-0F 950 | 38§ [a9 | 9L1-88 €6-0 001 TLSI 9T |
2 25 1> /€ 90| S I>/H1| 99-€9 19-FF 00 | 35y /49 1649 €0 01F99L %m0
I v 1>/ 90 s >/ FL] 0L-69 L9-8F 0F-0 D382/ 49 | 8649 L0 0EPSIL (91 ‘61°¢9) |
=t - e e Pea [- T == B
Jad | owy | JUAMUSISSD awyy/ . 2wy JUAMUBISSD cod | () |2 ,
lwnu JHOX | anpisay Nox | JuauuSissv anp1say /90X | anpisay , k, A m 1 i
| g o . . } S| o

DdlL D 400 ,

$1INJI1 fm&nu:un pojuaw3as 10§

0J 10712028 [9A0U 3} JO SYNSAY [dqEL

1001

IES-01

Proceeding of the 11-th ASAT Conference, 17-19 May 2005

¥sz-0| WS/ SI 08Z-657 0¥Z-11Z Z0Z-0 D [>/49 €SE-LTT LT0 01568z (87 ‘8¢ ‘s50)
097-0 W8P/ IT SLI-¥IT 097-1Z2 PIT-H81 LLI-0 I8/ 49 66£-€91 £7-0 orzTLYE 2 ‘ve ‘190
£LT-0 298 6/ 17 €8E-LLE IPE-TIE I8T-PIT 681-691 LIT-0 I [9/ 49 0811-L86 6L-0 01907 85509
roE -0 M T TAT SIE-BIE S1E-56T 097-C17 60Z-081 ZLI-0 | 235 €867/ 40 T08TI-60971 640 (07 s¥*pL0) |
S =975 LZ-0 N57/6 IPP-8TP L7-0 8T/9 9601-8LOT LT-0 0EST (82 ‘8°Lp)
PEL-#6 €2-0! 29mgz/g1 69L-TSLBII-96 €T-0 | "398 861/ 401 TPOT-6191 T11-96 £2-0 OrErpz| (v7 ‘57 '59)
€21 - LS 61 - .: 8L/ 91 ISETHE 0EE-96T EST-EET61-0| 998 [I11/ o 9P6-L16 SOL-699 61-0 0Es90z | (07 ,2.:: 88795
_ LIL-0 ‘ 338 19781 | 865085 845095 6¥S-1ES 99b-Lib CEF-9T 77-0 8 0LL/ v6 905LEP IVT0IZSI-0| 0960191 (o1'9g ‘g11) _
£61-0| 9sgzg/g BIP-10¥ LOZ-SLI TP1-0 295 801 / 49 86¥-8¥F T¥1-0 01p9s (87 ‘89 ‘p61)
38 LLL/9 YOT-ST €2-0| *dMgpr/ 61 6EE-PIE 681-E9T 091-0 ‘338 EEP [46 SPT-T81 IP1-9Z £2-0 0TS8PT vz ‘6L *p07)
89S /9 9IT-2Z 61 -0 WS L1/ 81 S62°6LT 9ST-YET OLT-0SI LPI-0 | "398 71901/ ,0 SSSTI-88YTI OPI-0 | O E¥ 6107
S PEYT / 9 1T2-L7 61-0| 398957/ 61 LLE OLE B9T-8VT S1T-661 [L1-0 | S §E7/ / o6 8TE-00€ 89Z-£01 61-0 0TsS607
238 L80T1 /9 | . 8ST-Lr SI-0 98 €9/ 77 8SE-LSE 00C-18T SET-TIT 69T-8PI 9P1-0 | 395 6656 / ng % L6¥-¥2P 782-951 61-0 0€£5907 (0z ‘o ‘s17)
spl M ELTI/T €9E0IELT0| 3asgo1/71 PYEL-GIET 99L6EL LT-0 | 398 96E61 / .Ll ¥BST-9S5T 109-LLS L70 | 0£8z (87 ‘1€ ‘79)
184 9895/ 9 66-0F €20 398 1/81 951-8E1 £C1-601 901-78 $7-0 9L/ 46 O8I-SET 901-€8 £7-0 OLEPFT (¥Z ‘0% ‘pg)
§'6 WL/ € 901-0 38 g/ g1 9TT1TT TIT-161 L11-98 1L-8Y 77-0 386/ 49 PE6£-B06E 610 | 0 € 6107 (07 ‘os “zo1)
59| BT 248 28 5/61 _ S6I-T61 TEI-901 €01-I8 LL-8T €70 W8 TI8/ u6 6IE-EPT OLITSISI0| 019ZI91 opsEd
u‘ s/ Lz 238 118/ 61 PIV-TIP TEC-OLE TUI-9L 99-CF 1497 $7-0 8 P6 [46 I8P-E9¥ LIT-921 m_.i 0L6TIII (91 ‘19 ‘821

orcsLe Lz 1€ ‘vs2)

L k I GSIL /9 x S8T-67 97-0 * 938 7L/ 91 BPE-6IE THT-PIT POT-0 1 S 0EB/ u6 Y8T-0vT 012-62 97-0

Proceeding of the 11-th ASAT Conference, 17-19 May 2005 IES-01 1002

REFERENCES

[1] F. Brglez and H. Fujiwara, “A neutral netlist on ten combinational benchmark circuits
and a target translator in FORTRAN," International Symposium on circuits and
systems, June, 1985.

[2] E. J. McCluskey and S. Bozorgui-Nesbat. “Design for autonomous test,” I[EEE
transaction on computers vol. C-30, pp. 866-875, Nov. 1981.

[3] E. J. McCluskey, “Werification testing-A pseudoexhaustive test technique,” IEEE
transaction on computers vol. C-33, pp. 541-546, June 1984.

[4] Mohamed H. El-Mahlawy, Pseudo-Exhaustive Built-in Self-Test for Boundary Scan,
Ph.D. thesis, Kent University, U.K., 2000.

[5] Mohamed H. El-Mahlawy, Winston Waller, “A New Segmentation Approach for
Pseudoexhaustive Testing of Combinational Circuits.” 4™ International Conference in
Electrical Engineering, Military Technical College, Egypt, Nov. 2004.

[6] Mohamed H. El-Mahlawy, Winston Waller, “An efficient algorithm to design con-
volved LFSR/SR." [EEE 17th National Radio Science Conference, Minufiya, Egypt,
pp. C23 (1-10), Feb. 2000.

[7) Zeev Barzilai, Jacob Savir, George Markowsky, and Merlin G. Smith, “The weighted
syndrome sums approach to VLS| testing,” IEEE Transactions on Computers, VOL.
C-30, NO. 12, Dec. 1981.

[8] D. T. Tang and L. S. Woo, “Exhaustive test pattern generation with constant weight
vectors,” IEEE transaction on computers vol. C-32, pp. 1145-1150, Dec. 1983.

[9] L. -T. Wang and E. J. McCluskey, “Condensed linear feedfack shift register (LFSR)
testing - A pseudoexhaustive test technique,” |IEEE transaction on computers vol. C-
35, pp. 367-370, Apr. 1986.

[10] L. -T. Wang and E. J. McCluskey, “Circuits for pseudoexhaustive test pattern
generation,” IEEE transaction on computer-aided design vol. 7, pp. 1068- 1080 Oct.
1988.

[11] S. B. Akers, “On the use of linear sums in exhaustive testing,” Digest of papers,
15th Annual International on Fault Tolerant Computing Symposium, pp. 148-153,
1985.

[12] N. Vasanthavada, P. N. Marinos, “An operationally efficient scheme for exhaustive
test-pattern generation using linear codes,” Proc. International Test Conference, pp.
476-482, Nov. 1985.

[13] Zeev Barzilai, Don Coppersmith, and Arnold L. Rosenberg, “Exhaustive generation
of bit patterns with applications to VLS| self-testing,” |EEE Transactions on
Computers, VOL. C-32, NO. 2, Feb. 1983.

[14] Srinivasan, R., S. K. Gupta, and M. A. Breuer, “Novel test pattern generators for
pseudoexhaustive testing,” Proc. International Test Conference, pp. 1041-1050,
1993.

[15] W. Wesley Petrson, E. J. Weldon., “Error-correcting codes,” second edition, 1972.

[16] Paul H. Bardell, Willian H. McAnney, Jacob Savir, “Built-In test for VLS
pseudorandom techniques,” John Wiley and Sons, 1987.

[17] Mohamed H. El-Mahlawy, Winston Waller, “A New Segmentation Approach for
Pseudoexhaustive Testing of Combinational Circuits.” To be appeared in the 4"
International Conference of the Electrical Engineering, Military Technical College,
Egypt, pp. 251-265, Nov. 2004.

[18] Dimitrios Kagaris and Spyros Tragoudas, “Cost-effective LFSR synthesis for
optimal pseudoexhaustive BIST test sets,” IEEE transactions on very large scale
integration systems, Vol. 1, NO. 4, pp. 526-536, Dec. 1993.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

