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Abstract 
 

In this study, we aim to estimate parameters of nonlinear model by using 

ordinary least square. This paper used a real data about Egypt cover the 

period from 2000 to 2017. The data set on exchange rate, inflation, 

exports, imports, investments, and budget deficit. The appropriate 

models of the data are cubic and Johnson Schumacher Model. The 

results of application data appear that the Johnson Schumacher 

nonlinear regression model is outstanding performance. 

  

Keywords: Nonlinear Regression, Cubic Model, Johnson Schumacher 

Model, Nonlinear Least Square, Maximum Likelihood. 

 

1. Introduction: 

The model of nonlinear regression is a method of finding the 

relationship between the dependent variable and independent 

variables. Unlike traditional model of linear regression, which 

restricted to estimating linear models. Nonlinear regression can be 

estimated with arbitrary relationships between independent and 

dependent variables. This is accomplished using iterative algorithms 

of estimation. This approach is not necessary for simple polynomial 

model of the form𝒚 = 𝑨 + 𝑩𝑿𝟐. By defining 𝑾 = 𝑿𝟐, we get a simple 

linear model, 𝒀 = 𝑨 + 𝑩𝑾 which can be estimated using traditional 

methods like the Linear Regression approach. Many models that 

appear nonlinear at first can be transform to a linear model, which 

can be analyzed using the model of linear regression approach.  

In function forms in regression, an equation is linear in the variables 

if plotting the function of 𝑿 any 𝒀 generates straight line: 

𝒀 =  𝜷𝟎 + 𝜷𝟏 𝑿 + 𝒖  Linear in variable 

𝒀 =  𝜷𝟎 + 𝜷𝟏𝑿𝟐 + 𝒖   Linear in coefficients 

𝒀 =  𝜷𝟎 + 𝜷𝟏𝑿𝜷𝟏 + 𝒖   Not linear in coefficients 

OLS method is restricted to models that are linear in the parameters 

𝒀 =  𝜷𝟎 + 𝜷𝟏𝑿𝟐 + 𝒖 Can be estimated by OLS 

𝒀 =  𝜷𝟎 + 𝜷𝟏𝑿𝜷𝟏 + 𝒖 Can not be estimated by OLS models that are 

nonlinear in parameters can estimate using nonlinear least squares. 

An iterative procedure which searches for the parameter value(s) 

which minimize the residual sum squares (RSS) of the model. 

This paper is organized as follows: Literature review is given in 

Section (2). Methodology is given in Section (3). The empirical study 

is introduced in Section (4). A Conclusion and Remark are given in 
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Section (5). 

 

2. Literature Review 
Bijan Payandehl (1983) presented several nonlinear models with 

forestry application. Motulsky, M.J et al (2006) described method for 

identifying outliers when fitting data with model of nonlinear 

regression. Chen (2010) investigated the performance for model of 

nonlinear and nonparametric regression with real data set simulated 

under a model of nonlinear. Xiao et al (2011) demonstrated that the 

error distribution determined which method performed better, with 

nonlinear regression better characterizing data with additive, 

comparison of multiple linear and nonlinear regression, 

autoregressive integrated moving average, artificial neural network, 

and wavelet artificial neural network methods. Adamowski et al 

(2012) indicated that coupled wavelet neural network models were a 

potentially promising method of urban water demand forecasting.  

  Kaneko and Funatsu (2013) proposed predictive performance 

criteria for models of nonlinear regression without cross validation. 

Tang and Zhao (2013) proposed empirical likelihood methods to 

estimate unknown regression parameters in β and the response mean 

θ in model of nonlinear regression with missing responses. S.V. 

Archontoulis et al (2014) indicated that the choice of the main 

function was critical distinguished nonlinear models from linear 

models had difficult without guidance. Limaa et al (2015) tested 

extreme learning machine for nonlinear regression and presented 

four nonlinear prediction methods. Excluding large datasets, 

extreme learning machine tends to be the fastest among the nonlinear 

models and the major result was that no single method was best for 

all the datasets.   Huang et al (2016) introduced the large desperation 

for the estimation of least squares in nonlinear model of regression. 

Soner and Hasan (2016) introduced develop the reliable alternative 

approach of parameter estimation based on the particle swarm 

optimization algorithm in nonlinear regression model. Khan et al 

(2017) presented high breakdown and efficient estimation procedure 

for model of nonlinear regression used michaelis-menten model and 

gompertz model. Mahaboob et al. (2017) indicated that generally 

optimal estimators for the parameters of nonlinear model. Tian and 

Hao (2018) indicated that the combined method can sufficiently 

incorporate the advantages of individual models. However, the 

applying of linear combination is limited so the possibility of 

nonlinear terms ignored. Waki (2018) proposed a branch and bound 

https://www.researchgate.net/profile/Sv-Archontoulis?_sg%5B0%5D=_USkejjPz7Vjtt2iHxM7lDUdTszWhgBl6Z9vZbGTIb4pd3ELMPCBVgRVzlPV7sRe-MTK4ms.LMVYr2lOu5YDUw-oDk1O0BEWuayH-953TdW65qF63UWkCSewil5fu5I7m5B98sX3z3_FaCqJI5i8PxqQT34Nzw&_sg%5B1%5D=W_nxgI8qyLcQJwRCTRxgVTn7TNADNr00Fyz16nWyxOAyh0A84Cgyo251zoYCYRvrhOF7jsg.WgoeNKwkmXcHoUL7Zt5XnhOPKXQPAIU5V3sOuGWZKZofCXSBVM1KXOobhopcxpVjC0nuUNot6Yf-FC6DBUrUfw
https://www.researchgate.net/profile/Sv-Archontoulis?_sg%5B0%5D=_USkejjPz7Vjtt2iHxM7lDUdTszWhgBl6Z9vZbGTIb4pd3ELMPCBVgRVzlPV7sRe-MTK4ms.LMVYr2lOu5YDUw-oDk1O0BEWuayH-953TdW65qF63UWkCSewil5fu5I7m5B98sX3z3_FaCqJI5i8PxqQT34Nzw&_sg%5B1%5D=W_nxgI8qyLcQJwRCTRxgVTn7TNADNr00Fyz16nWyxOAyh0A84Cgyo251zoYCYRvrhOF7jsg.WgoeNKwkmXcHoUL7Zt5XnhOPKXQPAIU5V3sOuGWZKZofCXSBVM1KXOobhopcxpVjC0nuUNot6Yf-FC6DBUrUfw
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search algorithm for a mixed integer nonlinear programming 

formulation of the Akaike's information criterion minimization,  

David et al. (2019) estimated generalized least square method for 

estimating the parameters of the nonlinear split plot design models. 

This study introduces nonlinear models and focus on two nonlinear 

regression models; cubic and Johnson Schumacher. We aim to 

estimate parameters of the nonlinear models applying on exchange 

rate and comparing between the nonlinear models to select the 

appropriate models for the real data set.  

 

3. Methodology 

 

3.1 Johnson Schumacher Model: 
We use the Johnson Schumacher model introduced by Johnson 

(1935) and Schumacher (1939). The model of parameters 

estimated from the observed data. The parameters in the fitted 

equations are used to assess the importance in the variables. In 

this study, we focus on the following Johnson Schumacher model; 

𝒚 = 𝜷𝟎𝒆𝒙𝒑(−𝜷𝟏(𝒙 + 𝜷𝟐)) + 𝜺,   (1) 

Where parameters are; both  𝜷𝟎 , 𝜷𝟏, 𝒂𝒏𝒅  𝜷𝟐   > 𝟎,  y is the 

dependent variable and x is independent variable, which is a 

special case of regression model; 

𝒚 = 𝒈(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑|𝜷) +  𝜺,      (2) 

 

3.2 Estimation Methods: 
In this section, we can introduce methods of estimation 

parameters. Non Linear Least squares and Maximum Likelihood 

are proposed. 

 

3.2.1 Nonlinear Least Squares Estimators: 
The development of the least of squares estimations for the 

nonlinear model gives about complications not encountered in 

the linear model. This is simply illustrated in the case of the 

exponential regression model of Equation (3): 

 

𝒚 = 𝜶 𝒆𝜷𝒙 +  𝜺                                            (3) 

Given a set of data (𝒚𝒊, 𝒙𝒊) for 𝒊 = 𝟏, 𝟐, … , 𝒏, the estimate of 

𝜶 and 𝜷 find using minimizing 

 

𝑺𝑺𝑹𝒆𝒔 = ∑ (𝒚𝒊 − 𝜶𝒆𝜷𝒙𝒊)
𝟐𝒏

𝒊=𝟏                   (4) 



 2022  أكتوبر   –   الرابع العدد    – (  23المجلد )   – مجلة البحوث المالية والتجارية  
 

 
364 

 
 

 

We differentiate the result of Equation (4) with respect to 

𝜶 and 𝜷 and equal set of each derivative to zero. These yield 

the following equations: 

∑ (𝒚𝒊 − 𝜶̂𝒆𝜷̂𝒙𝒊)𝒏
𝒊=𝟏 (−𝒆𝜷̂𝒙𝒊) = 𝟎             (5) 

 

∑ (𝒚𝒊 − 𝜶̂𝒆𝜷̂𝒙𝒊)𝒏
𝒊=𝟏 (−𝜶̂𝒆𝜷̂𝒙𝒊 .  𝒙𝒊) = 𝟎     (6) 

Equation (5) and (6) are nonlinear in the parameter estimators  

𝜶̂ , 𝜷̂. Thus we cannot compute estimates by elementary matrix 

algebra. Some type of iterative process must be used.  

Properties of the least squares estimators. Consider as a 

general formulation, the model  

𝒚𝒊 = 𝒇(𝒙𝒊, 𝜽) + 𝜺𝒊 ,             𝒊 = 𝟏, 𝟐, … , 𝒏        (7)  

Where 𝜽 is a vector containing 𝒑 parameters and  𝒏 > 𝒑. We 

assume further, of course, that 𝒇  is nonlinear in 𝜽́ =

[𝜽𝟏, 𝜽𝟐, … , 𝜽𝒑]. Suppose we call the vector 𝜽̂ the estimator of 𝜽 

that minimizes  

𝑺𝑺𝑹𝒆𝒔 = ∑ [𝒚𝒊 − 𝒇(𝒙𝒊, 𝜽̂)]
𝟐𝒏

𝒊=𝟏              (8) 

Suppose we also make the assumptions that of the 𝜺𝒊  are 

independent and normal with mean zero and variance𝝈𝟐. We 

know 𝜽̂  is a maximum likelihood estimator of 𝜽 . However, 

under these circumstances, one cannot make any general 

statements about the properties of the estimators expect for 

large samples. In other words, the properties are asymptotic 

properties. The unbiasedness and minimum variance 

properties are only approached as the sample size grows large.    

As a result, for a specific nonlinear model and a specific sample 

size, nothing can be stated regarding the properties of the 

estimators. There are asymptotic variance-covariance results 

that we can be used to obtain approximate confidence intervals 

and to construct t-statistics on the parameters. 

The method most often used in software computing algorithms 

for finding the least squares estimator 𝜽̂ in a nonlinear model 

is the Gauss-Newton procedure (see; Bard (1974), and Bates 

and Watts (1988)). 

We shall denote these estimates by the vector 𝜽̂𝟎 =

(𝜽𝟏,𝟎, 𝜽𝟐,𝟎, … , 𝜽𝒑,𝟎). In the attempt to find the value of 𝜽 that 

minimizes the residual sum of squares in Equation (8), we first 
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expand the nonlinear function in Equation (7) in a Taylor 

series around 𝜽 =  𝜽𝟎 and retain only linear terms. Thus 

𝒇(𝒙𝒊, 𝜽) ≅ 𝒇(𝒙𝒊, 𝜽𝟎) + (𝜽𝟏 − 𝜽𝟏,𝟎) [
𝝏𝒇(𝒙𝒊,𝜽)

𝝏𝜽𝟏
]

𝜽=𝜽𝟎

+ (𝜽𝟐 −

𝜽𝟐,𝟎) [
𝝏𝒇(𝒙𝒊,𝜽)

𝝏𝜽𝟐
]

𝜽=𝜽𝟎

+ ⋯ + (𝜽𝒑 − 𝜽𝒑,𝟎) [
𝝏𝒇(𝒙𝒊,𝜽)

𝝏𝜽𝒑
]

𝜽=𝜽𝟎

       𝒊 =

𝟏, 𝟐, … , 𝒏                (9) 

Equation (9) introduces what is essentially a linearization of 

the nonlinear form 𝒇(𝒙𝒊, 𝜽)  in (7). The reader may view 

Equation (9) as a linear approximation in a neighborhood of 

the starting values. 

 

3.2.2 Maximum Likelihood Estimators: 
We note that if Jacobian have 𝜽  than least squares not 

maximum likelihood. 

The normal equations of Maximum Likelihood are: 

𝝏 𝐥𝐧 𝑳

𝝏 𝑩
=

𝟏

𝝈𝟐
∑ 𝝐𝒊

𝒏

𝒊=𝟏

𝝏𝒉 (𝒙𝒊, 𝑩)

𝝏𝑩
= 𝟎 

𝝏 𝐥𝐧 𝑳

𝝏𝜽
= ∑

𝟏

𝑱𝒊
(

𝝏𝑱𝒊

𝝏𝜽
) − (

𝟏

𝝈𝟐
)

𝒏

𝒊=𝟏

∑ 𝝐𝒊

𝒏

𝒊=𝟏

𝝏𝒈 (𝒚𝒊, 𝑩)

𝝏𝜽
 

𝝏 𝐥𝐧 𝑳

𝝏𝝈𝟐
=

−𝒏

𝟐𝝈𝟐
+

𝟏

𝟐𝝈𝟒
∑ 𝝐𝒊

𝟐

𝒏

𝒊=𝟏

= 𝟎 

For solving these equations, we use Newton Raphson method. 

The log likelihood function is 

𝐥𝐧 𝑳 =  
− 𝒏

𝟐
 𝐥𝐧 𝟐𝝅 − 

𝒏

𝟐
 𝐥𝐧 𝝈𝟐

+ ∑ 𝐥𝐧 𝑱(𝒚𝒊, 𝜽) −
∑ [𝒈(𝒚𝒊, 𝜽) − 𝒉(𝒙𝒊, 𝑩)]𝒏

𝒊=𝟏

𝟐𝝈𝟐

𝒏

𝒊=𝟏

𝟐

 

 

We note that if Jacobian have 𝜽  than least squares is not 

maximum likelihoode. 

The normal equations of maximum likelihood are 

𝝏𝒍𝒏𝑳

𝝏𝑩
=

𝟏

𝝈𝟐
∑ 𝝐𝒊

𝒏

𝒊=𝟏

𝝏𝒉(𝒙𝒊, 𝑩)

𝝏𝑩
= 𝟎            

The nonlinear Least Squares Estimator and Maximum 

likelihood estimation method is consistent, efficient (see; 
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William H. Greene (2003)).  

 

4. The Empirical Study 

4.1 Data of Study 
We are use data about Egypt economics cover the period from 

2000 to 2017  

source of data is 

https://www.ceicdata.com/en/indicator/egypt/exchange-rate-

against-usd . The variables of the study are: Exchange Rate; 

Inflation; Exports; Imports; Investments; Budget Deficit.  

 

4.2 Study the Relationship Between the Variables  
We start with plot between the dependent variable (Y: 

exchange rate) and the independent variables are (X1: 

inflation), (X2: exports), (X3: imports), (X4: investments),  

(X5: budget deficit). The resulting scatterplot shows that: 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ceicdata.com/en/indicator/egypt/exchange-rate-against-usd
https://www.ceicdata.com/en/indicator/egypt/exchange-rate-against-usd
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Figure 1:  Normal Probability and Residuals Plots for all Dependent Variables and Exchange Rate
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Figure 2:  Curve Estimation for all Dependent Variables and Exchange Rate  
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In the next part several models used and proposed for the data 

are presented, and the coefficient of determination R2 was 

calculated for each model as showed in table (1) 

 

4.3 Estimation Parameters of Nonlinear Models  
From the Figure (1), (2) and Table (1), we find that the variable 

(X1: inflation) is the most important for analysis and estimation of 

the dependent variable (Y: exchange rate) but the relation 

between X1 and Y is nonlinear so that we will use transformation 

like inverse for both of them. The next table presents the summary 

of the model between the inverse of Y as a dependent variable 

(Y_n2) and the inverse of variable X1 as an independent variable 

(X1_n2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of models for each variables2   Table (1): R 

R2 of models X 1 2X  3X  4X  5X  

Linear  .293  .003  .011  .000  .000 

Logarithmic 0.398 0.069 0.113 . . 

Inverse 0.392 0.213 0.237 0.112 0.112 

Quadratic 0.450 0.190 0.341 0.049 0.049 

Cubic 0.453 0.396 0.492 0.061 0.061 

Compound 0.314 0.011 0.003 0.021 0.002 

Power 0.437 0.008 0.027 . . 

S 0.444 0.094 0.116 . 0.051 

Growth 0.314 0.011 0.003 0.021 0.002 

Exponential 0.314 0.011 0.003 0.021 0.002 

Logistic 0.314 0.011 0.003 0.021 0.002 
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Table (2): Summary of  the Model and Parameters Estimation 

Dependent Variable:y_n2 

 

Equatio

n 

Summary of  the Model Parameters Estimation 

R 

Squar

e 

F df

1 

df

2 

Sig

. 

Const

ant 

b1 b2 b3 

Linear .480 34.1

62 

1 37 .00

0 

.078 38.71

9 

  

Logarit

hmic 

.462 31.7

64 

1 37 .00

0 

18.877 6.099   

Inverse .324 17.7

64 

1 37 .00

0 

11.181 -.541-   

Quadrat

ic 

.506 18.4

67 

2 36 .00

0 

-

2.394- 

74.57

0 

-

81.06

6- 

 

Cubic .534 13.3

58 

3 35 .00

0 

1.874 -

18.10

3- 

428.4

68 

-

7.470

E2 

Compou

nd 

.444 29.5

55 

1 37 .00

0 

1.163 1.045

E3 

  

Power .437 28.7

17 

1 37 .00

0 

34.944 1.107   

S .314 16.9

31 

1 37 .00

0 

2.169 -.099-   

Growth .444 29.5

55 

1 37 .00

0 

.151 6.951   

Expone

ntial 

.444 29.5

55 

1 37 .00

0 

1.163 6.951   

Logistic .444 29.5

55 

1 37 .00

0 

.860 .001   

The independent variable is 

x1_n2. 

      

 

From the Table (2), we result that the relation between X1, Y still 

nonlinear and cubic form. For linear the R square is enhancing from 

0.29 to 0.48 and cubic the R square is enhancing from 0.45 to 0.53. 

The Johnson Schumacher nonlinear regression model is used for 

obtaining the outstanding model for estimating of exchange rate. 

Johnson Schumacher Model: 



 2022  أكتوبر   –  الرابع العدد    – ( 23المجلد )   – مجلة البحوث المالية والتجارية 

371 
 

𝒀 =  𝒃𝟏 ∗ 𝒆𝒙𝒑 (
−𝒃𝟐

(𝒙 + 𝒃𝟑)⁄ ) 

 

Table (3):Parameters Estimation of Johnson Schumacher 

Model 

Parame

ters 

Estimat

e 

Standard 

Error 

95% of Confidence Interval 

L. Bound U. Bound 

b1 .477 .006 .464 .489 

b2 -.398- .018 -.435- -.362- 

b3 -.998- .004 -1.005- -.991- 

 

From the Table (3), we result that all Johnson Schumacher 

model's parameters are significant. The estimated Johnson 

Schumacher model is: 

𝒀 = 𝟎. 𝟒𝟕𝟕 ∗ 𝒆𝒙𝒑 (𝟎. 𝟑𝟗𝟖
(𝒙 − 𝟎. 𝟗𝟗𝟖)⁄ ) 

The value of R2 is 0.994 means that the model accounts about 

99.4% of variability in dependent variable. The result shows that 

the Johnson Schumacher model is significant. R2 = 1 - (Sum 

Squares of Error) / (Corrected Sum Squares) = 0.994. 

 

5. Conclusion and Remark: 
This study presents the following variables: (X1: inflation), (X2: 

exports), (X3: imports), (X4: investments), (X5: budget deficit). 

These represent the main variables that affect (Y: exchange rate). 

The study introduced nonlinear models and focus on two 

nonlinear regression models; cubic and Johnson Schumacher 

nonlinear model. The Johnson Schumacher nonlinear model 

shows outstanding performance.   
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