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1. Introduction 

The DGOS is a classical method to study the properties of random variables (RVs) that are arranged 

from highest to lowest. Ref. [1] have given the joint distribution of n DGOS as  
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where ( )( )1j k n j m = + − +  and ( )iF z is cumulative distribution function (cdf) of ith RV. Ref. [6] 

have further shown that the marginal distribution of a single DGOS and joint distribution of two DGOS 

are provided as  

 ( )
( )

( ) ( ) ( )
1 11

: , ,
1 !

r rr
r n m k m

C
f z f z F z g F z

r

− −−=       −


,                  (2) 

and 
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )  ( ) 

11
, : , , 1 2 1 2 1 1

11

2 1 2

,
1 ! 1 !

,
s

m rs
r s n m k m

s r

m m

C
f z z f z f z F z g F z

r s r

F z h F z h F z

−−

− −−

=       − − −

  −    


              (3) 

where 1

1

r

r j

j

C −

=

=  



43 

 

Computational Journal of Mathematical and Statistical Sciences                 Volume 1, Issue 1, 42–50 

and ( ) ( )
( )

1
11

1 ; 1; 1
; 11

ln ; 1.ln ; 1.

m
m

m m

z
z mm

h z g z mm

z mz m

+
+ 

−  − − 
= = + +
 − = −= − 

 

Numerous models of RVs that are arranged in decreasing order statistics (OS) appear as a sub-

model of DGOS. For example, the decreasing OS looks to be a particular example of DGOS when 0m =  

and 1k = , [2] The lower record values (REVs), proposed by [3] and [4], emerge as a sub-model for 

1m = − . 

The studies on DGOS mostly are focused on obtaining some methodologies for recursive 

computation of moments for specific choices of distributions in (2) and (3). Studies are also conducted 

to obtain some characterizations of distributions based upon the moments of DGOS. Ref. [5] provided 

some identities for recursive computation of moments of DGOS. The relations for moments of DGOS 

for parent Inverse Weibull model have been discussed in [6]. The recurrence relations (RRs) for 

moments of DGOS for exponentiated Weibull model have been investigated by [7] whereas the 

relations for moments of power function model was investigated by [8]. Topp-Leone Weibull generated 

family of distributions with applications was found in [19]. The RRs for moments of DGOS for a 

inverted Kumaraswamy model was found in [9]. The RRs for moments of ordered variables in 

transmuted (T) models have received little attention. The RRs for moments of OS in a TEx model were 

recently discovered by [10]. In [11], the RRs for moments of generalized OS for a TEx model were 

also found. Detailed information on RRs and distribution characterization employing DGOS and lower 

REVsmay be explored in [12-13]. 

The RRs for moments of DGOS for a T model have yet to be investigated, and we got the RRs for 

moments of DGOS for a TEx model in this study. For single, inverse, product, and ratio moments, the 

relationships have been derived. These relations can be utilized to determine exceptional situations' 

comparable relations. The study also discusses several characterizations of the TEx model utilizing 

DGOS single and product moments. Below is a basic overview of the TEx model. 

2. Transmuted Exponential Model 

In reliability and life testing, the exponential (Ex) model is a prominent probability model. The 

exponential distribution's probability density function (pdf) and cdf are provided via 

 ( ) ( ); e 1 e ; , 0z zf z and F z z− −= = −     . 

The Ex model has been widely researched, and numerous modifications have been presented in the 

literature. Ref. [14] discussed the TEx model through using quadratic transmutation approach 

established by [15]. The pdf and cdf of the TEx model are provided via 

 ( ) ( )e 1 2 1 e ; , 0, 1 1z zf z z− − = + − −  −  
 

                  (4) 

and 

 ( ) ( )( ) ( )
2

1 1 e 1 e ; , 0, 1 1z zF z z− −= + − − −  −       .                      (5) 

Ref. [16] provide more information on T distributions. Ref. [10] demonstrated a relationship 

between the pdf and cdf of the TEx model as 
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Ref. [11] utilized the formula (6) to find the RRs for generalized OS moments for a TEx model. 

We reported the RRs for moments of DGOS for the TEx model in this study. To do this, we slightly 

alter formula (6) to have the equivalent description: 
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The RRs for moments of DGOS for TEx model will be obtained utilizing the formula (7). The 

sections that follow describe these connections and characterizations. 

 

3. Relation for Single Moments 

We shall establish the RRs for single moments of DGOS for a TEx model in this section. The 

theory Primarily proves these RRs. 

 

Theorem 1: The single moments of DGOS for TEx model are provided via 
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Proof: The single DGOS moments are connected as follows; see, for illustration, [17] and [13]. 
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where ( ): , , : , ,
p p
r n m k r n m kE Z=  and : , ,

p
r n m kZ  is rth DGOS. Using (7) in (9) we have 
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Again utilizing (9), and simplifying, we get 
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which is (8) and hence the theorem. 

The relations for single moments of DGOS for Ex model can indeed be computed from (8) by 

utilizing 0.= Some corollaries which immediately follows from Theorem 1 are given below. 

 

Corollary 1: The relation for single moments of lower REVs for TEx model are computed by utilizing 

m = –1 in (8) and is  
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       (10) 

The relations for single moments of lower REVs for Ex model can indeed be readily computed 

from (10) by utilizing 0 = . 

 

Corollary 2: Utilizing m = 0 and k = 1 in (8), the relation for single moments of reversed OS for TEx 

model is  
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      (11) 

The relations for single moments of reversed OS for Ex model are readily computed from (11) by 

utilizing 𝜆 = 0. 
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4. Relation for Product Moments 

The relation for product moments of DGOS for a TEx model is found in this section. The theory 

Primarily proves the RRs. 

 

Theorem 2: The product moments of DGOS for TEx model are provided via 
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Proof: The product moments of DGOS are connected as follows; see, for illustration, [17] and [13]. 
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where ( ),
, : , , : , , : , ,
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Again utilizing (13), and re–arranging, we get 
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which is (12) and hence the theorem. 

The RRs for product moments of DGOS for Ex model can indeed be readily investigated from (12) 

by utilizing 𝜆 = 0. 

Some corollaries which immediately follow from Theorem 2 are given below. 

 

Corollary 3: Utilizing m = –1 in (12), the relation for product moments of lower REVs for TEx model 

is computed as 
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The relations for product moments of lower REVs for Ex model can indeed be readily computed 

from (13) by utilizing 𝜆 = 0. 

 

Corollary 4: Utilizing m = 0 and k = 1 in the formula (12), the relation for product moments of 

reversed OS for TEx model is computed as  
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The relations for product moments of reversed OS for Ex model can indeed be easily computed from 

(14) by utilizing 0 = . 

 

5. Characterizations 

In this part, we shall characterize the TEx model through utilizing single and product moments of 

DGOS. The accompanying theorems provide these characterizations. 

 

Theorem 3: The moments of a RV Z are connected as follows, which is both a necessary and 

sufficient requirement for it to have pdf and cdf (4) and (5), respectively. 
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Proof: The required condition is easily derived from Theorem 1. Assume (7) and (9) for the adequate 

condition, and therefore 
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Utilizing Müntz–Száz theorem; see [18]; to previous formula we get 
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where is (7) and this relationship exists among pdf and cdf of a TEx model, therefore the theorem. 

Theorem 4: A necessary and sufficient requirement for a RV Z to have pdf and cdf (4) and (5), 

accordingly, is that the product moments of its DGOS are connected as 
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Proof: The required component follows shortly after Theorem 2. We think (13) to be adequate. 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1, , 11
, : , , , 1: , , 1 2 1 1

11

1 1 2 2 2 1

1 ! 1 !

.
s

z mp q p q p qs
r s n m k r s n m k

s

s rr

m m m

qC
z z f z F z

r s r

g F z h z h z F z dz dz


−−

−
− −

− −−

− = −   − − −

 −          

 



 
  

Utilizing previous formula with (7) we get 
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Utilizing Müntz–Száz theorem; see [18]; to previous formula we get 
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where is (7) and this relationship exists among pdf and cdf of a TEx model, therefore the theorem. 

6.  Concluding Remarks 

In this study, we found the RRs for single and product moments of DGOS for a TEx model, and 

the relations for specific situations. These relations are useful to recursively compute the higher order 

moments from the lower order moments. Some characterizations of the transmuted are also given for 

a TEx model on the basis of single and product moments of DGOS. 
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