Protective effect of Corn silk (*Zea mays L.*) on kidney and liver functions of rats

Mai MM Naeem

Special Food and Nutrition Department, Food Technology Research Institute, Agriculture Research Center, Giza, Egypt

Corresponding author: Correspondence to Mai M. M. Naeem Assistant professor at Food Technology Research Institute, Agriculture Research Center, Giza, Egypt. Email:<u>mima.mmm81@gmail.com;</u> <u>mima_mmm81@yahoo.com https://orcid.org/0000-0002-6922-1958</u>

ABSTRACT

orn silk has traditionally been seen as a waste material, but in numerous areas around the world, it is used as a traditional medicine. The main *objective of this study was to study the effects of corn silk (Zea mays L.)* powder, ethanolic extract, and corn silk tea on protecting rats from kidney failure and liver injury and their action on pathogenic bacteria. Corn silk ethanolic extract had the highest total phenolic content and total flavonoid content. Seventeen kinds of phenolic were detected; Ferulic acid has the highest amount of phenolic content. The corn silk extracts showed excellent phytochemical and antioxidant activity. Additionally, they have strong antimicrobial properties. The biological experiment was carried out on thirty male rats weighing $(200 \pm 5 \text{ g})$ for six weeks and divided into five groups, one of which was a negative control (Basel diet) 2, 3, 4, and 5 groups were given gentamicin by injection to induce liver and kidney toxicity, (group2) was a Positive control and the 3, 4and5 groups were treated with different corn silk treatments. The result demonstrated that corn silk and its extract enhanced antioxidant enzymes using superoxide dismutase (SOD), and Total Antioxidant Capacity (TAC), Lipid peroxidation was evaluated as Malondialdehyde (MDA), liver functions, kidney functions, and histopathology of the kidneys when compared with the positive group. Finally, this study found that corn silk has antimicrobial activity against pathogenic microorganisms as well as renoprotective and hepatoprotective effects against gentamycin-induced hepato-nephrotoxicity.

Keywords: *corn silk - antimicrobial – gentamycin – kidney function- liver function.*

INTRODUCTION

Corn silk has long been regarded as a waste product, yet it is increasing in popularity in Asia and Africa. Corn silk extract, often regarded as a product, has waste been demonstrated to have therapeutic value in the treatment of diabetes, hyperlipidemia. cancer. cardiovascular disease. microbiological infections, as well as other chronic and age-related diseases. As a result, cornsilk could be beneficial to human health (Sanusi et al., 2020). Corn silk is made from the stigmas of female corn petals. Corn silk threads are silky, 10-20 cm long, pale green or yellowbrown in color, and have no known toxicity (El-Seedy et al., 2022)

After corn harvesting, the isolated and identified chemicals from corn silk were thrown as waste, including phenolic compounds, sterols, flavonoids, alkaloids, polysaccharides. organic acids, volatile oils, trace elements, and multivitamins. Additionally, it wastes resources and destroys the environment. (Shuangqi Tian et al., 2021).

Corn Silk is a beneficial herb that promotes and is helpful to health, contains minerals such magnesium. as calcium. sodium and magnesium salts, potassium, and many bioactive substances (flavonoids, vitamins, phenolic compounds, alkaloids. steroids. carbohvdrates. and proteins) (Ayesha et al., 2022).

The corn silk material is highly useful for usage as a natural source of polyphenols, which are used to create goods with added value, functionnality, and nutraceuticals. Corn silk has a high level of nutritious bioactive complike polyphenols, ounds flavonoids, and ascorbate, as antioxidant well as high activity. (Jyoti Singh et al., **2022).** A popular traditional Chinese medication in China is corn silk, which is used to treat kidney-related diseases such as cystitis, gout, rheumatism. rheumatoid arthritis. edema. and antimicrobial effects (Amreen et al., 2012; Chen et al., 2013). Corn silk has significant antioxidant activeities in vitro and in vivo. indicating it could be used in both food and medicine as an antioxidant (Liang Zhang et al., 2021).

aminoglycoside An antibiotic called gentamicin is used to treat gram-negative bacterial infections. Fitri et al., (2022) According to the study, ethanolic extract from corn silk has a bioactive source such as tannins, steroids, terpenoids, flavo-noids. and phenolic compounds like vanillic acid, ferulic acid. anthocyanins, quercetin, p-coumaric acid that inhibits the growth of bacteria such as Р. acnes. S. epidermidis, and S. aureus. It can cause acute renal damage in 10% to 30% of patients (Sepehri et al., 2011). The use of gentamicin (GM) is among the leading causes of nephrotoxicity which is used to develop Acute Kidney Injury (AKI) (Babaeenezhad et al., **2021**). Gentamicin has reduced clinical benefits due to its side effects. The gentamicin side effects include liver damage and the highest level of nephrotoxicity which are the caused by increasing production of reactive oxygen after the use of gentamicin in cells; causing toxic effects on

tissue structure and function. (Medic, 2019).

The goals of this study were to examine the effects of corn silk extract on pathogenic microorganisms as well as various biochemical indicators in rat models of gentamicininduced liver and kidney damage.

MATERIAL AND METHODS Materials

Plant: Corn silk (CS) was obtained from corn fields in a small town near Giza, Egypt.

Chemicals: According to the manufacturer's instructions, kits were acquired from the Biodiagnostic Company (Dokki, Giza, Egypt) to measure the biochemical parameters.

Gentamicin(GM)wasobtained from a pharmacy thatwasmanufacturedbyAlexandriaCompanyforPharmaceuticalIndustries,Alexandria, Egypt.

Animals:TheNationalResearchCenter's(NRC)Animal House provided a totalof 30 adultmaleWistarrats,eachweighing200±5g.

Tested microorganisms:ThebacterialstrainsusedPseduomonesaeruginosa

ATCC 27853. EColi ATCC25922. *Staphylococcus* aureus ATCC 25923. and Salmonella typhimurium, ATCC 20231. Mold: Aspergillus flavous Link, and Aspergillus niger, were isolated from various rotting sources (fruits. grains. vegetables) (Rizk et al., 2009), Yeast: Candida albicans CAIM -22 was obtained from MIRCEN.

Methods

Preparation of plant extracts

Corn silk was purified by washing it with tap water to remove impurities. It was then air-dried, powdered, and kept in polyethylene bags in a refrigerator 4°C at for subsequent procedures. In this experiment used corn silk powder, ethanolic extract, and aqueous extract. A study on Corn silk tea extract was performed by Sahib et al., (2012). The maceration method was used to create the ethanol extract of CS. After steeping 10 g of the plant powder in 100 ml of ethanol for three days, the mixture was filtered through muslin cloth, (Whatman No. 1) filter paper, and then concentrated in a rotary evaporator. The crude extract

was weighted **Emmanuel** *et al.*, (2016). It is used for the determination of total phenolic content, total flavonoids, (2,2diphenyl-1-picrylhydrazyl) free radical scavenging action (DPPH) activity, antimicrobial activity, and biological experiments.

Analyses of the corn silk chemical composition

The **AOAC** (2018) procedures were used to determine the levels of moisture, protein, fat, crude fibers, and ash. Total carbohydrates were calculated by difference: 100 - (weight in grams [moisture +protein + fat + + ash + fiber].

Assessment of Minerals in cornsilk

Determination of zinc (Zn), manganese (Mn), iron (Fe), Copper (Cu), magnesium (Mg), Sodium (Na), Potassium (k), and calcium (Ca) determined using a PyeUnicum SP1900 Atomic Absorption Spectroscopy instrument (Perkin Elmer model 4100ZL) were carried out as described by **AOAO**, (2018).

Assessment of Total phenolic content (TPC), Total flavonoid content (TFC), and antioxidants by DPPH.

Nithiyanantham *et al.*, (2012) used the Folin-Ciocalteu technique to determine the Total phenolic contents of CS powder. CS tea (water extract). and CS ethanolic extract. The (Aluminum chloride) AlCl₃ technique was used to measure the total flavonoid content as previously reported by Liao et al., (2011). (2,2-Diphenyl-1-**Picryly-brazil**) the DPPH radical scavenging assay was carried out by Wang et al., (2007).

Assessment of phenolic compound and Fractionation of Vitamins A, E, and C by High-Performance Liquid *Chromatography* (HPLC). Determination of phenolic compound according to **Zhang** et al., (2020) using 4.6 x150 mm and 5 µm chromatographic columns at 30 °C with a controlled flow rate of 0.8 mL \min^{-1} and adjusted wavelengths of 360 nm on an HPLC system (Agilent 1260, Agilent, USA). The analysis was performed by HPLC for vitamins and equipped with a variable wavelength detector 330 (vitamin A) at nm. (vitamin E) at 295 nm (Plozza al., 2012) et but the

fractionation and identification of ascorbic acid (Vitamin C) at 226 nm by (**Romeu-Nadal** *et al.*, 2006).

Assessment of the antimicrobial activity by Well diffusion

The antimicrobial activity was detected in dry corn silk in (80%) and ethanol water extracts. For bacteria used nutrient agar media and potato dextrose agar for fungi and veast. 0.1 ml of the inoculums of each tested organism was transplanted into the plates. Using a loop, the inoculums distributed were uniformly throughout the plates. А standard cork borer was used to cut uniform wells on the surface of the NA and PDA plates. CS extracts were added to the well in concentrations of 200 and 400 (mg/ml). The plates were incubated for 24 hours at 37°C for bacteria, 28-30 °C for fungi and yeast then measured the inhibition zone to the nearest (mm) (Olaleye, 2007).

Animals and Experimental Design

Before starting the experiment, the animals were given water and the Basal laboratory diet for 7 days to adapt. The basal diet was prepared according to the recommended dietary allowances for rats adjusted by Reeves et al., (1993). Thirty male rats were used in the study, weighing 200 ± 5 g for 6 weeks. Five groups of experimental rats were used. 6 rats in each, and then divided into the following subgroups in Table (1).

The body weight gain was recorded. The following formula was used to estimate **Body weight gain percentage** (**BWG %):** (Final weight (g) initial weight (g)/ initial weight (g)) x100.

At the end of the experiment, the rats fasted for 12 hr; blood samples were collected into tubes without plain anticoagulant and allowed to clot. Blood samples were centrifuged at 3000 rpm for 10 min at 4°C, to obtain clear serum that was frozen at -18°C until analyses. Both kidneys were removed; the first was 18 °C preserved at for additional research into the antioxidant activities of the kidneys, such as Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx). For histology, the other was preserved in 10% formalin.

Assessment of biochemical analysis:

By measuring the formation of malondialdehyde (MDA), lipid peroxidation was evaluated as explained by **Ohkawa** *et al.*, (1979), (SOD) activity was detected using the technique of **Nishikimi** *et al.*, (1972), and (TAC) according to **Cao** *et al.*, (1993). (GPx) described by **Ellman** (1959).

Serum creatinine was determined at 495 nm as given by Fossati et al., (1980). nitrogen Serum urea was 550 measured at nm by Fawcett and Soctt. (1960). According to Carawy, (1955) Uric acid was detected. The determination of liver tissue when livers were instantly soaked in 50 to 100 ml of icecold normal saline solution total lipids Folch et al., (1957), triglycerides, Fossati and Prencipe (1982), Cholesterol Richmond, (1973) and glycolgen according to Rerup and Lundquist, (1967). According to Tietz, (1976) was used to determine the serum Alanine amino transferees (ALT). The

determination of aspartate amino transferees (AST) was described by **Henry**, (1974); **Young et al.**, (1975). Alkaline phosphatase (ALP) concentration was measured using the technique of **Kind and King (1954).**

Assessment of Histopathology

animals The were slaughtered after being sedated with ether and dissected immediately to remove the kidney. Organs are immersed in paraffin and fixed in 10% formaldehyde. Hematoxylin and eosin (H and E) were used to stain sections of 5 mm thickness, which were then under inspected а light microscope for pathological alterations in accordance with the rules of Hirsch et al., (1997).

Statistical analysis

All data obtained from the study had been submitted for statistical analysis by SPSS computer soft war by analyzing divergence ANOVA and the related test LSD using SPSS ver. 11 according to Abo-Allam, (2003).

RESULT AND DISCUSSION

In Table (2) the analysis of the chemical composition of CS

was estimated and recorded as Moisture 4.33 ± 0.0717 the low moisture content extends its shelf life and makes it simple to Protein is13.0±1.0031, use. lipids are1.13±0.0815, crude fiber is 21.01 ± 1.0210 , ash is 6.43±0.0512 and carbohydrates are 54.11±0.6341% in dry corn silk, carbohydrates have the highest percentage content compared with other nutrients. Minerals content such as minor elements (Zn 2.066 ± 0.0577 µg/g, Mn, 1.65±0.0371 Fe 1.93 0.04567 μg/g Cu + and 45.6±0.1346 $\mu g/g$. Macro elements Ca 877.30±0.3340 μg/g, Mg 711.00±1.0112 μg/g, Na 216.44 \pm 0.1210 µg/g and K 30262±1.0208 μg/g. Abdul Rahman and **Rosli** (2013) reported that the CS rich in minerals such as Ca 1087.08 \pm 105.51 μg/g, Mg1219.17 \pm 143.07 µg/g, K 26281.67 ± 1379.7 μ g/g, and Na 190.67 \pm μg/g. The proximate 22.61 composition of corn silk powder was determined previously by (El Kewawy, 2018) who found that fiber, ash, fat, Protein, and carbohydrates contents were 20.1. 6.13. 1.91. 13.57 and 51.35%, respectively in dry weight corn silk. The moisture content was 7.04%, which also illustrated some mineral content in corn silk (CS). The values of zinc (Zn), iron (Fe), copper (Cu), magnesium (Mg), and calcium (Ca) were 2.77 ($\mu g/g$), 1.96, 1.86, 47.3, 0.65, and 8.16 respectively (mg/100)g) Nuntaporn Aukkanit et al.. (2015) found that carbohydrate, protein, crude fiber, moisture, ash, and fat contents were 51.37, 17.94, 16.11, 9.06, 4.60, and 0.91g/100g, respectively. K and Na contents of mature corn silk were 35671.67, and 266.67 1 g/g, respectively.

The findings in Table (3) detected total phenols and flavonoids. which act as antioxidants in (CS) ethanol extract. (CS) tea (water extract), and (CS) powder $119.01 \pm 0.500, 105.66 \pm 0.571$ and 80.40 \pm 0.100 mg GAE /g (GAE gallic acid equivalents), respectively. The total flavonoids in CS ethanol extract, CS tea (water extract), and corn silk powder were 86.3±0.1012. 68.300±0.1035 and57.266±0.1153 mg RE/g respectively (RE rutin equivalents). The antioxidant activity observed in corn silk ethanol extract. corn silk tea (water extract), and corn silk powder was determined by DPPH Radical-Scavenging activity to be 85.301±0.1210. 82.511 ± 0.1440 and $77.300 \pm$ 0.1023 %. respectively. According studies. to the ethanol extract of corn silk has higher concentrations of flavonoids and phenolic compounds. These data were in agreement with (El Kewawv, 2018) the total phenolic and total flavonoid contents in CS varied from 80.8 to 117.1 mg GAE/g and 30.1 to 88.8 mg RE/g respectively. Xizhu et al., 2021 and Sarepoua et al., **2013** showed that the quantity of phenol and flavonoid in corn silk changes to different growth conditions. different or techniques extraction used. Seventeen kinds of phenolic content in CS extract was detected at 360 nm by HPLC, and the results are shown in Table (4) the largest amount of phenolic content in corn silk is ferulic acid 6118.98 $\mu g/g$ followed bv Gallic acid 4410.23 µg/g , Ellagic 3524.31 $\mu g/g$, Quercetin 3217.03 $\mu g/g$, *p*- Coumaric acid 2776.21 µg/g and Chlorogenic 1010.32 µg/g while the Benzoic acid 28.67

µg/g and Syringic acid 64.73 $\mu g/g$ had the lowest amounts detected. Xiaodan Hu et al., (2022) detected eight kinds of phenolic components by HPLC of which ferulic acid was the main component and Gallic acid. The main phenolics in sweet corn were gallic acid. chlorogenic acid. p-coumaric acid, and ferulic acid, and quercetin was only detected in corn silk compared with other parts of corn. Fahmy (2020) indicated that corn silk contained mild amounts of myricetin acid, benzoic acid, Salicylic acid, Neringein, and Kampherol, respectively. Corn silk also contains vitamins such as vitamin E (0.334 ± 0.0577) mg /100g), Vitamin Α (278±0.038 I U), and (Vitamin C) 11.01± 0. 0652 mg /100g, according to the findings. (El Kewawy, 2018) reported that the Vitamin C (9.72 mg/100g), vitamin E (0.215 mg/100g) and vitamin A (266 I U equal to 7.98 mg/100g).

Investigating antimicrobial effects against four types of bacteria, two fungi and one yeast by good diffusion are shown in **Table (5)** *Pseudomonas aeruginosa* and Staphylococcus aureus pathocausing the gens most opportunistic infections commonly associated with respiratory diseases, urinary tract infections. and gastrointestinal infections. Escherichia coli has been identified among the array of causative agents responsible for acute diarrhea and other tract infections urinary (Akoachere et al ., 2015; Darwish et al., 2010). According to the data, the extract has reasonable effects pathogenic against grampositive and gram-negative bacteria, fungi, and yeast. So, the plant extract has the ability to be used as a treatment for diseases caused bv these organisms. The zone inhibition ranged between 22 and 13 mm in the ethanol extract, but 20 to 11 mm in the water extract. The largest inhibition zones were found in both the ethanol for and water extracts Staphylococcus aureus 22 mm, and 20 mm, respectively. The inhibition lowest zones detected in Candida albicans were 13 mm in ethanol, and 11mm in the water extract.

The current result is similar to **Emmanuel** *et al.*,

showed (2016)who antimicrobial activity toward Staphylococcus aureus, Pseudomonas aeruginosa, Klebsciella pneumonia. Escherichia coli, and Salmonella thypi and most effective the against Staphylococcus aureus. Al-Sorchee et al., (2016) indicate the antibacterial activity of ethanol and water extracts of Zea mays L was investigated on E. coli and Staph. albus, Stap. capitis, Staph epidermidi, Staph. aureus, Pseudo luteola, Pseudo. Aeruginosa, P. mirabilis, Morganella. Morganii, K. Pneumonia, K Micrococcus. and oxytoca, Citrobacter freundii, there is more antibacterial activity in alcoholic extracts than in aqueous extracts. Shuangqi Tian et al., (2021) reported that antimicrobial activities of different solvent extracts of CS can protect the human body different from disease conditions happened bv pathogenic organisms due to the presence of Phytochemical compounds. Corn silk extract exhibits antibacterial efficacy different pathogens against including E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus so

it has reasonable action against both gram-positive and gramnegative bacteria due to great phytochemical and antioxidant activity (**Rajeshwari and Sivapriya, 2021**).

According to Table (6), the positive control group had a significantly reduce body weight gain than the other treatments and the negative control group. The groups of corn silk tea. corn silk ethanol extract, and corn silk powder had significant increases in BWG 5.29, 9.3, and 5.67% respectively, but the positive group had а significantly higher increase in BWG 1.102 These findings %. are consistent with those of El-Seedy et al., (2022), who found that body weight gain was significantly reduced in the positive control group in comparison to rats fed corn silk and the negative control group, significant which had a increase in BWG%. Also, Ho et al., (2017) reported that the rats with kidney stones disease diets using corn silk at different levels increased body weight gain compared with a positive control group. Kim et al., (2012)showed that oral

administration of Corn Silk produced significantly increased body weight gain and feed intake.

SOD, MDA, TAC, and GPX activities were used to the antioxidant measure activity in vivo. Table (7) shows a significant increase in MDA levels but a significant decrease in TAC, SOD, and GPx when compared to the negative control, as well as a significant reduction in MDA when compared to the positive control. Moreover, the best value of SOD, MDA, TAC, and GPx showed in Corn silk extract then corn silk tea, and corn silk powder as the last one. The results were due to the nutritional compositions and the antioxidant ability of the corn silk (CS). Hu and Deng, (2011) described that corn silk significantly raises levels of antioxidant enzymes such as (SOD) Superoxide Dismutase and (CAT) Catalase Activity, volatile oxygen-containing chemicals, and the free radical scavenging ability of corn silk extracts that contain some polyphenols and flavonoids. Maksimovic et al., (2005); El-Ghorab al.. (2007)et

evaluated the effect of the antioxidant and free-radical scavenger maize silk on the oxidative injury and renal injury caused by Gentamycin. SOD is thought to be a key line defense against the potentially cytotoxic O₂ free radicals that induce oxidative stress Mallikariuna et al.. (2008). The results agree with Fahmy, (2020) who reported that antioxidant enzymes (SOD and CAT) were significantly improved in all examined groups that were fed on the experimental diets containing different levels of corn silk 5%. 7.5%, and 10% when compared with the positive control group (injection of CCL₄). However, serum MDA decreased significantly in the tested groups which were treated with 5%, 7.5%, and 10% cornsilk in comparison with the positive control group.

Table (8) displays therat's serum levels of urea,creatinine, and uric acid aftergentamicin injection indicatingsignificantly increased (P <</td>0.05) urea, creatinine, and uricacid levels in the positivecontrol group. The parametersof kidney function were

significantly decreased after feeding on corn silk powder, corn silk extract and Corn silk tea, both corn silk extract and corn silk tea had significantly lower (P < 0.05) levels when compared to the positive control. Urea nitrogen and creatinine levels were measured renal to assess toxicity with the increase in creatinine in the positive control group due to impaired kidney function caused by the toxicity. Corn silk contains diuretic compounds that aid in the reduction of inflammation issues. and renal When compared to the positive control rats those treated with corn silk had significantly lower blood creatinine and urea levels Nessa et al., (2021). Significant renal damage was caused by gentamicin 80 mg/kg BW for 7 days, as seen by the increase in BUN levels. decreased hypocellularity of glomeruli, modestly enlarged tubules, modest brush border loss, severe infiltration, the substantial tubular cast present is tubular and there degeneration (Aldahmash et al., 2016). Xizhu Wang et al., (2021) studied that the corn silk

polysaccharide reduces renal injury and promotes uric acid excretion. When some dangerous compounds that damage the kidney cells are inhaled, consumed, or injected, it results in nephrotoxicity, which is characterized by a change in the functional composition of the kidneys. Up to 500 mg/kg of corn, silk is used to treat nephrotoxicity (Orr and Bridges 2017). A rat model was used to test the nephrotoxicity of a methanolic extract of corn silk, corn silk methanol extract has been shown to lower urea (35.15 \pm (0.38) and creatinine (0.38) ± 0.45) levels Wans et al., (2021).

According to **Ayesha** *et al.*, (2022), corn silk extracts significantly reduced serum urea and serum creatinine levels. The current study demonstrates the therapeutic potential of Corn in rat models of ARI caused by Gentamicin.

In Table (9) triglyceride and glycogen levels in the liver were found to be considerably lower, while the cholesterol and total lipid contents were significantly higher in the positive control group than in the negative control. The best extract for ameliorating liver biomarkers was corn silk extract followed by Corn silk tea and corn silk powder. The liver glycogen, cholesterol. total lipids, and triglyceride levels in the corn silk ethanol extract were comparable to the negative control group. El Kewawy, (2018) found that when compared to the positive control, the corn silk-treated rats showed a considerable improvement in the lipids of the liver, including glycogen, cholesterol, total lipid, and triglycerides. Tuty and muchlisyam, (2018) showed in this study the traditional treatment use of kidney stones and the diuretic properties of corn silk stew. By allowing with calcium to react carbonate, oxalate, phosphate, or uric to produce watersoluble potassium oxalate. potassium carbonate, potassium phosphate, or potassium urate molecules, potassium's high content can remove calcium salt from kidney stones

The Effect of Corn Silk Tea (Water Extract), Corn Silk Ethanol Extract, and Corn Silk Powder as Treatment Protection of Liver Enzymes (ALT, AST, and ALP) on Gentamycin-Injected Rats are shown in Table (10). However, the rats treated with water silk ethanol extract. corn extract, and corn silk powder demonstrated a significant decrease in serum AST. ALT. and ALP enzyme 95.33 ± 0.510 . 209.13 ± 0.428 and $318.400 \pm$ 0.1100 (μ /l) respectively as compared to the positive control group. The corn silk ethanol extract recorded the best results in ALT. AST. and ALP enzymes. Nader et al., (2018); Fanoush et al., (2018) reported that corn silk contains flavonoids. which have an antioxidant capacity which that protects hepatic tissues from damage, corn silk has a great effect on the improvement of liver function. El-Seedy et al., (2022) studied that corn silk improved serum glucose levels, liver functions, and kidney functions in rats these improvements were increased with the corn silk concentration increase. Arba et al., (2020) reported that corn silk has a great hepatoprotective effect due to its phytochemical which contents act as

antioxidant agents. Only 0.36g of fats was present in the corn silk, consequently, it can be utilized to treat hepatic disorders (Bhuvaneshwari et al., 2017). The improvement of liver and kidney parameters recommended by the consumption silk of corn extract whether aqueous or alcoholic with vitamin D may be attributed to the corn silk contents of antioxidant agents such as phenolic compounds, vitamins, and minerals (El Kewawy, 2018). Arba et al., (2020) reported that corn silk had a hepatoprotective effect in male Wistar rats. which decreased the level of Alkaline Phosphatase (ALP) to 18.74% and increased the level of liver Glutathione (GSH) to 7.210%. Gohari and Mahdy, (2018) study the effects of different concentrations of Arabic Gum (AG) and corn silk (CS) extracts against kidney and liver toxicity induced by a gentamicin dose 80 mg/kg for 8 days induce nephrotoxicity, which biochemically demonstrated a significant rise in blood urea. uric acid, and serum creatinine but liver Total Bilirubin enzymes,

increased and total protein reduced. All extracts improved kidney function and liver enzymes in comparison with the control (+) group.

Microscopically, the histological structure of renal tissue in the kidneys of the negative group of rats was examined (Pho. 1), revealing a renal cortex with tubules (T) and glomeruli (G), as well as normal renal glomeruli and tubules. However, in the positive control, vacuolization of the epithelium lining renal tubules was observed in the kidneys of rats (Pho. 2). Parenchymal damage, tubule degeneration, cell necrosis. dilated blood vessels, and hemorrhage were all seen after gentamycin induction. Acute tubular necrosis is one of the signs of GM-induced renal damage. Meanwhile, in the treatment group, there was marked parenchymal damage and tubules with degeneration and cell necrosis, but kidney damage was lower than in the positive controls. The Corn Silk Tea (water extract) (Pho. 3), the Corn Silk Ethanol Extract (Pho. 4), and the Corn Silk Powder (Pho. 5) showed

improvement in the an histological morphology of the renal parenchyma, reduced the number of necrotic cells, and reduced areas of bleeding and inflammation. Sepehri et al., (2011) reported that rats treated with corn silk showed indications of tube regeneration and protection from gentamicin -induced interstitial nephritis. Abdel Hamid et al., (2022) Indicated that the tissues and functions of the kidneys were improved by employing high doses of aqueous extracts of Corn silk and Asparagus after renal toxicity induced by formaldehyde. Gohari and Mahdy (2018) reported that the histopathological investigation of the liver and kidney injected in rats with had gentamycin the best improvement in liver enzymes obtained by using Arabic Gum Extract and Corn Silk Extract had the (CSE) best improvement in liver enzymes were obtained by using Arabic Gum Extract and Corn Silk Extract (CSE).

CONCLUSION

The study showed a high amount of protein content and a high number of phytonutrients present in corn silk, Phenolic compounds, flavonoids, and highly active antioxidants were found in the corn silk extract. Corn silk extract also has antimicrobial activity against pathogenic microorganisms. So it was used pharmaceutically. This was previously thought to be waste matter rich with useful compounds and this study demonstrated the renoprotective and hepatoprotective effect of Corn silk against gentamycin-induced hepato-nephrotoxicity.

DataAvailability:Thecorrespondingauthorwillprovidethedatasetscreatedand/oranalyzedduringthecurrentworkuponreasonablerequest.reasonablereasonable

Ethics declarations:

Conflict of Interest: The authors declare no conflict of interest.

REFERENCE

Abdel Hamid WM ; El Moslemany AM and Zeima NM (2022):

The Potential ProtectiveEffectsofAqueousExtractsorHerbsonRenalToxicityInducedbyForm-

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2022(60) 136

aldehyde in Experimental Rats *Bulletin of the National Nutrition Institute of the Arab Republic of Egypt.* (60) 1.

Abdul Rahman N and Rosli WIW (2013)

Nutritionalcompo-sitionsandantio-xidative capacity of thesilkobtainedfromimmatureandmaturecorn,JournalofSaudUniversity-Science.

Abo-Allam R M (2003):

Data statistical analysis using the SPSS program.1st, ed., a publication for *Universities, Cairo*.

Akoachere Jftk, Suylika Y, Njom HAand Esemu NK (2012):

Etiologic profile and antimicrobial susceptibility of communityacquired urinary tract infection in two Cameroonian towns. *BMC Research Notes*. 7,5:219.

Aldahmash BA, El-Nagar DM, Ibrahim KE. (2016):

Reno-protective effects of propolis on gentamicin - induced acute renal toxicity in Swiss albino mice. *Nefrología*, 36:(6), 643 -652

Al-Sorchee SMA; Abdal Zaain L and Al Saqii AH (2016):

The Effect of Nettle Leaves and Corn Silk Extracts on The Isolated Bacteria from Children UTI, Journal Tikrit Univ. For Agri. Sci., 16 (2):15-22.

Amreen F; Agrawal P and Singh PP (2012):

Herbaloptionfordiabetes:An overview.AsianPac.J.Dis., 2:\$536-\$544.

A.O.A.C (2018):

Association of Official Analytical Chemists Official Methods Analysis of the Association Analytical Chemists, 18th ed. AOAC, Washington, DC.

Arba PR; Hady AT; Tika L S and Mabrurotul JM (2020):

Hepatoprotective Effect of Corn Silk Infusion in Male Wistar Rats, *Journal of Science and Data Analysis*,1(1):51-55.

AyeshaAmgad;BahisntRizwanandShaistaJabeen(2022):

The Effect of Methanolic Extract of Corn Silk in Gentamicin Induced Acute Renal Injury in Rats Model, *Pakistan Biomedical Journal*. 5(1)308-312.

Babaeenezhad E; Hadipour MF; Rahimi MS; Fattahi MD; Nasri M and Amini A (2021):

D-Limonene Alleviates Acute Kidney Injury Following Gentamicin Administration in Rats: Role of NF-_KB Pathway, Mitochondrial Apoptosis, Oxidative Stress, and PCNA. Oxidative Medicine and Cellular Longevity. Article ID 6670007, 16.

BhuvaneshwariKandSridevi SivakamPL (2017):

Analysis of Nutrients and Phytochemicals content in Corn Silk (*Zea. Mays*) International Journal of Science and Research (IJSR), 6 (1): 79-81.

Cao, G, Alessio, H and Cutler, R (1993):

Oxygen radical absorbance capacity assay for antioxidants. *Free Radic Biol Med.*, 14:303-311.

Caraway, W (1955):

Uric acid colorimetric method, *Am. J.Clin.* (25): 840.

Chen S; Chen H; Tian J; Wang Y; Xing L and Wang J (2013):

Chemical modification, antioxidant and α amylase inhibitory activities of corn silk polysaccharides. Carbohydrate polymers.

EC Pharmacol & Toxicol., 98(1): 428-437.

Darwish R and Aburjai AT (2010):

Effect of ethnomedicinal plants used in folklore medicine in antibiotic-Jordan as resistant inhibitors on Escherichia coli. BMC Complementary and Alternative Medicine 10:9.

El-Ghorab; El-Massry KF and Shibamoto T (2007):

Chemical composition of the volatile extract and antioxidant activeities of the volatile and nonvolatile extracts of Egyptian corn silk (*Zea mays L.*). *J Agric Food Chem*, 55: 9124 – 9127.

El Kewawy EH (2018):

Evaluation of the Efficacy of Corn Silk and Vitamin D on Hyperlipidemia and Obesity in Experimental Rats J. Food and Dairy Sci., 3rd *Mansoura International Food Congress (MIFC) October*: 169 – 175.

Ellman GL (1959):

Tissuesulfhydrylgroups.ArchivesofBiochemistryand

Biophysics. 82(1):70–77.

El-Seedy GM; Sahloul TM and Ismail FA (2022):

The Therapeutic Effect of Corn Silk on Rats with Kidney Stones. *Journal of Research in the Fields of Specific Education*,8(38):863-885.

Emmanuel SA; Olajide O; Abubakar S; Akiode SO and Etuk-Udo, G (2016):

Chemical Evaluation, Free Radical Scavenging Activities and Antimicrobial Evaluation of the Methanolic Extracts of Corn Silk (*Zea mays*). JAMPS, 9(4): 1-8.

Fahmy TS (2020):

Potential Ameliorative Effects of Corn Silk on Hepatic Damage induced by Carbon tetrachloride in Experimental Rats. *The Scientific Journal of Specific Education and Applied Sciences*,4(9) 200- 223.

Fanoush AAA; El-Hady S; A El-Wardany I and Ali NE (2018):

Effect of Egyptian corn silk powder supplementation to Diet on some blood Parameters live body weight, and liver histology of boiler chickens fed Slaughter houses by product, J. Agric. Sci., Ain Shams University, Cairo. 26(1):233-242.

Fawcett J K and Scott J E (1960):

A Rapid and Precise Method for The Determination of urea. *J Clin Pathol.* 13(2): 156–159.

Fitri AN; Nadia S R;Tanti S; Putri K W; Fatkhan BR; Suparmi S and Pasid H (2022):

The potency of ethanolic extract from corn silk as natural antibiotics for acnerelated bacteria: A preliminary study, *Bangladesh Journal of Medical Science*,21: (1) 84-89.

Folch, J, lees, M and Stanley, GH (1957):

Simple method for isolation and purification of total lipid from animal tissue. *J Biol Chem*, 266: 497-509.

Fossati P; Prencipe L and Berti G (1980):

Enzymatic colorimetric method of determination of urea in serum. *Clin Chem*, 6(18):499-502.

Fossati P and Prencipe L (1982):

Serum triglycerides are determined calorimetrically with an enzyme that produces hydrogen peroxide. *Clin. Chem.* 28 (1): 2077 - 2080.

Gohari ST and Mahdy SM (2018):

The roles of Arabic Gum and Corn silk extracts to avoid hepato-nephron toxicity of Gentamicin in rats. *African J. Biol. Sci.*, 14 (2): 63-78.

Protective effect of Corn silk (Zea mays L.) on kidney and liver functions of rats Mai MM Naeem

Henry, RJ (1974): exercise in African Clinical Chemist Journal principles and Technics, Biotechnology, edition. 3163-3167. 2nd Hagers (MD). Harcer. town Jvoti S: Baskaran *Row*, p.8802. Sawinder K: Prasad R and Vikas N (2022): Hirsch C; Zouain CS; Alves J Phytochemical Band Goes AM (1997): Analysis Induction of protective Characterization immunity and modulation of G5417). granulomatous Agronomy, 12, 777. hypersensitivity in mice using PIII, an anionic Kim S and Moon A (2012): fraction of Schistosoma mansoni adult worm. toxicity and Parasitology, 115: 21-**Biomarkers** 28. lecules and Ho TY: Li CC: Lo HY: Chen 20(3):268-272. FY and Hsiang CY (2017): Corn Silk Extract and Its Bioactive Peptide (1954): Ameliorated Estimation of plasma Lipopolysaccharide-Inflammation Induced in Mice via the Nuclear phenol with Factor-*k*B Signaling antipyrine. J.

Pathway. J Agric Food Chem. 1;65(4):759-768.

Hu QI and Deng Z I (2011):

Protective effects of flavonoids from corn silk on oxidative stress induced by exhaustive

Liang Z; Yang Y and Zhanyong W (2021):

Extraction Optimization of Polysaccharides from Corn Silk and Their

mice of10:

S:

and of Corn Silk (Zea mays,

Drug-Induced Nephro-Its Biomo-Therapeutics. Biomol Ther,

Kind PRN and King EJ

phosphatase by determination of hydrolyzed amino Clin. Path., 7:322-326.

Protective effect of Corn silk (Zea mays L.) on kidney and liver functions of rats Mai MM Naeem

Antioxidant Activi-ties *in vitro* and *in vivo* Frontiers in *Pharmacology*,12: 738150.

Liao WC; Lai YC; Yuan MC; Hsu YL and Chan CF (2011):

Antioxidative activity of water extract of sweet potato leaves in Taiwan, *Food Chem.* 127 1224–1228.

Maksimovic Z; Malencic D and Kovacevic N (2005):

Polyphenol contents and antioxidant activity of maydis stigma extracts. *Bioresource Technology*, 96: 873-877.

Mallikarjuna K; Nishanth K; Reddy T and Reddy K (2008):

Amendment of antioxidant enzyme different status in skeletal muscle fibers under age-induced oxidative stress conditions with reference to exercise training. Asian J. Exp. Sci. 22:117–128.

Medic B (2019):

Pioglitazone attenuates kidney injury in an experimental model of gentamicininduced nephrontoxicity in rats. *Sci. Rep.* 9(1):13689.

Mehboob F and Tahir M. (2015):

Effect of corn silk extract on Acetaminophen induced renal damage in mice Pak Armed Forces *Med. J.*,65:339-44.

Nader T; Fariba Z; Shima R;Maryam K; Omid K H; Firoozeh T; Zahra K; Maryam ,M T;Mahsa K; Golsa ,S; Mohamad J and Farzane Z (2018):

> Effect of Methanolic Extract of Corn Silk on Cisplatin- Induced Nephrotoxicity in Rats, *GMJ*. 7, 1-7.

Nessa N; Ridho A; Hazli N and Ridho A (2021):

Nephroprotection effect of corn silk (Stigma maydis) ethanol extract on gentamicin induced in rats Int. *Journal of* Pharmaceutical Sciences and Medicine (IJPSM), 6 (9) :17-26.

Nickel JC (2005):

Management of urinary tract infections: historical perspective and current strategies: Part 1--Before antibiotics. *J Urol.*, 173(1):21-6.

Nishikimi M; Appaji N and Yagi K (1972):

The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem. Biophys. Res. Commun., 46(2): 849-854.

NithiyananthamS;VaradharajannSSiddhuraju P (2012):

Differential effects of processing methods on total phenolic content, antioxidant and antimicrobial activities of three species of Solanum, *J. Food Drug Anal.*, 20:844-854.

Nuntaporn A; Tipsukon K and Natthanicha P (2015):

Utilization of Corn Silk in Low Fat Meatballs and Its Characteristics Procedia - *Social and Behavioral Sciences* 197: 1403 – 1410.

Ohkawa H; Oshini N and Yagi K (1979):

Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. *Anal. Biochem.*, 95, 351-358.

Olaleye M T (2007):

Cytotoxicity and antibacterial activity of methodic extract of *Hibiscus sabdariffia. J. of Med. Plant.* 1:9-13.

Orr SE and Bridges CC (2017):

Chronic kidney disease and exposure to nephrotoxic metals. *Int J Mol Sci.*; 18(5): 1039.

Plozza T; Trenerry VC and Caridi D (2012):

 by high performance liquid chromatographyspectrometry (HPLC-M S n). Journal of food lion trap mass Chemistry, 134:559-563

Rajeshwari H and Sivapriya T (2021):

Analysis of nutrients, phytochemicals, antioxidant and antimicrobial activity of corn silk extract (Zea mays L. Stigma). International Journal of Health and Allied Sciences, 10: (4)275-279.

Raju S; Kavimani S; Uma M V; Sreeramulu RK and Vasanth KG (2011):

Floral extract of Tecoma stans: A potent inhibitor of gentamicininduced nephrotoxicity in vivo. Asian Pacific *Journal of Tropical Medicin*, 680-685.

Reeves PG; Nielsen FH and Fahey GC (1993):

AIN-93 purified diets for laboratory rodents: laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. *Journal Nutrition*, 123: 1939-1951.

Rerup E and Lundquist S (1967):

Precipitationandpurificationofliverglycogen inrats.ActaPharmmic.Tox.,25:47-51.

Richmond N (1973):

Colorimetric method of determination of total cholesterol and highdensity lipoprotein cholesterol (HDL-c). *Clin. Chem.*, 19: 1350-1356.

Rizk MA; Khalil MS; Abu-Zaid A and Magdi M (2009):

Evaluation of antimicrobial activity of stored fermented soybean products. *Bull. Fac. Sci.*, Cairo *Univ.*, 77 (C):1-17.

Romeu-Nadal M; Morera-Pons S and Lopez- Sbater MC (2006): Rapid high-performance liquid chromatographic method for Vitamin C determination in human milk versus an enzymatic method. *Journal of chromatography* B, 830:41-46.

Sahib AS; Mohammed IH and Hamdan SJ (2012):

Use of aqueous extract of corn silk in the treatment of urinary tract infection. *Journal of Intercultural Ethnopharmacology*; 1(2):93-96.

Sanusi BM; Lawal S and Gloria DC (2020):

Corn Silk From Waste Material to Potential Therapeutic Agent. FUW Trends in Science and Technology Journal ,5 (3): 816 – 820.

Sarepoua E; Tangwongchai R; Suriharn B and Lertrat K (2013):

Relationships between phytochemicals and antioxidant activity in corn silk. *I FR J* 20(5): 2073-2079.

Sepehri G; Derakhshanfar A and Yazdi ZF (2011):

Protectiveeffectsofcornsilkextractadministrationongentamicin-inducednephrotoxicityinrat.Comparativeclinicalpathology.20(1):89-94.

Shuangqi Tian; Yue S; and Zhicheng C (2021):

Extraction of Flavonoids from Corn Silk and Biological Activities *In Vitro. Journal of Food Quality Article.* ID 7390425, 9 p. Review Article

Tietz NW (1976):

Fundamentals of Clinical Chemistry. Philadelphia, W.B. sunders.

Tuty RP and Muchlisyam B (2018):

Analysis on calcium solubility in kidney stones (*in vitro*) and diuretic effect (*in vivo*) using corn silk (*zea mays l.*) infuse, *Asian Journal of Phar*-

Protective effect of Corn silk (Zea mays L.) on kidney and liver functions of rats Mai MM Naeem

maceutical and Clinical Research, 11(1), 80-83.

Wang KJ; Yang CR and Zhang YJ (2007):

Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis), *Food Chem.* 101:365–371.

Wans EM; Ahmed MM; Mousa AA; Tahoun EA and Orabi SH (2021):

Ameliorative effects of corn silk extract on acetaminopheninduced renal toxicity in rats. *Environ Sci Pollut Res Int.*, 28(2):1762-1774.

Xizhu Wang; Liyan Yuan; Zhijie Bao; Baoshang Fu; Pengfei J; Tiecheng M and Songyi L (2021):

Screening of uric acidlowering active components of corn silk polysaccharide and its targeted improvement on renal excretory dysfunction in hyperuricemia mice. Journal of function food, 86, 104698<u>.</u>

Xiaodan Hu; Tianran Y;Xitao Qi; Xinbo G and Jianguang Hu (2022):

Effects of different drying methods on phenolic composition and antioxidant activity in corn silk (Stigma maydis). Journal of Food Processing and. Preservation: e17101 ,1-7.

Young DS; Pestaner LC and Gibberman V (1975):

Effects of drugs on clinical laboratory tests. Clin Chem. 1975 Apr;21(5):1D-432D.

Zhang DW; Wang YZ and Liu H L (2020):

Corn silk extract inhibit the formation of N ϵ - carboxymethyllysine by scavenging glyoxal/methyl glyoxal in a casein glucose-fatty acid model system, *Food Chem.*,30; 309,

Group (1)	Negative control was fed on a Basal diet.
Group (2)	Positive control (Gentamicin* + a Basal diet)
Group (3)	10 % corn silk Powder in a Basal diet+ rats injected with
	Gentamicin*
Group (4)	Corn silk ethanol extract **400 mg/ml+ a Basal diet+ rats
	injected with Gentamicin*.
Group (5)	Corn silk tea 5ml/rat + a Basal diet + rats injected with
	Gentamicin*

Table 1: The Groups of	Biological Experiment.
------------------------	-------------------------------

*Gentamicin at a dose rate of 80 mg/kg body weight given intraperitoneally for 8 consecutive days to induce nephrotoxic (**Raju** *et al.*, **2011**) for groups, 3,4, and 5.

** The CS extract was created by dissolving 2000 mg of extract in 50 ml of distilled water, resulting in a concentration of 40 mg of extract per ml of solution (Mehboob and Tahir,2015)

Table (2): Analyses of the corn silk (%) powder's chemicalcomposition and nutritional value.

Parameters	Corn silk (%)
Moisture	4.33±0.0717
Protein	13.0±1.0031
Lipids	1.13±0.0815
Crude fiber	21.01±1.0210
Ash	6.43±0.0512
Total Carbohydrate	54.11±0.6341
Minera	ls
Zinc, (Zn) µg/g	2.066 ± 0.0577
Manganese, (Mn) µg/g	1.65 ± 0.0371
Iron, (Fe) ug/g	1.93±0.04567
Copper (Cu) ug/g	45.6±0.1346
Calcium, (Ca) µg/g	877.30±0.3340
Magnesium, (Mg) µg/g	711.00±1.0112
Sodium, (Na) µg/g	216.44±0.1210
Potassium, (K) µg/g	30262±1.0208

Data expressed as Means $\pm SD$ (n=3).

Protective effect of Corn silk (Zea mays L.) on kidney and liver functions of rats Mai MM Naeem

Table (3) :	Analyses	of the	Total	phenol	(mg	GAE/g),	Total
flavonoid (mg RE/g) a	nd antio	oxidant	t activity	in co	rn silk.	

Parameters	Corn silk powder	Corn silk tea (water extract)	Corn silk (Ethanol extract)
Total phenol	80.40±0.100°	105.66±0.571 ^b	119.01±0.500 ^a
(mg GAE/g)			
Total flavonoid	57.266±0.1153°	68.300±0.1035 ^b	86.3±0.1012ª
(mg RE/g)			
DPPH assay for radical	77.300±0.1023°	82.511±0.1440 ^b	85.301±0.1210ª
scavenging activity (%)			

Data expressed as Means \pm SD (n=3) This means in the same row with completely different letters is significantly different at p < 0.05.

Table (4): Analysis of the phenolic content of corn silk andvitamins by HPLC.

Phenolic Compounds	Corn Silk (µg/g DW)
Ellagic	3524.31
Kampherol	384.09
Neringein	169.07
Salicylic acid	338.33
Gallic acid	4410.23
Myricetin acid	120.52
Rutin	105.04
Quercetin	3217.03
Cinnamic acid	3551
Benzoic acid	28.67
Caffeine	96.84
Caffeic acid	116.21
Ferulic acid	6118.98
Chlorogenic	1010.32
p- Coumaric acid	2776.21
Vanillic acid	72.61
Syringic acid	64.73
Vitam	ins
Vitamin E mg/100g	0.334±0.0577
Vitamin A IU	278±0.038
Vitamin C mg/100g	11.01±0.0652

Data expressed as Means $\pm SD$ (n=3).

	Ethanol extract	water extract
Pathogenic	400 (mg/ml)	400 (mg/ml)
Microorganisms	Inhibition z	one (mm)
Staphylococcus aureus	22	20
Escherichia coli	18	16
Salmonella typhi	17	12
Pseudomonas aeruginosa	20	17
Aspergillus Flaves	14	12
Aspergillus niger	15	13
Candida albicans	13	11

Table (5): Assessment of the antimicrobial activity of dried CS in ethanol (80%) and water extracts.

Table (6): Protective effects of corn silk tea (water extract), corn silk ethanol extract and corn silk powder on body weight gain in the experimental rats.

Treatments	Initial body weight (g)	Final weight (g)	Body weight gain %
Negative control	202.00±1.105 ^a	223.0±1.028 ^a	10.39
The weig			
Positive control	179.33±0.531 ^e	181.20 ± 0.2005^{e}	1.102
Corn silk tea(water extract)	188.23±0.571 ^b	198.200±0.211°	5.29
Corn silk ethanol extract	183.26±0.923 ^d	200.366±0.256 ^b	9.3
Corn silk powder	186.68±2.50 ^c	197.266±0.276 ^d	5.67

Results represent mean \pm SD, the same letters in each column are not significant at P < 0.05.

Protective effect of Corn silk (Zea mays L.) on kidney and liver functions of rats Mai MM Naeem

Table (7): Protective effects of corn silk tea (water extract), corn silk ethanol extract and corn silk powder on SOD, MDA, TAC and GPx in the experimental rats.

Treatments	SOD	MDA	TAC	GPx
	(U/ml)	(µmol/l)	(mmol/l)	(u / g)
Negative control	138.233±0.1598ª	8.433±0.5624 ^e	3.23±0.056 ^b	100.200±0.100 ^a
Positive control	59.266±0.2510 ^e	23.800±0.1000 ^a	1.266±0.057 ^d	72.433±0.050 ^e
Corn silk tea	125.200±0.1004°	14.133±0.5774 ^b	2.622±0.057°	88.33±0.503°
(water extract)				
Corn silk ethanol	129.200±0.2101 ^b	10.850 ± 0.500^{d}	3.133±0.100 ^b	96.24±0.412 ^b
extract				
Corn silk powder	123.500±0.156 ^d	12.466±0.547°	3.400±0.057 ^a	82.63±0.513 ^d

Results represent mean ± SD, the same letters in each column are not significant at P < 0.05. Superoxide Dismutase= (SOD) Malondialdehyde =(MDA)

Total Antioxidant Capacity =(TAC) Glutathione Peroxidase =(GPx)

Table (8): Protective effects of corn silk tea (water extract), cornsilk ethanol extract and corn silk powder on kidney function ofexperimental rats.

Treatments	Urea	Creatinine	Uric Acid
	(mg/dl)	(mg/dl)	(mg/dl)
Negative control	26.900±0.1200e	0.560±0.0001e	1.211±0.0214 ^e
Positive control	96.66±0.5230ª	1.425±0.00251ª	3.233±0.0172 ^a
Corn silk tea (water extract)	37.201±0.1022°	0.720±0.0010 ^c	1.946±0.0354°
corn silk ethanol extract	31.623±0.1420 ^d	0.616 ± 0.0057^{d}	1.407 ± 0.044^{d}
corn silk powder	40.133±0.0871 ^b	0.881±0.0020 ^b	2.033±0.0516 ^b

Results represent mean \pm *SD, the same letters in each column are not significant at* P < 0.05.

Table (9): Protective effects of corn silk tea (water extract), cornsilk ethanol extract and corn silk powder on lipid profile ofexperimental rats.

Treatments	Glycogen	Cholesterol	Total lipid	Triglycerides
	(mg/100g)	(mg/100g)	(mg/100g)	(pg/g)
Negative control	8.133±0. 577 ^a	4.200±0.1013 ^d	39.100±0.101e	3.400±0.01ª
Positive control	3.533±0.577 ^e	7.43±0.057 ^a	52.33±0.112ª	2.200±0.103 ^d
Corn silk tea (water extract)	6.233±0.0573°	4.823±0.026°	42.812±0.061°	2.933±0.051°
corn silk ethanol extract	6.89±0.042 ^b	4.233±0.02 ^d	40.3±0.087 ^d	3.23±0.051b
corn silk powder	5.233±0.011 ^d	5.18±0.071 ^b	44.21±0.1055 ^b	2.89±0.0142°

Results represent mean \pm *SD, the same letters in each column are not significant at* P < 0.05.

Table (10): Protective effects of corn silk tea (water extract), corn silk ethanol extract and corn silk powder on liver enzymes of experimental rats.

Treatments	ALT (U/L)	AST(U/L)	ALP (U/L)
Negative control	21.133±0.056 ^e	93.467±0.040e	260.433±0.5301e
Positive control	95.33±0.510ª	209.13±0.428 ^a	318.400±0.1100 ^a
Corn silk tea	31.266±0.1004 ^c	122.200±0.059°	270.733±0.218°
(water extract)			
corn silk ethanol extract	25.800±0.1021 ^d	113.511±0.1000 ^d	264.112±0.1100 ^d
corn silk powder	65.655±0.505 ^b	148.200±0.1005 ^b	278.340±0.1016 ^b

Results represent mean \pm *SD, the same letters in each column are not significant at* P < < 0.05.

Protective effect of Corn silk (Zea mays L.) on kidney and liver functions of rats Mai MM Naeem

الملخص العربى :

الهدف الرئيسي من هذه الدراسة هو دراسة تأثير مسحوق حرير الذرة (Zea mays L.) والمستخلص الإيثانولي وشاي حربر الذرة على حماية الجرذان من الفشل الكلوي و الكبدي و در اسة تأثير ها على البكتيريا المسببة للأمراض. يحتوى مستخلص الإيثانول من حرير الذرة على أعلى محتوى من الفينولات والفلافونويد . تم الكشف عن سبعة عشر نوعا من الفينولات بواسطة HPLC. بحتوى على حمض الفير وليك 6118.98 مبكر و غرام / غرام و هو أعلى كمية من محتوى الفينول. أظهرت مستخلصات حربر الذرة نشاطًا كيميائيًا نباتيًا ممتازًا وقدرة جيدة على مضادات الأكسدة. بالإضافة الى ذلك ، لديهم خصائص قوبة كمضادات للمبكر وبات. أحربت التحربة البيولوجية على ثلاثين ذكر من الجر ذان وزنها (200 ± 5 جم) لمدة ستة أسابيع وقسمت إلى خمس مجموعات ، إحداها كانت ساليه تغذت عي الوجية الإساسية و مجموعات أعطيت الجنتاميسين بواسطة الحقن لمدة 8 أيام بمعدل جرعة 80 مجم / كجم من وزن الجسم للحث على تسمم الكبد والكلي. (المجموعة 2) الإيجابية ،اما المجموعات 3 ، 4 ، 5 عولجت بمعاملات مختلفة من حربر الذرة. أظهرت النتائج أن حرير الذرة ومستخلصه يعزز ان الإنزيمات المضادة للأكسدة باستخدام ديسموتاز الفائق (SOD) ، وقد تم تقبيم القدرة الكلبة لمضادات الأكسدة (TAC) ، وبير وكسبد الدهون على أنها (malondialdehvde (MDA ، ووظائف الكبد ، ووظائف الكلي ، والتشريح المرضى للكلي عند مقارنتها بالمجموعة الإيجابية. . في الختام ، أظهرت هذه الدراسة أن حربر الذرة له نشاط مضاد للمبكر وبات ضد الكائنات الحبة الدقيقة المسببة للأمر اض ، وتأثير الوقائي على الكلي والواقي للكبد ضد السمية الكلوبة التي يسببها الجنتامايسين.

الكلمات المفتاحية: حريرة الذرة – مضادات الميكروبات – جنتاميسين-وظائف الكلي الكبد.