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Abstract: In social science and statistical literature, ordinal qualitative dependent variable models 

have received substantial attention in terms of theory and application. However, linear models with 

ordinal qualitative regressors have been overlooked. In this paper, we propose an approach to 

regression model selection with two-qualitative regressors, which will be used to build a technique 

for selecting qualitative variables based on the mean square of the prediction error (MSEP). Several 

data sets were simulated using two models, and the technique was found to choose the best model in 

all cases. The findings show that significant improvements in bias and efficiency may be made when 

compared to other estimates. To diagnose the type of interaction, certain graphs are provided. The 

proposed approach achieves better accuracy with reduced MSEP, improved stability, and faster 

convergence compared to other models. 
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1. Introduction 

After proving that children's height does not seem to mirror that of their parents but rather 

regresses to the average population, Sir Francis Galton first used the term "regression" in 1885 [1]. 

Currently, the phrase "regression analysis" refers to a wide range of statistical methods for predicting 
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the value of one or more dependent (or response) variables from a set of independent variables and 

modelling variable relationships (or predictors). 

The Double Classification [2] method is a conventional technique to the regression problem with 

two qualitative regressors, where a model is initially believed to be appropriate and then particular 

parameter hypotheses are evaluated to compare the effects for the various levels. This method of 

problem-solving does not include the concept of model selection. The Johnson et al. [3] structures 

are one of the structures for the interactions that are taken into consideration. 

Let 𝑥1 and 𝑥2 be two qualitative variables that can take 𝑛1and 𝑛2 different categorical values 

respectively. These categories will be denoted by 𝑖1, 𝑖1, ..., 𝑖′𝑛1 and 𝑖′1, 𝑖′2, ..., 𝑖′𝑛2. Suppose that 

observations have been made on a quantitative random variable 𝑌 at  𝑚 =  𝑛1  ×  𝑛2 points in the 

set, {(𝑖𝑗 , 𝑖
′
𝑗): 1 ≤ 𝑗 ≤ 𝑛1,1 ≤ 𝑗′ ≤ 𝑛2}. Without loss of generality we will assume 𝑛1 = 𝑛̅1 and 

𝑛2 = 𝑛̅2, furthermore at the point (𝑖𝑗 , 𝑖
′
𝑗) and 𝑛𝑖𝑗,𝑖

′
𝑗
observations are made.  Traditionally, a model 

such as the following is assumed: 

 

                        𝐸 (𝑌𝑖𝑗,𝑖
′
𝑗,𝑘

) = 𝜇𝑖𝑗,𝑖
′
𝑗
= 𝜇 + 𝛼𝑖𝑗

+ 𝛽𝑖′𝑗
, +𝛾𝑖

𝑗′𝑖′𝑗
                                    (1) 

Observations are assumed to be uncorrelated. A model like the previous one is over 

parameterized (it contains the maximum number of parameters, that is, 𝑛1 + 𝑛2 + (𝑛1  ×  𝑛2) + 1 

parameters), which implies a reduction in the precision of the estimates, since the variance of the 

estimators grows as the number of parameters in the model grows. It is known that the least squares 

estimates in Equation (1) is, 

                                𝜇̂ = 𝑌 … = 1/𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∑ ∑ ∑ 𝑌𝑖𝑗,𝑖
′
𝑗,𝑘

𝑛
𝑖𝑗,𝑖′𝑗′

𝑘=1
𝑛2
𝑗′=1

𝑛1
𝑗=1                                         (2) 

These estimators have interesting properties as they are least squares [4]. Considering different 

regression equations is equivalent to considering different partitions on the value space of the 

regressors. In the very simple case of 𝑛1  = 3 and 𝑛2 = 2 and the interactions equal to zero (additive 

model) [5]. The equations that define the possible models are: 

1. Model with one parameter. 

2. Models with two parameters. 

3. Models with three parameters 

4. Model with four parameters. 

The number of parameters in the model grows as the number of classes grows in the partition that 

the model induces in the value space 𝑥 = 𝑥1 × 𝑥2. Counting the number of models with p parameters 

would be equivalent to counting the partitions where the sum of the class numbers of the partitions in 

the value spaces of 𝑥1 and 𝑥2 equals 𝑝 +  1. 

Proposition 1: Let 𝑥1 and 𝑥2 be two qualitative variables with 𝑛1  and 𝑛2 different values             

(𝑛1≤ 𝑛2). So there are:  
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                ∑ {[ ∑
(−1)𝑎−𝑗

𝑗!(𝑎−𝑗)!

𝑎
𝑗=1  

𝑀𝑖𝑛(𝑛1 ,𝑝)
𝑎=𝑝+1−𝑀𝑖𝑛(𝑛2,𝑝) 𝑗𝑛1][ ∑

(−1)𝑝+1−𝑎−𝑗

𝑗!(𝑝+1−𝑎−𝑗)!

𝑝+1−𝑎
𝑗=1 𝑗𝑛2]}                    (3) 

Different additive models with 𝑝 parameters. 

Proof: It is known that if 𝑥 is a qualitative variable with m different categories, the number of 

models with 𝑝 parameters (number of partitions with 𝑝 classes available in literature and cited by 

Kim, Byungchan [6]. Therefore, the quantities; 

𝐻1 = ∑
(−1)𝑎−𝑗

𝑗!(𝑎−𝑗)!

𝑎
𝑗=1 𝑗𝑛1                                                         (4) 

 

𝐻2 = ∑
(−1)𝑝+1−𝑎−𝑗

𝑗!(𝑝+1−𝑎−𝑗)!
𝑗𝑛2𝑝+1−𝑎

𝑗=1                                                   (5) 

Represent the number of partitions with a classes in the value space of 𝑥1  and with 𝑝 + 1 − 𝑎 

classes in the value space of 𝑥2; being its sum equal to 𝑝 +  1. If  𝑀 is an additive model defined by 

the equation that induces partitions such as those considered, it will have 𝑝 parameters. For a fixed, 

each partition with a classes in the value space of 𝑥1 is combined with each of the 𝐻2 partitions with 

𝑝 +  1 −  𝑎  classes in the value space of 𝑥2, that is, for a fixed the number of models with 

𝑝 parameters it will be 𝐻 = 𝐻1. 𝐻2. But the number of classes of the partitions in the value space of 

𝑥1  can be at least equal to 𝑝 +  1 −  𝑀𝑖𝑛 (𝑛2, 𝑝) and at most 𝑀𝑖𝑛 (𝑛1, 𝑝). now adding for all 

possible values of the formula given in Equation (3) is obtained. The number of additive models will 

serve as a reference to assess how large the number of possible models is. 

The rest of the paper is organized as follows: After this introduction, Section 2 presents a brief 

overview of qualitative analysis. While Section 3 provides modeling of interaction, validation and 

variable selection procedures, and evaluation of classification performances. In Section 4, the 

Regressor Selection is presented. Section 5 discusses the proposed approach to model selection, 

definition of neighbouring model, and algorithm of proposed approach with two qualitative 

regressors. Section 6 presents the Graphical analysis through Examples and Simulation results. 

Finally, Section 7 offers the concluding remarks. 

2. Qualitative Analysis 

Cowie and McKeown [7] established the Qualitative Analysis (QA) technique for identifying 

local patterns across numerous assessors in time-continuous assessments. Feel traces were employed 

in their research [8]. A graphical user interface (GUI) with axes corresponding to distinct emotional 

qualities is used in the perceptual evaluation. The axes extreme values correlate to those emotional 

qualities extreme values. An evaluator observes the stimuli, interprets the emotional content, and 

changes the mouse pointer to match the emotional attribute’s perceived degree. The interface records 

the cursor's location in real time, providing emotional traces.  

The QA converts continuous assessments into ordinal matrices that capture relative trends 

between evaluators. The individual matrices (IMs) are formed in the first stage to record the relative 

trends in an evaluator’s traces. Figure 1 (a) depicts the procedure, in which the traces are first 

segmented into 𝑁 bins of equal length (3s in this study). The average value of the trace within each 
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bin is then estimated, and this value is denoted as 𝑏𝑖 with 𝑖 ∈ {1…𝑁}. The IMs is created with 

relative comparisons between the values of the bins. If i < j, we define a fall when 𝑏𝑖 − 𝑏𝑗 is greater 

than a threshold Equation (6), and a rise when 𝑏𝑗 − 𝑏𝑖 is greater than a threshold Equation (7). 

Otherwise, we consider that the bins are similar Equation (8). 𝑡threshold  is a parameter of the QA 

method. 

𝑏𝑖 − 𝑏𝑗  > 𝑡threshold                                                     (6) 

𝑏𝑗 − 𝑏𝑖  > 𝑡threshold                                                     (7) 

|𝑏𝑗 − 𝑏𝑖| < 𝑡threshold                                                     (8) 

The IMs are then combined to generate a consensus matrix (CM) in the following stage. The 

technique is depicted in Figure 1 (b), which tries to capture evaluator agreement. If " 𝑋% " of the 

evaluators agree on a trend (entries from various IMs), the CM entry relating to the trend is 

established (rise, fall or similar). Another aspect of the QA process is the variable 𝑋, which is 

referred to as the tolerance agreement. Segments lacking consensus (𝑋 in Figure 1 (b)) are entries 

that fail to establish an agreement. The QA approach was used by Parthasarathy et al. [9] to create 

preference learning algorithms to rate emotions. 

 

(a) Individual matrices.  
 

 

(b)  Consensus matrix.  

Figure 1: Individual matrices generation from time-continuous traces, as well as consensus matrix 

generation. 
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3. Modeling of Interaction 

When working with two qualitative regressors and wanting to perform a complete analysis, it is 

necessary to determine the presence or not of the interaction term and estimate the variance. The 

usual model with interactions is over-parameterized and as already mentioned this is a big drawback. 

The consideration of certain forms of interactions proposed by many scientists including Flache et al. 

[10] produces a decrease in the number of parameters. This consideration is tremendously important 

when there is only one observation for combinations of treatments, because then the classical theory 

of linear models cannot be used, since the estimation of the variance of the error has to be obtained 

from the sum of squares of the interactions.  

The different models that are proposed to be considered others are, Additive model; Concurrent 

model; Regression model per column; Regression model per row; Fifth model; Mandel’s model; 

Seventh, eighth, ninth and tenth models. Subject to restrictions; 

∑ 𝛼𝑖𝑗

𝑛1
𝑗=1 = ∑ 𝛽𝑖′𝑗′

𝑛2
𝑗′=1 = ∑ 𝜃𝑖𝑗

=
𝑛1
𝑗=1

∑ 𝜗𝑖′𝑗′

𝑛2
𝑗′=1 = 0, 

∑ 𝜃𝑖𝑗
2𝑛1

𝑗=1 = ∑ 𝜗2
𝑖′𝑗′

𝑛2
𝑗′=1 = ∑ 𝑈𝑙𝑖𝑗

2
𝑙=1 = ∑ 𝑉𝑙𝑖′𝑗′

2
𝑙=1 = 1, 

∑ 𝛾2
𝑖𝑗,𝑖

′
𝑗′

=
𝑛1
𝑗′=1

∑ 𝛾𝑖𝑗,𝑖
′
𝑗′

= 0
𝑛2
𝑗′=1 . 

The number of parameters in any model listed above will be equal to the number of parameters 

of the additive model contained in it, plus the number of parameters provided by the interactions. 

3.1 Validation and variable selection procedures 

Cross-validation techniques are required for classifiers, just as they are for regression models, in 

order to evaluate their prediction classification skills on unknown objects. Because the modelled 

response is qualitative rather than quantitative, the prediction ability estimate of classification models 

is obviously conducted on different parameters than regression approaches. In any instance, a variety 

of metrics can be employed, such as the percentage of properly identified items relative to the total 

number of accessible objects or the proportion of correctly classified objects in a particular category 

of interest. Even if these parameters can be calculated using the same procedures used to validate 

regression models (single evaluation set, leave-one-out, leave-more-out, repeated training/test 

splitting, bootstrap), when classification models are validated, the percentage of objects retained in 

each cross validation group must be taken into account. 

Consider a data set containing two classes (A and B), as well as a cross-validation technique in 

which groups of objects are removed from the training set, one at a time, and the classification model 

is tested. The validation result will be unsuccessful if the entire class A is removed from the data set 

during validation (all objects belonging to A are used to test the model); in fact, the model will be 

built without the removed class's objects (the model will not consider class A) and thus will not 
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recognise objects belonging to that class. A proper validation approach, on the other hand, should at 

the very least keep objects from all of the considered classes in each training group. 

However, the number of items used to construct a classification model is typically a significant 

consideration, since a small number of objects cannot adequately reflect all of the elements that 

influence class variability. If the ratio between the number of objects and the number of variables is 

high, however, various classification approaches, such as discriminant analysis, can be applied. If the 

number of objects cannot be increased, variable selection methods can be used to decrease the 

number of descriptors. In reality, to improve classification performance and pick the most 

discriminating descriptors, classification approaches can be used with variable selection tools. Even 

while more advanced techniques, such as genetic algorithms, can (and have) been used, the bulk of 

classification selection procedures are based on stepwise discriminant analysis or similar schemes. In 

most stepwise analyses, error percentages are employed as an informal stopping criteria; if a subset 

of s variables out of 𝑝 produces a smaller error than the entire set of variables, the s variables can be 

regarded sufficient for class separation. The classification performance of multiple subgroups of 

decreasing sizes may then be compared. The Wilks' lambda [11] is a typical approach for picking the 

optimal subset of variables for splitting groups. It is defined as: 

𝛬 =
|𝑊|

|𝑊+𝐵|
,                                                               (9) 

where 𝑊 and 𝐵 are the within and between sum of squares, respectively. Wilks’ lambda is a number 

that varies from 0 to 1, with values near to 0 indicating that the group means diverge. As a result, the 

Wilks' lambda values of the variables with the lowest Wilks’ lambda values can be kept in the 

classification model.  

3.2 Evaluation of classification performances 

As previously stated, numerous factors may be used to estimate the quality of classification 

models for both fitting and validation [12]. These factors, of course, are connected to the occurrence 

of mistakes in the results (Objects assigned to the incorrect classes), even if errors might be weighted 

differently depending on the classification goals. The confusion matrix, which is a square matrix of 

dimensions 𝐺 × 𝐺, where 𝐺 is the number of classes, may be used to calculate all classification 

indices.  Table 1 shows a general depiction of a confusion matrix, with each row 𝑛𝑔𝑘  denoting the 

number of objects belonging to class g that are allocated to class 𝑘. As a result, the 𝑛𝑔𝑔 diagonal 

elements indicate successfully categorised items, whereas the off-diagonal elements represent 

incorrectly classified things. Because 𝑛𝑔𝑘 differs from 𝑛𝑘𝑔, the confusion matrix is frequently 

asymmetric, i.e. the number of objects belonging to class g and allocated to class 𝑘 is not always 

equal to the number of objects belonging to k and assigned to 𝑔. 
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Table1: General representation of a confusion matrix 

  Assigned class 

1 2 3 … G 

True class 

1 𝑛11 𝑛12 𝑛13 … 𝑛1𝐺  

2 𝑛21 𝑛22 𝑛23 … 𝑛2𝐶  

3 𝑛31 𝑛32 𝑛33 … 𝑛3𝐶  

… … … … … … 

G 𝑛𝐺1 𝑛𝐺2 𝑛𝐺3 … 𝑛𝐺𝐺  

We can get an indication of how a classification model is functioning by looking at the confusion 

matrix (based on fitting or verified results); of course, some more useful indices may be constructed 

to synthesize this information. The non-error rate (NER) can be defined as follows: 

 

NER =
∑  𝐺

𝑔=1 𝑛𝑔𝑔

𝑛
,                                                          (10) 

where 𝑛 is the total number of objects. The non-error rate (also known as accuracy or classification 

rate) is the most basic indicator of a classification model's quality, and it measures the proportion of 

objects that are properly assigned. The error rate (ER) is the NER complementary index; it is the 

percentage of incorrectly assigned objects and is defined as: 

 

ER =
𝑛−∑  𝐺

𝑔=1 𝑛𝑔𝑔

𝑛
= 1 − NER.                                                   (11) 

NER and ER can merely explain a model’s performance, but a classification tool's output should 

be regarded adequate from a statistical standpoint when the classification ability is much more than 

that produced by random class assignment. As a result, model efficiency may be assessed by 

contrasting ER with the no-model error rate (NOMER), which is the error rate achieved by allocating 

all objects to the biggest class and can be computed as follows: 

 

NOMER =
𝑛−𝑛𝑀

𝑛
,                                                              (12) 

where 𝑛𝑀 is the number of objects belonging to the largest class. On the other hand, the error rate 

may also be compared to the error produced by assigning people to one of the stated classes at 

random: 

Random ER =
∑  𝐺

𝑔=1 (
𝑛−𝑛𝑔

𝑛
)⋅𝑛𝑔

𝑛
,                                                      (13) 

where 𝑛𝑔 is the number of objects belonging to the 𝑔𝑡ℎ class: 

 

𝑛𝑔 = ∑  

𝐺

𝑘=1

𝑛𝑔𝑘 
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4. Regressor Selection 

Determine which regressors will be used to explain the models output. A regressor is a function 

of the measured data, such as the system's previous and last inputs and/or outputs. The regressor 

might be chosen entirely based on measurement data or in conjunction with information gleaned 

from other sources, such as physical laws. When relevant regressors are located, the tasks of 

selecting a model type and estimating model parameters become significantly easier. On several of 

the duties listed above, we'll go through them in further depth. Assume we have a specific measured 

output signal 𝑦(𝑡) and the corresponding input signal 𝑢(𝑡). Let 𝑍𝑁 denote the measured input/output 

data for time 𝑡 = 1, … , 𝑁. 

It has turned out to be useful to describe the relation between 𝑍𝑁 and the output 𝑦(𝑡) using a 

concatenation of two mappings [13]. The first maps the data 𝑍𝑁 of growing dimension into a 

regression vector  𝜑(𝑡) = 𝜑(𝑍𝑁) of fixed dimension. The elements of 𝜑(𝑡) will be denoted 

regressors. The second mapping, parameterized with 𝜃, maps the regression vector 𝜑(𝑡) onto the 

output 𝑦(𝑡); 
 

𝑦(𝑡) = 𝑔(𝜑(𝑡), 𝜃).                                                             (14) 
 

Useful choices of the map 𝜑(𝑍𝑁) include; 

 

 𝜑(𝑡) =

[
 
 
 
 
 
 
 
 

𝑦(𝑡 − 𝑇)
𝑦(𝑡 − 2𝑇)

⋯
𝑦(𝑡 − 𝑘𝑦𝑇)

𝑢(𝑡)
𝑢(𝑡 − 𝑇)

⋯
𝑢(𝑡 − 𝑘𝑢𝑇)]

 
 
 
 
 
 
 
 

.                                                              (15) 

 

Where 𝑘𝑦 and 𝑘𝑢 are parameters to decide and 𝑇 is the sampling period. Also, non-linear mappings 

from the measured data to the regressors, such as polynomials of the regressors in Equation (15) or 

other sophisticated input and output signal functions, might also be effective. The mapping proposal 

is frequently aided by system understanding and creativity. The majority of this thesis’s talks will 

focus on possible regressors like Equation (15). Regressor selection is the process of deciding which 

recommended regressors to include in the system model. 

5. Proposed Approach to Model Selection 

It is considered that observations 𝑌
𝑖𝑗,𝑖

′
𝑗
′
,𝑘

 are made on a random variable 𝑌, which satisfy the 

regression equation: 

𝑌
𝑖𝑗,𝑖

′
𝑗
′
,𝑘

= 𝑓(𝑖𝑗 , 𝑖𝑗′
′ ) + 𝜀𝑖𝑗,𝑖𝑗′

′ 𝑘                                                  (16)                                                                                      
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They are assumed to be 𝜀𝑖𝑗,𝑖𝑗′
′ 𝑘 random (unobservable) errors with zero expectation and variance 

𝜎2 and that they are unrelated. 

The function 𝑓(𝑖𝑗 , 𝑖𝑗′
′ ) belongs to a set 𝑀 defined by: 

𝑀 = {𝑔 (𝑥1, 𝑥2, 𝛽): 𝛽 ∈  𝛽}                                                 (17) 

With; 

𝑔 (𝑥1, 𝑥2, 𝛽) = ∑ 1𝐶𝑟
𝑔(𝑥1, 𝑥2)𝜇𝑖𝑗,𝑖𝑗′

′𝑟                                           (18) 

𝛽𝑡 = (𝜇, 𝛼𝑖1 , 𝛼𝑖2……𝛼𝑖𝑝1
, 𝛽𝑖′1 , 𝛽𝑖′2……𝛽𝑖′2

⋮ 𝛾1,𝛾2, … . 𝛾𝑝3, ). 
 

Where ∀⃓𝛾𝑙 = 𝛾𝑙𝑖𝑗,𝑖𝑗′
′  for some (𝑖𝑗 , 𝑖𝑗′

′ ) and is any of the types of interactions described and is given 

by one of the expressions from the different models given above. 

 

𝑁 = ⋃𝐶𝑟
𝑔

𝑟

 

So the selection of the model is given by the selection of a function 𝑔 in 𝑀 to approximatef. The 

set of observations will be used to calculate an estimator 𝛽 of the vector of parameters 𝛽 and select a 

function 𝑔 (𝑥1, 𝑥2, 𝛽̂).  

In the selection of the function 𝑔 (𝑥1, 𝑥2, 𝛽̂).  the minimization criterion of mean square of the 

prediction error (MSEP) or mean squared error (MSE) will be used. The vector of parameters 𝛽 will 

be estimated by the Least Squares (LS) Method.  

In the first stage of the approach , the models with a number of parameters less than or equal to a 

number 𝑝0 set by the user appropriately and within the permissible limits will be analyzed. 

Subsequently, a way must be found to reduce the number of models to be compared and the idea 

would be to make a reduction in such a way that between one step of the approach  and another the 

analyzed models do not change abruptly in terms of the number of parameters. In achieving this last 

objective, the concept of the neighbour model that is given below plays a fundamental role. 

 
5.1 Definition of neighbouring model 

Let 𝛿 ∈  {𝛼;  𝛽;  𝛾 (𝑥1, 𝑥2)}, let 𝑀𝑂 be a model, and let 𝜋0 be the partition determined by the 

function 𝑔0 (𝑥1, 𝑥2, 𝛽).   that defines the model 𝑀𝑂 .  sean 𝐶𝑜𝑘 the classes of this partition [14]. It is 

said that it is a neighbour model of 𝑀𝑉
𝛿 .  𝑀𝑂 According to 𝛿, if it is true: 

 

1. There is one and only one δ and one and only one class 𝐶𝑜𝑘 such that: 

 

𝐶𝑜𝑘  =  (𝐶𝑜𝑘′) 𝛿 ∪ (𝐶𝑣𝑘´´) 𝛿, 

 

where the superscript δ has been used to indicate that the class is affected only according to that 

parameter. 

 
2. For all 𝑟 ≠  𝑘 there exists 𝑟´, such that 𝑘´ ≠  𝑟´ ≠  𝑘´´, for which it is true: 
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𝐶𝑜𝑟 =  (𝐶𝑣𝑟)𝛿 

3. Furthermore, the form of the interaction of the model is the same as that of the 𝑀𝑉
𝛿 .  𝑀𝑂 Model. 

From the way the neighbour model has been defined, it is intuitively clear that it has one more 

parameter than 𝑀𝑂. In a problem with two qualitative variables, there are three parameter names, 

which have been represented as follows: 

𝛼 → levels of the first variable. 

𝛽 → levels of the second variable. 

𝛾 → Interactions. 

To build a selection approach, based on neighbouring models, it is necessary to decide in what 

order the nominations are taken to increase the number of parameters in the model. Since there is no 

preference between one factor and another, this order is irrelevant. As you have to decide on an 

order, it is proposed: 𝛼 →  𝛽 →  𝛾, for more details see [15]. 

5.2 Algorithm of proposed approach with two qualitative regressors 

Let 𝛾1 (𝑥1, 𝑥2,) be the form of interaction in the model 𝑀𝑙  (⋅), 𝑙 =  1,2, . . . , 10. Let 𝑝 (𝑙) be the 

maximum number of allowable parameters for the model 𝑀1(⋅). Now we let; 

 

𝑀𝑙
0 = {(𝑀𝑙 (𝑝): 𝑝 ≤ 𝑝𝑜; 1 ≤ 𝑝𝑜 ≤ 𝑝(𝑙)},                                            (19) 

Let;  

𝑟̂(𝑀𝑙 (𝑝)) =  𝑟̂(𝑙, 𝑝(𝑙)). 
 

An estimate of the MSEP for the 𝑀𝑙(𝑝) model; 

 Calculate the number of possible additive models for each 𝑝 =  1,2, . . . , 𝑝 (𝑙). Being 𝑙 a fixed 

number. 

 According to what is determined in the previous point, the computing facilities and the time 

and effort that one is willing to use, select a value 𝑝0 and thus the set that 𝑀𝑙
0 we will call the 

set of basic models will be determined.  

In what follows, the following notation will be used, for example (𝑀𝑙
0)𝑣

𝛼 is a neighbour model of 

according to the partitions 𝑀𝑙
0 corresponding to the parameter 𝛼. That is, a parameter has been 

increased with respect to the number it contained 𝑀𝑙
0 but the increase is made in the denomination α. 

The class formed by the neighbours of according to the parameter α, will be denoted by 𝑀𝑙
𝑣,𝛼

. 

 

Perform the following algorithm steps: 

1. Determine; 

 𝑀𝑙
0 =

𝐴𝑣𝑔 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝)

𝑀 ∈ 𝑀𝑙
0 . 

        Let; 

 𝑀𝑙
0 = 𝑀𝑙

0(𝑝′). 
 

where 𝑝′ represents the number of parameters in 𝑀𝑙
0 
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2. Let; 

 𝑀𝑙
𝑣,𝛼 = {(𝑀𝑙

0)𝑣
𝛼}. 

       Determine; 

  𝑀𝑙
1,𝛼 =

𝐴𝑣𝑔 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 1)

𝑀 ∈ 𝑀𝑙
𝑣,𝛼 . 

      Then we have, 

 𝑀𝑙
1,𝛼 = 𝑀𝑙

1,𝛼(𝑝′ + 1). 

3. Let; 

 𝑀𝑙
𝑣,𝛽

= {(𝑀𝑙
1,𝛼)𝑣

𝛽
}. 

      Determine; 

 𝑀𝑙
2,𝛽

=
Avg 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 2)

𝑀 ∈ 𝑀𝑙
𝑣,𝛽 . 

4. Let; 

𝑀𝑙
𝑣,𝛾(𝑥1,𝑥2)

= {(𝑀𝑙
2,𝛽

)𝑣
𝛾(𝑥1,𝑥2)

}. 

     Determine; 

 𝑀𝑙
3,𝛾(𝑥1,𝑥2)

=
Avg 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 3)

𝑀 ∈ 𝑀𝑙
𝑣,𝛾(𝑥1,𝑥2) . 

5. Let; 

𝑀𝑙
𝑣,𝛼 = {(𝑀𝑙

3,𝛾(𝑥1,𝑥2)
)𝑣
𝛼}. 

     Determine; 

 𝑀𝑙
4,𝛼 =

Avg 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 4)

𝑀 ∈ 𝑀𝑙
𝑣,𝛼 . 

6. Let; 

𝑀𝑙
𝑣,𝛽

= {(𝑀𝑙
4,𝛼)𝑣

𝛽
}. 

     Determine; 

      𝑀𝑙
5,𝛼 =

𝐴𝑣𝑔 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 5)

𝑀 ∈ 𝑀𝑙
𝑣,𝛼 . 

7. Let; 

    𝑀𝑙
𝑣,𝛾(𝑥1,𝑥2)

= {(𝑀𝑙
5,𝛼)𝑣

𝛾(𝑥1,𝑥2)
}. 

     Determine; 

𝑀𝑙
6,𝛾(𝑥1,𝑥2)

=
𝐴𝑣𝑔 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 6)

𝑀 ∈ 𝑀𝑙
𝑣,𝛾(𝑥1,𝑥2) . 

 

8. Repeat steps 5, 6 and 7. In this way, for 𝑞 ∈  {𝑧: 0 ≤  𝑧}, steps 2 +  3𝑞, 3 +  3𝑞 and 4 +
 3𝑞, would be determined by: 

⋮ 
⋮ 

 

2 +  3𝑞.− 

𝑀𝑙
𝑣,𝛼 = {(𝑀𝑙

3𝑞,𝛾(𝑥1,𝑥2)
)𝑣
𝛼}. 

    Determine; 

𝑀𝑙
1+3𝑞,𝑣

=
Avg 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 1 + 3𝑞)

𝑀 ∈ 𝑀𝑙
𝑣,𝛼 . 

     Let; 3 + 3𝑞.- 
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𝑀𝑙
𝑣,𝛽

= {(𝑀𝑙
1+3𝑞,𝛼

)𝑣
𝛽
}. 

     Determine; 

𝑀𝑙
2+3𝑞,𝑣

=
Avg 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 2 + 3𝑞)

𝑀 ∈ 𝑀𝑙
𝑣,𝛽 . 

       Let; 4 + 3𝑞.- 

𝑀𝑙
𝑣,𝛾(𝑥1,𝑥2)

= {(𝑀𝑙
3𝑞,2,𝛽

)𝑣
𝛾𝛾(𝑥1,𝑥2)

}. 

       Determine; 

𝑀𝑙
3𝑞,+3,𝑣

=
Avg 𝑀𝑖𝑛 𝑟̂(𝑙, 𝑝′ + 3 + 3𝑞)

𝑀 ∈ 𝑀𝑙
𝑣,𝛾(𝑥1,𝑥2) . 

When the corresponding denomination cannot be increased in a step, it is replaced by the next 

one in the order of affectation, see [16, 17]. 

6. Graphical Analysis and Simulation Study 

In this section, we introduce some useful graphics and simulated dataset to explore the 

interaction modelling. Two models have been considered neighbours when the classes that they 

define remain invariant except for one of them that are divided into two new classes. However, 

according to the number of parameters provided by the interactions, quite homogeneous groups 

could be formed. A model that is selected with one type of interaction in group 𝑘 can be examined by 

changing the form of its interaction for another in group 𝑘 +  1. 

 

0 → 𝜆𝛼𝑖𝛽𝑖 →

⋮ 𝑎)𝛼𝑖𝑑𝑖 

⋮ 𝑏)𝑐𝑖𝛽𝑖 

                ⋮ 𝑐)𝜆𝛼𝑖𝛽𝑖 + 𝑐𝑖𝛽𝑖 

                 ⋮ 𝑑)𝜆𝛼𝑖𝛽𝑖 + 𝛼𝑖𝑑𝑖 

1                    2                 3                             

→

⋮ 𝑎)𝜆 𝑐𝑖𝑑𝑖 

⋮ 𝑏)𝜆𝛼𝑖𝛽𝑖 + 𝛼𝑖𝑑𝑖 + 𝑐𝑖𝛽𝑖 →
 ⋮                  
   ⋮                   
4               

     ⋮ 𝑎)𝜆1 𝑈1𝑖𝑉1𝑖 + 𝜆2 𝑈2𝑖𝑉2𝑖 

⋮ 𝑏)𝛾𝑖𝑗                               
 
 5

     (20) 

Let the i-j-th remainder be; 

𝑟𝑖𝑗 = 𝑌̂𝑖𝑗 − 𝑌𝑖𝑗 

It is known that; 

𝑟𝑖𝑗,𝑖′𝑗′
𝐿
→

𝑁 (𝑓(𝑖𝑗 , 𝑖
′
𝑗′)) − 𝑔(𝑖𝑗 , 𝑖

′
𝑗′ , 𝛽(. )) 

As the normal distribution is a symmetric distribution, its mean coincides with the median and 

this fact can be used to think of some graphic situations that allow further exploration. If the model is 

correct then the median of the limiting distribution is zero. 

6.1 Graphical analysis through examples 

An analysis of the residuals is best performed with graphical tools. In order to gain clarity, the 

case where both qualitative variables can only take three values will be considered. 

Case 1: Suppose that a model with a form of interaction such as the one described in column 2 of 

Equation (17) was selected, and that the correct model (interaction) is of the form in a) of column 3: 
 

Med 𝑟lm = 𝛼𝑙𝑑𝑚  −  𝜆𝛼𝑙𝛽𝑚, 

= 𝛼𝑙 (𝑑𝑚 - λ𝛽𝑚) = 𝛼𝑙𝑘𝑚. 
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That is, the median of the l-m-th residue is a function of 𝛼𝑙. What ∑ 𝛼𝑙
3
𝑙=1 = 0. It has to; 

 

Med 𝑟lm = 𝛼2𝑘𝑚  −  𝛼3𝑘𝑚, 

= - Med 𝑟2m - Med 𝑟3m. 

A graph of residuals showing these against the 𝛼𝑖̂ against its indices, it can provide invaluable 

information to guide subsequent explorations. 

Some graphical illustrations are given in Figure 2 (graph 1-4) a graph like number 2 does not 

suggest that relationship and, therefore, no changes in that sense. While the graphs numbers 1, 3 and 

4, if they suggest changes, and then the model should be explored by making said change in the 

interaction modelling. 

 

 

Figure 2: The Correct Model in Case 1. 

Case 2: Consider the situation of case 1 but now the true model is the one given in b of column 3 in 

Equation (17). The result is similar but the dependency arises with respect to 𝛽𝑗; 

 

Med 𝑟𝑖,𝑗 = 𝑘𝑖𝛽𝑗. 

The residuals should be plotted against or against their indices 𝛽̂𝑗.These graphs can be useful in 

almost all situations accept the one where the model given in column 5 in Equation (17) is involved. 

 

6.2 Simulation Results 

All the models referred to above except 1 and 10; they are non-linear; therefore, it seems 

reasonable to reject the hypothesis of constant variance. This has been considered in a programming 

language made in Turbo Pascal “version 7.0”. Tables 2, 3 and 4 summarizes the twenty data sets 

were simulated with two models (ten with each) and it was obtained that the approach selected the 

optimal model in all cases; this is also shown in Figure 3. Moreover, if the data contains outlier 

values, conducting a meaningful statistical inference would be difficult, see e.g. [18, 19, 20, 21] for 

handling and solving this problem in several models. 
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Table 2: Model→ 𝐸 (𝑌𝑖𝑗,𝑖
′
𝑗′
) = 𝜇 + 𝛼𝑖𝑗 + 𝛽𝑖′𝑗′ + 𝜆𝛼𝑖𝑗𝛽𝑖′𝑗′ 



MSEP Selected the optimal model  MSEP of the optimal model 

4.535 𝑥 - 

4.291 - 6.292 

8.114 𝑥 - 

2.343 - 3.715 

6.091 𝑥 - 

4.310 - 9.184 

6.653 - 7.083 

3.073 𝑥 - 

10.344 𝑥 - 

5.416 - 2.952 

 

 

                          Figure 3: Approach to select the optimal model 

Table 3: Model→ 𝐸 (𝑌𝑖𝑗,𝑖
′
𝑗′
) = 𝜇 + 𝛼𝑖𝑗 + 𝛽𝑖′𝑗′ + 𝑐𝑖𝛽𝑖′𝑗′ 

  

MSEP Selected the optimal model MSEP of the optimal model 

13.605 - 10.932 

12.874 𝑥 - 

24.343 - 5.824 

7.028 𝑥 - 

18.272 𝑥 - 

12.931 - 20.291 

19.958 𝑥 - 

9.220 𝑥 - 

31.033 - 23.681 

16.248 𝑥 - 
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Table 4: Model→ 𝐸 (𝑌𝑖𝑗,𝑖
′
𝑗′
) = 𝜇 + 𝛼𝑖𝑗 + 𝛽𝑖′𝑗′ + 𝑐𝑖𝛽𝑖′𝑗′ 

  

MSEP Selected the optimal model MSEP of the optimal model 

35.374 𝑥 - 

33.473 - 31.723 

43.872 - 18.801 

18.272 𝑥 - 

47.506 - 53.271 

33.620 𝑥 - 

51.891 - 49.061 

63.292 𝑥 - 

70.872 - 10.932 

80.687 𝑥 - 

  

7.  Concluding Remarks 

In this paper, we propose a new two-qualitative regressors approach to regression model 

selection, within a predefined class of models, which will be utilized to develop a method for 

selecting qualitative variables the approach is based on the minimization of an estimate of the MSEP. 

Some interaction structures are considered, since two models were used to simulate several data sets, 

and the technique was found to identify the optimal model in all cases. When compared to other 

estimates, the results suggest that significant improvements in bias and efficiency can be made. Some 

graphs are proposed to diagnose the form of the interaction. The proposed approach achieves better 

accuracy with reduced MSEP, improved stability, and faster convergence compared to other models. 
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