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ABSTRACT           

         Although critical bucking shear stress of plate girders loaded mainly in shear have been 
studied for so many years by multiple researchers, but the matter of choosing the right boundary 
conditions at the junction between the web plate and the flange & stiffener is still a problem of 
Engineering judgment and standards approach. all current codes of practice and standards 
adopt a conservative design criterion by taking the simply supported boundary conditions at this 
junction. However, in this study, we have proved Two theoretical methods were employed to 
investigate such situation that the boundary conditions along the junction between the webs and 
the flanges as built-in and the other boundary conditions along the position of the vertical 
stiffeners are assumed to be simply supported due to the relatively small stiffness of the 
stiffeners could be reached. The first method using the minimum potential energy concept to 
obtain a semi-exact equation from which the interaction equation can be deduced. The second 
method is performed by using a finite element technique (ANSYS software) to investigate the 
effects of the geometric parameters on the boundary conditions at the juncture.  

 
Keyword: Plate Girder, Stiffened Web, Shear Strength, Minimum Potential Energy, Ansys 

 

1- INTRODUCTION    
1.1 Background         
      Plate girders are used extensively in the world and usually obtained by the assemblage of 

thin steel plates (built-up sections) hence the size of the flange and web are the discretion of the 

designer, however, it is necessary to produce an efficient design by providing girders of high 

strength to weight ratio. Finding an efficient section faces conflicting requirements. The web 

depth must be large to produce low axial force in flanges moreover to reduce the self-weight the 

web thickness should be minimum, consequently the web plate becomes more slenderness and 

tends to buckle at relatively low values of applied shear force therefore buckling must be 

considered in establishing their dimensions. To overcome this problem, vertical and horizontal 

stiffeners are used to stiffen webs of the plate girders hence, there are several types of plate 

girders; unstiffened, transversely stiffened, and transversely and longitudinally stiffened. Many 

researchers assumed that the web panels are simply supported, while others assumed that the 

juncture behaved like a clamped support, and others proposed intuitively that the boundary 

condition lies halfway between the simply supported and clamped conditions.  To discuss this 

confusion, other research studies must be performed to achieve a firm situation for definition the 

boundary condition at the juncture between the web and flanges in designing plate girder webs. 

      Given the above topic and taking into account the scope of this paper, studies on the web 

panel behavior of steel plate girders may be classified into studies on the shear behavior of 
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steel plate girders and the effect of the boundary condition. A brief summary of each of them 

shall be presented as follows: 

1.2 Literature Review 

1.2.1 Studies on the Elastic shear buckling strength of steel plate girder 

        Plated structure which assumed to resist shear only may be analyzed and 
checked by considering the plates as pure shear panels. Such panels may be decks or 
walls in topside modules. Then all axial membrane stresses need to be carried by the 
adjoining framing only which should be analyzed and checked accordingly. Web 
buckling due to shear is essentially a local buckling phenomenon. Depending upon the 
geometry, the web plate is capable of carrying additional loads considerably above that 
at which the web starts to buckle due to post-buckling strength.  Basler [1,2] was the 
first to develop a method for considering the reserve strength of plate girders 
constructed from hot-rolled plates in their post-buckling region. This reserve strength 
was caused by the action of the tension field. According to the proposed assumptions, 
the pure shear continues to act on the web until the shear buckling load reaches. After 
this stage, the principal compressive stress remains constant [2,3,4]. One may arrive at 
the renowned concept that states in plate girders reinforced with transverse stiffeners, 
the tension field action is required to be restrained with the aid of flanges and stiffeners 
so that the webs can develop their desired post-buckling strength [3]. However, in a 
series of analytical and experimental studies, Lee and Yoo [5,6] and Lee et al. [7,8], 
showed that the flanges and transverse stiffeners do not necessarily behave as 
anchors. In Basler's method, the elastic shear buckling strength of web plates, Vcr, 
subjected to pure shear loading is computed using the classical plate buckling 
equation, which is given by Timoshenko and Gere [9] as. 

(1) 
𝜏𝑐𝑟 = 𝐾

𝜋2𝐸

12(1−𝜐2)
(

𝑡

𝑑
)

2

  

    Where,  𝐾  is the elastic shear buckling coefficient, which is dependent on the 
boundary conditions and aspect ratio of the web panel (Φ). Where the elastic shear 
buckling coefficient, 𝐾𝑠𝑠of a web with simply supported conditions at all four edges was 
originally used in Basler's method [4,5,9] as. 

𝐾𝑠𝑠 = 4 +
5.34

𝜙2              𝐹𝑜𝑟   𝜙 =
𝑎

𝑑
< 1  (2a) 

𝐾𝑠𝑠 = 5.34 +
4

𝜙2              𝐹𝑜𝑟   𝜙 =
𝑎

𝑑
≥ 1  (2b) 

 
Basler[1,2] assumed that web panels behave similarly to simply supported plates since 
flanges are not stiff enough to provide a desirable torsional rigidity. Based on over 300 
numerical results Basler modified this method. According to Lee et al. [10] who 
investigated the shear behavior of steel I-girders, a new method named Basler's 
modified method was proposed to calculate the elastic shear buckling coefficient which 

depends on the ratio of flange thickness to web thickness, (
𝑡𝑓

𝑡𝑤
). The real boundary 

condition of the web panel was found to be closer to the clamped case in the range of 
practical design parameters of plate girders. Besides, to calculate the elastic shear 
buckling load using Basler's method, they proposed the following relations: 

𝐾𝑠𝑓 =
5.34

∅2 +
5.34

∅
+ 8.39∅ − 3.44             𝐹𝑜𝑟   𝜙 =

𝑎

𝑑
< 1                                        (3a) 

𝐾𝑠𝑓 = 8.98 +
5.61

∅2 −
1.99

∅3                             𝐹𝑜𝑟   𝜙 =
𝑎

𝑑
≥ 1                                         (3b) 

𝐾𝐿𝑒𝑒 = 𝐾𝑠𝑠 +
4

5
(𝐾𝑠𝑓 − 𝐾𝑠𝑠) [1 −

2

3
(2 −

𝑡𝑓

𝑡𝑤
)]                𝑓𝑜𝑟 0.5 ≤

𝑡𝑓

𝑡𝑤
< 2                  (3c) 

𝐾𝐿𝑒𝑒 = 𝐾𝑠𝑠 +
4

5
(𝐾𝑠𝑓 − 𝐾𝑠𝑠)                                             𝑓𝑜𝑟 

𝑡𝑓

𝑡𝑤
≥ 2                             (3d) 
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Where 𝐾𝑠𝑠 𝑎𝑛𝑑 𝐾𝑠𝑓 are the elastic shear buckling coefficient of the simple-simple case 

and simple-fixed case respectively, which signifies the usual case in steel plate girders, 
may imply that the web-flange junction is 80% clamped. 
𝐾𝑐𝑟 = 0.2𝐾𝑠𝑠 + 0.8𝐾𝑠𝑓  

However, in these equations the flange width is not taken into account, ignoring an 
important dimension in the surrounding member’s rigidity 
 Al-AZZawi. Z and et (11) have modified the equation for determining the critical 
buckling shear stress coefficients, the original equation was proposed by Lee et. al 
[10], but some of the numerically tested specimens in this work were found out of their 
bounds leading to a non-safe design. This equation was modified using the data 
analyzed and a new modified equation is presented. To account for the new data in this 
study will result in the following new equation: 

𝐾𝐴𝐿−𝐴𝑧𝑧𝑎𝑤𝑖 = 𝐾𝑠𝑠 +
4

5
(𝐾𝑠𝑓 − 𝐾𝑠𝑠) [1 −

2

3
(3 −

𝑡𝑓

𝑡𝑤
)]                𝑓𝑜𝑟 1.5 ≤

𝑡𝑓

𝑡𝑤
< 3                 (4a) 

𝐾𝐴𝑙−𝐴𝑧𝑧𝑎𝑤𝑖 = 𝐾𝑠𝑠 +
4

5
(𝐾𝑠𝑓 − 𝐾𝑠𝑠)                                             𝑓𝑜𝑟 

𝑡𝑓

𝑡𝑤
≥ 3                           (4b) 

    Also, Al-Azzawi [11] has studied The effect of stiffener rigidity, which assumed 
conservatively that the stiffener is stiff only enough to provide simply supported 
boundary condition at its junction with the web plate, that’s found that the true for 
specimens with aspect ratio, aw /hw > 1.0, while this is not true for specimens with 
aspect ratio, aw /hw =1.0. An equation taking the stiffener rigidity effect in increasing the 
buckling coefficient is proposed. 

𝑘𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑒𝑟 𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑘 + (0.5 ln (
𝑡𝑠

𝑡𝑤
))                                                                            (5a) 

Ks, must be reduced for specimens with a slenderness ratio 
ℎ𝑤

𝑡𝑤
≤ 125 by the following 

factor: 

𝑘125 𝐸𝑓𝑓𝑒𝑐𝑡 = 𝑘 + (
𝑎𝑤

ℎ𝑤
− 1)                                                                                           (5b) 

Eurocode 3 [13] shear-strength provisions. An adaptation of Höglund's method [14] for 
non-rigid end posts was proposed by Daley et al. [4], vetted by the AISC Specification 
Committee, and adopted into the AISC 360–16 [15] specification. According to AISC 
360–16 (Chapter G) [15] which is inspired by Basler's theory, the design shear strength 
of web plates, Vu=ϕvVn, with relatively small initial geometric imperfection, D/120000 [5], 
shall be determined as. 

𝑉𝑛 = 0.6𝜎𝑦𝑤ℎ 𝑡𝑤 [
1.51 𝑘𝐴𝐼𝑆𝐶𝐸

(
ℎ𝑤
𝑡𝑤

)
2

𝜎𝑦𝑤

]             For 𝜆𝑤 > 1.37     (Elastic Buckling)                      (6a) 

 

𝑉𝑛 = 0.6𝜎𝑦𝑤ℎ 𝑡𝑤 [
1.1  

(
ℎ𝑤
𝑡𝑤

)
√

𝑘𝐴𝐼𝑆𝐶𝐸

𝜎𝑦𝑤
]           For 1.1 < 𝜆𝑤 > 1.37  (Inelastic Buckling)           (6b) 

 
𝑉𝑛 = 0.6𝜎𝑦𝑤ℎ 𝑡𝑤                                     For 𝜆𝑤 ≤ 1.1     (Plastic Buckling)                  (6c) 

where Vn is nominal shear strength, ϕv=0.9 is the resistance factor for shear, σyw is the 
web plate yield stress, hw is the girder overall depth, and λw is the non-dimensional web 
slenderness parameter determined as. 

𝜆𝑤 =
ℎ𝑤

𝑡𝑤
√

𝜎𝑦𝑤

𝑘𝐴𝐼𝑆𝐶𝐸
                                                                                                            (7)  

Also, KAISC is the elastic shear buckling coefficient according to AISC specifications 
written as. 

𝐾𝐴𝐼𝑆𝐶 = 5 +
5

∅2            For Φ=
𝑎𝑤

ℎ𝑤
< 3                                                                          (8a) 

𝐾𝐴𝐼𝑆𝐶 = 5                    For Φ=
𝑎𝑤

ℎ𝑤
≥ 3                                                                          (8b) 
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2-Theoretical Analysis 
2.1-Minimum Potential Energy Method 
          This method used in this study depends on the assumption of a suitable deflection form 
(w) that satisfies the assumed end conditions. This deflection function can satisfy the boundary 
conditions of the present study as built-up edges at the position of the flanges and simply 
supported edges at the position of the vertical stiffeners as shown in Fig.(1): 

 

 

Fig.(1): Boundary condition and loading pattern of models in the FE analysis 
 
Thus, we have, 

𝑤 = 𝐴1𝑠𝑖𝑛
𝜋𝑥

𝑎 
𝑠𝑖𝑛2 𝜋𝑦

𝑏
+ 𝐴2 𝑠𝑖𝑛

2𝜋𝑥

𝑥
(𝑐𝑜𝑠

𝜋𝑦

𝑏
− 𝑐𝑜𝑠

3𝜋𝑦

𝑏
)                                                                      (9) 

Where A1 and A2 are unknown coefficients, The strain energy in bending is given by: 

𝑈𝐵 =
𝐷

2
∫ ∫ [(

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2)
2

− 2(1 − 𝜐) (
𝜕2𝑤𝜕2𝑤

𝜕𝑥2𝜕𝑦2 − (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

)] 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0
                                               (10) 

After substituting with w and performing the required integrations, we get; 

𝑈𝐵 =
𝐷

2
[(

3

16

𝜋4𝑏

𝑎3 +
𝜋4𝑎

𝑏3 +
1

2

𝜋4

𝑎𝑏
) 𝐴1

2 + (8
𝜋4𝑏

𝑎3 +
41

2

𝜋4𝑎

𝑏3 + 20
𝜋4

𝑎𝑏
) 𝐴2

2 − 2(1 − 𝜐) (
1

4
𝐴1

2 𝜋4

𝑎𝑏
+ 10𝐴2

2 𝜋4

𝑎𝑏
−

1

4
𝐴1

2 𝜋4

𝑎𝑏
+ 10𝐴2

2 𝜋4

𝑎𝑏
)]                                                                                                                      (11) 

In the final form, the strain energy is given by: 

𝑈𝐵 =
𝐷

2
[𝐶1𝐴1

2 + 𝐶2𝐴2
2]                                                                                                                 (12) 

Where: 𝐶1 = (
3

16

𝜋4𝑏

𝑎3 +
𝜋4𝑎

𝑏3 +
1

2

𝜋4

𝑎𝑏
)         , 𝐶2 = (8

𝜋4𝑏

𝑎3 +
41

2

𝜋4𝑎

𝑏3 + 20
𝜋4

𝑎𝑏
)  

The work done by the applied forces; 

𝑇 = −
256

45
𝜏𝑎𝑣𝑡𝐴1𝐴2                                                                                                                   (13) 

Now, the total potential energy of the system is expressed as: 
V=UB+T                   Thus; 

V=
𝐷

2
[(

3

16

𝜋4𝑏

𝑎3 +
𝜋4𝑎

𝑏3 +
1

2

𝜋4

𝑎𝑏
) 𝐴1

2 + (8
𝜋4𝑏

𝑎3 +
41

2

𝜋4𝑎

𝑏3 + 20
𝜋4

𝑎𝑏
) 𝐴2

2 − 2(1 − 𝜐) (
1

4
𝐴1

2 𝜋4

𝑎𝑏
+ 10𝐴2

2 𝜋4

𝑎𝑏
−

1

4
𝐴1

2 𝜋4

𝑎𝑏
+

10𝐴2
2 𝜋4

𝑎𝑏
)] −

256

45
𝜏𝑎𝑣𝑡𝐴1𝐴2 

V=
𝐷

2
[𝐶1𝐴1

2 + 𝐶2𝐴2
2] −

256

45
𝜏𝑎𝑣𝑡𝐴1𝐴2                                                                                          (14) 

Minimizing this value requires that:
𝛿𝑉

𝛿𝐴1
= 𝐶1𝐷𝐴1 −

256

45
𝜏𝑎𝑣 . 𝑡. 𝐴2  and   

𝛿𝑉

𝛿𝐴2
= 𝐶2𝐷𝐴2 −

256

45
𝜏𝑎𝑣 . 𝑡. 𝐴1   

Probably the best-known energy technique is the Rayleigh-Ritz procedure which requires that: 
𝛿𝑉

𝛿𝐴1
= 0 , 

𝛿𝑉

𝛿𝐴2
= 0      Thus, we arrive at the following relationship: 

𝜏𝑐𝑟 =
3.47𝐷𝜋2

𝑏2𝑡
√

12+164𝜙2+62𝜙2+242𝜙6+174.75𝜙4

32𝜙6                                                                              (15) 

Which is the final required equation which links the critical shear stress in the case of a 
rectangular plate subjected to shear stress with the prescribed boundary conditions 

𝜏𝑐𝑟 =
𝐸𝜋2

12(1−𝜐2)
(

𝑡

𝑑
)

2

√
12+164𝜙2+62𝜙2+242𝜙6+174.75𝜙4

2.657𝜙6     

K=√
12+164𝜙8+62𝜙2+242𝜙6+174.75𝜙4

2.657𝜙6                                  where 𝜙 =
𝑎𝑤

ℎ𝑤
                                     (16) 
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3- Comparison with Previous Test Data 

       To clarify the differences between the shear buckling coefficient resulted in this study and 
the previous coefficients, Table [1] have been done to indicate the relationships between the 
proposal coefficient and elastic shear buckling stress the ones belong to other investigators, 
compared to Lee and Yoo [6] which conducted an experimental study of steel plate girders with 
non-rigid end posts. In that research, 10 scaled plate girder models were tested to investigate 
the shear behavior of web panels up to failure. The girders were simply supported with a 
concentrated load applied at the mid-span. All the geometric and material properties, as well as 
the support and loading conditions of the aforementioned experiment, are available in Refs. [6]. 
In this study, to evaluate the proposed simulation technique, the test models are selected and 
the results obtained from numerical analysis are compared with those of experiments. 
  

Table (1): The elastic shear buckling load (kN) of propped Eq compared to the Ref [6] & 
Eq. (16). 

Model 𝒂𝒘

𝒉𝒘

 

(Φ) 

tf/tw Coefficient of Buckling (Kq) Elastic shear buckling loading (KN) 

𝒌𝒒
𝒑𝒓𝒐𝒑 𝑬𝒒

 𝒌𝒒
𝑳𝒆𝒆 𝑻𝒆𝒔𝒕 

 

𝒌𝒔𝒇
𝑩𝒂𝒔𝒍𝒆𝒓 𝒌𝒔𝒔

𝑩𝒂𝒔𝒍𝒆𝒓()
 𝒌𝒒

𝑨𝑰𝑺𝑪 𝑽𝒄𝒓
𝒑𝒓𝒐𝒑 𝑬𝒒

  

 

𝑽𝒄𝒓
𝑳𝒆𝒆 𝑻𝒆𝒔𝒕 

 
𝑽𝑪𝒓

𝑷𝒓𝒐𝒑 𝑬𝒒

𝑽𝑪𝒓
𝑳𝒆𝒆 𝑻𝒆𝒔𝒕 

𝑽𝒄𝒓
𝑩𝒂𝒔𝒍𝒆𝒓()

 𝑽𝑪𝒓
𝑷𝒓𝒐𝒑 𝑬𝒒

𝑽𝑪𝒓
𝑩𝒂𝒔𝒍𝒆𝒓

 
𝑽𝒄𝒓

𝑪𝒂𝒓𝒅𝒊𝒇𝒇
 𝑽𝑪𝒓

𝑷𝒓𝒐𝒑 𝑬𝒒

𝑽𝑪𝒓

𝑪𝒂𝒓𝒅𝒊𝒇𝒇
 

𝑽𝒄𝒓
𝑨𝑰𝑺𝑪 

G1 1 3.75 15.70 9.34 15.63 9.34 10 288.5 282.43 1.02 278.31 1.03 304.90 0.95 243.5 

G2 1 2.5 15.70 9.34 15.63 9.34 10 311.36 332.45 0..94 343.63 0.91 351.73 0.89 243.5 

G3 1 3.75 15.70 9.34 15.63 9.34 10 311.36 337.35 0.93 343.63 0.91 386.60 0.81 243.5 

G4 1.5 3.75 6.25 6.37 10.88 6.37 7.2 271.57 268.80 1.01 250.68 1.08 292.98 0.93 263.8 

G5 1.5 2.5 6.25 6.37 10.88 6.37 7.2 287.49 286.35 1.004 285.47 1.007 284.43 1.01 175.8 

G6 1.5 5 6.25 6.37 10.88 6.37 7.2 322.43 312.83 1.03 285.47 1.12 309.26 1.04 175.8 

G7 2 2.5 8.86 5.33 10.13 5.33 6.3 250.73 258.90 0.96 231.14 1.08 228.99 1.09 152.2 

G8 2 3.75 8.86 5.33 10.13 5.335 6.3 250.73 276.45 0.94 231.14 1.08 251.64 0.99 152.2 

G9 3 2.5 5.57 4.60 9.53 4.60 5 164.4 161.81 1.02 209.76 0.78 214.08 0.77 182.6 

G10 3 3.75 5.57 4.60 9.53 4.60 5 185.82 194.57 0.96 209.76 0.89 225.06 0.83 182.6 

 

4- Finite Element Modeling 
     The literature indicates that several studies in shear behavior, based on the slenderness 
ratio of the web plate parameter (hw/tw), have addressed their result, which is unable to account 
for the effect of web plate boundaries in web shear behavior. [4,12]. Accordingly, conducting a 
comprehensive study that considers the effects of the flange-to-web stiffness ratio, aspect ratio, 
and non-dimensional web plate slenderness parameter (λ) on the elastic and plastic shear 
buckling behavior is necessary. So, several FEM models for a thorough parametric study are 
developed here. Using these models, the effect of the above-mentioned parameters on the 
elastic shear buckling strength and shear strength of girders are studied. To investigate the 
research objectives, 150 models including 16 girders with slender, non-compact, and compact 
webs, along with non-compact and compact flanges were constructed using the FEM software, 
ANSYS® platform [16].  Shell element 181 with four nodes, each with six degrees of freedom, 
and a reduced integration scheme was selected. As shown in Fig. 2, eight girders with span 
lengths of a =1000 mm, a=2000mm, and a= 700 mm, equal web depth of hw =1000 mm, and 
equal flange width of bf=200mm are selected. Considering these two girders, 16 models with 
various values of web and flange thickness are generated. The details and names of the models 
are presented in Table 3. Selecting a wide range of thickness and slenderness parameters 
provides the possibility for studying the elastic/plastic buckling behavior of slender and stocky 
plates. 
4-1 Material properties 
 
      The material behavior of the steel is assumed to be elastic-perfectly plastic. The flange 
material has Young's modulus E of 200GPa, the normal yield stress of 303.8MPa, and 
Poisson's ratio of 0.3. Besides, the web plate material has Young's modulus of 200 GPa, the 
normal yield stress of 318.5MPa, and Poisson's ratio of 0.3. It must be noted that these material 
properties are selected from G2 test model in Ref. [6].  
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4-2 Verification of the numerical modeling process 
     Lee and Yoo [6] conducted an experimental study of steel plate girders with non-rigid end 
posts. In that research, 10 scaled plate girder models were tested to investigate the shear 
behavior of web panels up to failure. The girders were simply supported with a concentrated 
load applied at the mid-span. All the geometric and material properties, as well as the support 
and loading conditions of the aforementioned experiment, are available in Refs. [6,17,18]. In this 
study, to evaluate the proposed simulation technique, the test model G2 is selected and the 
results obtained from numerical analysis are compared with those of experiments. According to 
the test report, the total shear strength of G2 girder is equal to 339.38kN, which is very close to 
Vu = 332.45 kN as the ultimate shear strength predicted by the FEM simulation, with a 
maximum difference of −1.02%. As seen in Table (2), there is a good agreement between the 
FEM and that of the experimental test both in terms of failure mode and overall behavior. 

 
Table (2): Comparison between the presented FE model, theoretical analysis, and the 

tested model presented by Lee (6). 
Plate 

model 

The presented FE model The tested model presented by Lee et al. [6] 𝑽,𝑭𝑬

𝑽𝑳𝒆𝒆,𝑻𝒆𝒔𝒕𝟗𝟔)

 
The elastic buckling shapes VFE  

(KN) 
The failure tested shape VLee,et.al 

(KN) 

G2 

 

339.38 

 

332.45 1.02 

G3 

 

311.07 

 

337.35 0.92 

G5 

 

263.4 

 

286.35 0.92 

G7 

 

233.66 

 

258.90 0.90 

G8 

 

302.20 

 

276.45 1.09 

 
4-3 Parametric Study  
 
        To investigate the effect of the different properties of the cross-section on calculating the 
critical load of the plate girder a large number of numerical analyses have been carried out on 

several combinations of three key geometric variables,
𝑎𝑤

ℎ𝑤
 , 

ℎ𝑤

𝑡𝑤
and 

𝑡𝑓

𝑡𝑤
,. The ranges of parameters 

examined in this study are listed in Table (3):  
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Fig. (2): FE model of flat web under shear and edge restraints. 

 
Table:(3): Classification of Plate girder Models 

Model aw hw 

(mm) 
tw 

(mm) 
bf 

(mm) 
tf 

(mm) 

𝒉𝒘
𝒕𝒘

⁄  ∅ =
𝒂𝒘

𝒉𝒘
⁄  𝒕𝒇

𝒕𝒘
⁄  

PLG1 

1000    1000 4 

200 

 

10 

250 1 

2.5 
PLG2 15 3.75 
PLG3 20 5 
PLG4 25 2.5 
PLG5 

 

1000 

 

 

1000 

 

5 

10 

200 1 

2 
PLG6 15 3 
PLG7 20 4 
PLG8 25 2 
PLG9 

 

2000 

 

 

1000 

 

6 

10 

166.67 2 

1.67 
PLG10 15 2.5 
PLG11 20 3.33 
PLG12 25 1.67 
PLG13 

 

700 

 

 

1000 

 

3 

10 

125 0.70 

2.5 
PLG14 15 1.87 
PLG15 20 2.5 
PLG16 25 1.87 

 
PLG1 – 1st Mode 
Vn=103.43KN 

PLG1 – 2nd Mode 
Vn=103.63KN 

PLG1 – 3rd Mode 
Vn=113.65KN 

  
 

PLG7 – 1st  Mode 
Vn=205.07KN 

PLG7 – 2nd  Mode 
Vn=205.45KN 

PLG7 – 3rd Mode 
Vn=411.2KN 

 
 

 

PLG11 – 1st  Mode 
Vn=314.7KN 

PLG11 – 2nd  Mode 
Vn=320.6KN 

PLG11 – 3rd Mode 
Vn=326.99KN 

 
 

 

PLG14 – 1st  Mode 
Vn=54.67 KN 

PLG14 – 2nd  Mode 
Vn=63.65 KN 

PLG14 – 3rd Mode 
Vn=99.14KN 

  
 

Fig.(3): PG1, PG7, PL11, and PG14  Eigen-buckling mode shapes 
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Table. (4) Results of the finite element analysis (FEA) for ultimate shear loads.  
 

Model 
𝒉𝒘

𝒕𝒘
⁄  

∅ 

=
𝒂𝒘

𝒉𝒘
⁄  

𝒕𝒇
𝒕𝒘

⁄  

Prop Eq 
(16) 

FE for 
shear 
Loads  

𝑽𝑼,𝑭𝑬
𝑽𝒏,𝑷𝒓𝒐𝒑,𝑬𝒒(𝟏𝟔)

⁄  

𝑽𝒏 𝑷𝒓𝒑 𝑬𝒒 

KN 

(𝑽𝑼) 
KN 

PLG1 

250 1 

2.5 181.44 205.91 1.13 
PLG2 3.75 181.44 186.82 1.03 
PLG3 5 181.44 183.02 1.008 
PLG4 6.25 181.44 184.61 1.02 
PLG5 

 

200 

 

 

1 

 

2 354.35 321.97 0.91 
PLG6 3 354.35 378.12 1.06 
PLG7 4 354.35 401.97 1.13 
PLG8 5 354.35 401.97 1.13 
PLG9 

 

166.67 

 

 

2 

 

1.67 735.61 412.41 0.56 
PLG10 2.5 735.61 444.75 0.60 
PLG11 3.33 735.61 529.79 0.72 
PLG12 4.16 735.61 602.68 0.82 
PLG13 

 

333.33 

 

 

0.7 

 

1.25 96.39 99.12 1.02 
PLG14 1.87 96.39 99.14 1.03 
PLG15 2.5 96.39 98.79 1.02 
PLG16 3.12 96.39 98.56 1.02 

 
 

5- Results and Discussion 
       The study presented in this paper which is, mainly, based on an accurate theoretical 
procedure supported by a finite element check for the behavior of the plate girder under pure 
shear, can be used to obtain a variety of results. The careful inspection of these results gives 
the following conclusions:  
 A comprehensive theoretical analysis is performed to obtain a closed-form solution for the 
critical shear stress of the web of the plate girder. The boundary conditions for the plate panel 
were, also chosen to satisfy the real situation. 

1- For aspect ratio equal 1.0 the effect of flange thickness to web thickness on critical load 
is obvious. When tf increases, the boundary condition at web- flange juncture is closer 
to fixed end conditions.  

2- It is also clear for aspect ratio equal 1.0 that whenever the slenderness ratio decreases, 
the boundary condition at web- flange juncture loses its fixation condition and acts as a 
simple end condition.  

3- For aspect ratio equal 0.7 the effect of flange thickness to web thickness ratio has no 
effective influence on the boundary condition, as the shear load has the same value at 
all flange-to-web thickness ratio especially for slenderness ratio more than 200 

4- For aspect ratio equal to 0.7 it was concluded that whenever the thickness of web 
increases, the boundary condition at web- flange juncture loses its fixation condition. 

5- In the case of low and high slenderness ratio plate with aspect ratio equal to 1.0, it is 
clear that the critical shear load produced by energy method considering simple 
condition at the juncture between web and flange is less than the critical shear load 
produced by other methods discussed before. 

6-  In the case of a low slenderness ratio plate with an aspect ratio equal to 0.7, it is clear 
that the critical shear load produced by the energy method considering either simple or 
clamped condition at the juncture between web and flange is around the critical shear 
load produced by other methods discussed before.  
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6- Conclusion  

The theoretical analysis and finite element analysis for predicting the behavior of plates and 
stiffened panels under pure shear which has been presented in this study was used to obtain a 
variety of results. These resulting data lead to the following conclusions:  

1- The parametric study performed by the finite element technique showed that it is more 
realistic to consider the boundary conditions between the web and the flanges as built-in edges 
due to the high rigidity of the flanges compared to that of the vertical stiffeners.  
2- By using the principle of minimum potential energy, it was possible to obtain an expression 
from which the critical shear stress for simple-built –in plate panels can be obtained. The results 
from this equation were compared with the results from the Finite element analysis where a 
satisfactory agreement was noticed.  
3- Applying the obtained results by calculating the critical and allowable shear stresses for 
panels under pure shear, showed that a more economical, yet safe, design can be obtained for 
the web of such panels.  
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