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1 INTRODUCTION  

 

 

Human immunodeficiency virus type-1 (HIV-1) is a retrovirus that induces 

acquired immunodeficiency syndrome (AIDS). HIV-1 targets CD4+ T cells, which are the 

most numerous white blood cells in the host immune system and play a crucial role in 

protecting the body from infection. The first case of HIV infection was identified in 1981 

and since then HIV has become one of the most deadly infections in the world and has a 

devastating impact on human health and even life [1]. For a decade, it was thought that the 

spread of HIV-1 in hosts was primarily due to free circulation of virus particles, with a 

repeated process consisting of virus attachments to T cells. However recent studies have 

shown that the infection can also be passed directly from infected cells to susceptible cells. 

In order to gain a better understanding of virus dynamics within the host and to 

predict how antiviral treatment effectiveness will affect the course of an infection, 
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Human immunodeficiency virus type 1 (HIV-1) infection is studied in this 

paper using a fractional order mathematical model. The model is made up of a 

set of four nonlinear diff erential equations that account for two forms of 

infection transmission (cell-to-cell and virus-to-cell) as well as a saturated 

immune response.The positivity and boundedness of the fractional order model 

solutions are studied. The values of equilibrium points and two fundamental 

threshold parameters have been computed. In addition, we proved global 

asymptotic stability for the model equilibrium points given. To corroborate the 

analytical conclusions and investigate the model’s dynamical behavior, 

numerical simulations were used. 
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mathematical models of HIV-1 dynamics have developed into useful tools (see e.g. 

[2]-[6]). These models originally comprised a set of ordinary differential equations, and 

they have proven useful for comprehending the dynamics of HIV infection ([7] and [8]). 

However, recent research has shown that models based on fractional order differential 

equations (FODS) can accurately capture many viral infection-related events. According to 

Rossikhin [9], fractals that seem to be prevalent in biological systems are related to 

fractional order differential equations. Fractional calculus was initially only used in pure 

mathematics studies until the 1990s when it was applied to issues in nature and society. 

Additionally, fractional-order electrical conductivity has been discovered in the cell 

membranes of living things. Scientists have given modeling in the fractional order more 

attention as a result of the thorough investigation of dynamical issues [10]– [14]. 

All models mentioned in previous papers that studied HIV infection did not take 

into account the effect of CTLs. Cytotoxic T lymphocytes (CTLs) are an important and 

necessary component of innate immunological opposition to infection and disease 

management. It play a critical role in protecting the body from the viral load by eliminating 

infected cells during HIV infection. As a result, CTLs are thought to be the primary host 

immunological component determining the viral load. From this point of view, the effect of 

CTLs on models of HIV was considered in many publications [15]-[18], these papers 

considered only the interaction between the HIV particales and only one target cell which 

is CD  T cells. Due to recent studies that have proven that the infection can also be 

transmitted directly from infected cells to susceptible cells, then two forms of disease 

transmission: virus-to-cell and cell-to-cell was presented [19], [20] and [21]. All previous 

articles assumed that the CTL immune response is represented by a bilinear function, while 

the number of infected cells when reaches a certain level, the rate of CTL cell production 

often stops rising and enters a saturation condition. Therefore, De Boer [22] asserted that 

the bilinear rate cannot represent many immune responses that are working together to 

manage chronic infection and suggested an immune response function based on a 

competitive saturation term. Then [23]-[27] opted for the saturated CTL response function. 

Motivated by above biological reasons, in this paper we consider a within-host 

HIV-1 infection model, the model presented by four fractional order differential equations. 

The proposed model is a modification for the model presented by Wang et al. [23].  The 

authors in [23] studied the effect of the Cytotoxic T lymphocytes (CTLs) immune response 

as a saturated term on HIV dynamics when infections being a result of interaction with 

virus particles but in these study we considered both virus-to-cell and cell-to-cell 

transmissions. This manuscript is structured as follows: In Section 2, we provide a 

definition of fractional-order derivatives and theorems related to them. In Section 3, we 

present our  HIV-1 infection model. In Section 4 we analyze the local stability for 

equilibrium points using characteristic equations. As for Section 5, we use Lyapunov 

method and apply LaSalle’s invariance principle to prove the global asymptomatic stability 
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for equilibrium points. We review the numerical simulations of the system in the last 

section. 

2  MAIN CONCEPTS OF FRACTIONAL CALCULUS 

 

 
In this part, we explain the fundamental concepts and lemma of fraction calculus, 

which is an essential tool in modeling biological system processes and may offer a precise 

description not only of the disease’s current condition but also of all its historical stages. 

 

Definition 1 Define a function           , then fractional integral of it of order 

        given as follows:  

       
 

    
∫  

 

 

                

 where      is the gamma function [28], and the Caputo fractional derivative of order   

is given by:  

 

                    (1) 

 

 where         and  (t) is a continuous function [29]. Particularly, when 

     , one has  

       
 

      
∫  

 

 

     

      
    

 

 for more properties of the fraction order derivatives (see e.g. [30] and [31]). 

 

Lemma 1 Consider a fractional order system  

 

                          (2) 

 

 where       and       , evaluate the equilibrium points of system (2) by letting 

       , if all eigenvalues    of the system’s Jacobian matrix evaluated at the 

equilibrium points fulfil the following criterion, then these points are locally 

asymptotically stable: [32]  

 

            
 

 
  (3) 

  

3 HIV MODEL DESCRIPTION 

 

 
For the biological and mathematical justifications mentioned above, we suggest a 

fractional-order model explain the dynamics of HIV-1 infection including two classes of 

transmissions: virus-to-cell and cell-to-cell incidence as well as a saturating CTL 
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immunological response as follows:  

 

                                      (4) 

 

                                                 (5) 

 

                      (6) 

 

        
          

      
        (7) 

 

 where     ,      ,      and      are respectively the concentrations of uninfected 

cells, infected cells, HIV-1 particles and CTL immune response cells at time  . The 

uninfected cells are restored at rate  , become infected at rate          and die at rate 

  . CTL kills infected cells by rate      and it perish at a rate of    . Virus particles 

proliferate at rate     and die at rate   . CTL cells multiply at rate 
    

   
, it die by    

rate, where   and   are constants,  see Figure 1 for further explanation on the 

interaction of the variables represented in the model (4)-(7). 

 

 

 
               Figure 1: Schematic diagram for HIV-1 model (4)-(7) 

 

 

3.1 Basic properties 

 

In this part, we shall look at the non-negativity and finiteness of model (4)-(7) 

solutions. 
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Lemma 2  For the model (4)-(7), a non-negative invariant compact set   exists such that  

 

                  
                            (8) 

 

Proof. It is obvious that 

  

                           
 

                                                         
 

                                                            
 

                         
 

 This supports the non-negatively invariant feature of   for the model (4)-(7). 

 Let        
 

  
  

  

 
 , then  

 

         
 

 
        

  

  
  

     

   
 

   

 
  

 

      
 

 
   

     

   
 

  

  
  

   

 
  

 

    (     
 

  
  

  

 
 )        

 

 where,         
 

 
     . Then  

         (     
 

 
)  

 

 
  

 

This yields to           for all     when          where    
 

 
.  As a result 

of this,                           and           for all     if 

           
 

  
     

  

 
       , where    

   

  
 and    

  

   
. This proves the 

boundedness of        and  .    

 

The equilibrium points existence for the system (4)-(7) will be introduced in the following 

lemma: 

  

Lemma 3 Suppose that      and      be the fundamental threshold parameters of 

the model (4)-(7), then 

(i) if       then there is just one equilibrium point    exists, 

(ii) if      and     , therefore two equilibrium points    and    exist. 

(iii) if     , therefore three equilibrium points   ,    and    exist. 
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Proof. To obtain equilibrium points of the model (4)-(7), we put                
       then  

 

                                            (9) 

 

                                                (10) 

 

                                     (11) 

 

                             
    

   
     (12) 

 

 From Eq. (12), we have two possibilities     or            and if     then 

Eq. (11) gives us  

   
 

 
    

 Substitute into Eq. (10), we get the equation 

 

* 
 

 
      +       

 

 If     , then the model (4)-(7) has only uninfected equilibrium point              , 

where    
 

 
. If  

 

 
         and substitute into Eq. (9), the model has an 

immune absence equilibrium point          
       , where  

 

   
  

       
               

  
  

     
[
         

  
  ]                

 

 
  

   

 

 As a result, we may establish basic reproduction number for the system (4)-(7) by  

 

   
         

  
  

 So we can rewrite elements of    as  

 

   
  

  
               

  
  

     
                      

 

 
  

   

 

 Hence, if     , system (4)-(7) is stable and has a unique steady state    and when 

    , the system has two equilibrium points    and   , note that when     , the 

virus and infected cells are present, but the immune response is not presented. Also, we 

have an immune present equilibrium point          
         when the second 

possibility            is realized, then 

  

  
  

 

 
                          

 

 
  

  
  

  
        (13) 

 

By substituting into Eq. (9), we obtain  
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  (14) 

therefore from Eq. (10), we have 

  

(
 

 

       

 

 

  
    

   
      

 
  

 
 

  

 
  )          

 

If       , then we get  

 
        

 
        (  

    

   
      )     

 

 The previous equation can be simplified to the form 

 

     
     

   
  

  (
     

   
    

      

   
)    *

 

  

        

       
  +     (15) 

 

The last equation has a positive real root when 
 

  

        

       
    , so we can 

define a second threshold parameter    as  

 

   
 

  

        

       
 

   
 

  
  

 

When     , there exist three equilibrium points   ,    and   , where    is 

given by Eqs. (13) and (14) and    is determined from Eq. (15) by  

 

   
   √      

  
  

 where,  

 

  
     

   
  

 

  
     

   
    

      

   
  

 

   [
 

  

        

       
  ]  

 

 Where    represents the state in which CTLs immune response is present.   

 

4 LOCAL CHARACTERISTICS 
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 This section demonstrates the results of stability in the local case. The Jacobian 

matrix that corresponds to the system (4)-(7) is  

 

  

(

 
 

                
                   

     

 
  

   
 

    

      
  

)

 
 

  (16) 

 

 

Theorem 1 The system (4)-(7) has equilibrium point    is locally asymptotically stable if 

    .  

 

Proof. For equilibrium point   , the characteristic equation of the matrix (16) is given by 

follows: 

 

       |

             
            
       
       

|     (17) 

 

It has been decreased to  

 

                                    (18) 

 

Clearly, Eq. (18) has the roots         and        , which are 

negative, and the remaining roots are specified by  

             
where,  

                                   
 

if      and     , then     , which means      and       is the required and 

sufficient condition to ensure    local stability.     

 

Theorem 2 The equilibrium point    of system (4)-(7) is locally asymptotically stable if 

       .  

 

Proof. The characteristic equation of the matrix (16) at the equilibrium point    is as 

follows:  

 

||

          
            

       
               

 

       

   
   

 

 
    

||     (19) 

 it follows that, 
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(
   

 

 
    ) |

          
           

       
           

      

|     

 

Hence,  

 (
   

 

 
    )        

             (20) 

 

It is clear that, one of the roots of (20) is   
   

 

 
          , which is a 

negative if     . The remaining roots of (20) can be obtained from the following 

equation: 

  

                             
                       (21) 

 

 where,  

             
           

 

              
                          

               
    

 

              
                              

   
 

                                
           

 

The discriminant      of      given in (21) is: 

  

     

(

 
 
 

        
        

        
        
        

)

 
 
 

                
         

  

                                                   
         

      
 

 According to [33], for the fractional Routh-Hurwitz criteria, equilibrium point    is 

locally asymptotically stable if         and one of the following criteria are met. 

 

(i)                         ; 

 

(ii)                                ; 

 

(iii)                                        .    

 

5 GLOBAL CHARACTERISTICS 
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In this section, we shall prove globally asymptotical stability of       and    of 

model (4)-(7). 

 

Theorem 3  For model (4)-(7), if     , then    is globally asymptotically stable.  

 

Proof. Let us define a Lyapunov function              as:  

 

                      
 

  
    

   

 
  

  

 
  

 

Clearly                for all            and               . Calculating 
    

    along the model (4)-(7), we obtain 

     (  
  

 
)                              

        
   

 
         

  

 
[

    

      
      ]  

 

 Using      , we get 

  

        (  
  

 
 

 

  
)  [    

    

 
  ]        

     

   
 

   

 
  

 

 
        

 

 
           

     

   
 

   

 
   

 

 Clearly if       then        for all             Moreover        if and 

only if        ,         and       . Let                        and 

    be the largest invariant subset of   . The model (4)-(7) solutions tend to    .  For 

each element in     we have        ,         and       . Thus Eq. (6) yields  

 

                       
 

Hence       . Consequently,     only includes one point              . According 

to LaSalle’s invariance principle (LIP),    is GAS when     . 

 

Theorem 4 For the model (4)-(7),    is globally asymptomatic stable if        .  

 

Proof. Constructing a Lyapunov function              as:  

 

                       
 

  
      

    
   

  

  
    

   

 
[         

 

  
]
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 Clearly                for all            and                only when 

      
    

           .  Moreover  

 

     (  
  

 
)                 (  

  
 

  
)                  

 
   

 
(  

  

 
)          

   
 

 
[
    

   
   ] 

 

 (  
  

 
)                 

           
  

 

  
          +    

  

           
   

   

 
         

     

  
          

   
 

 

    

   
    

             (22) 

 

 Applying the steady state conditions for   :  

 

                 
   

 

   
             

   
 

   
       

 we get 

  

      (  
  

 
 

 

  
)       (  

  

 
)       

 (  
  

 
)  

  

  
             

              

     
       

  
 

          
       

  

  
       

    

   
  

   
 

 

    

   
     (23) 

 

Eq. (23) can be simplified to  

      (  
  

 
 

 

  
)       [  

  

 
 

  
   

      
 

    

  
  

] 

 

      
 (  

  

 
 

 

  
)  

     

   
       

     

   
  

 Applying the relationship of geometrical and arithmetical means, we are able to write 

 

  
  

 
 

 

  
  

  
  

 
 

  
   

      
 

    

  
  

  

 

 and if     , we get that        and        at the point       
       . Let     

be the largest invariant subset of the set                    . The model solutions 

therefore tend to    . Since it is obvious that     includes the single point    so global 

asymptotic stability of    results from (LIP).  

     

Theorem 5 For the model (4)-(7), if    exists then it is global asymptomatic stable. 

Proof. Constructing a function              as: 
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[         

 

  
] 

                             
   

 

 
[         

 

  
]  

 

Clearly,                for all            and         
            

Moreover,  

     (  
  

 
)                  (  

  
 

  
)                    

 
   

 
(  

  

 
)          

   
 

 
(  

  

 
) [

    

   
   ] 

 

               (  
  

 
)            

           
  

 

       

                              
  

   

 
    

     

  
          

   
 

 

    

   
 

                                     
   

 

 

     

   
    

     (24) 

 
 Implementing conditions of the equilibrium point   , we get:  

 

                 
   

 

                        
             

   
 

                           
       

 

                       
 

 
  

        

 we get  

      (  
  

 
 

 

  
)       (  

  

 
 

  
   

      
)       

 (  
  

 
 

  

  
    

 

  
)  

                                                 
  

  
       

    

   
  

   
 

 

         

   
      (25) 

 

Eq. (25) can be simplified to 

  

      (  
  

 
 

 

  
)       [  

  

 
 

  
   

      
 

    

  
  

] 

      
 (  

  

 
 

 

  
)  

         
 

   
  

 

 Applying the relationship of geometrical and arithmetical means, we get        and 

       at the point       
        . Let     be the most extensive invariant subset of 

the set                    . Consequently, the model solutions tend to    . There is 

no doubt that     includes a single point    and this ensure global asymptotic stablility of 

   as a result of (LIP).  
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6 NUMERICAL SIMULATIONS AND DISSECTION 

 

 
 To validate our theoretical findings, we provide various instances and run 

numerical simulations in this section. MATLAB is used to run the numerical computations. 

Using the parameters values listed in Table 1, we will carry out numerical simulations for 

the system (4)-(7). We will pick the following three beginning conditions: 

 

IC1:                                     , 

 

IC2:                                    , and 

 

IC3:                                   . 

             
6.1 Stability behavior of equilibrium points 

Taking        and according to Table 1. While the parameters  ,   and   

are varied as following: 

 

Case (i): Stability of   : If        ,          and        then we find 

that            . According to Lemma 3, the system has a single equilibrium point 

               . As shown in Figure 2, the numerical outcomes confirm theoretical 

outcomes of Theorem 3 and the solutions of the system approach to    for all IC1-IC3. 

 

Case (ii): Stability of   : If        ,         and       , then 

                       Clearly,                                 exists 

and is globally asymptotic stable, and this support the findings in Theorem 4. This is shown 

in Figure 3. In this case, we can observe that when   and   increase, the concentration of 

uninfected cells decreases while concentration of infected cells and pathogens increases 

and the CTL immune response is unstimulated. 

 

Case (iii): Stability of   : If        ,         and       then    
        . Figure 4 show that                                  exists and is 

globally asymptotic stable, which corresponds with Theorem 5. Therefore, chronic HIV 

infection with CTL-mediated immune response has been achieved. 

 

6.2 The influence of production rate   of CTL 

 
 Parameter values in Table 1 are used with        ,        ,       , 

considering IC2 and different values of  . We demonstrated in Figure 5 that increasing 

the CTL response parameter   can reduce the number of infected cells and HIV viral load 

while increasing the concentration of uninfected cells. 

 

6.3 The influence of CTL killing rate   

 

 Using Table 1 and taking        ,        ,      ,       , with 
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different values of  , Figure 6 indicates that increasing the CTL killing rate   can reduce 

the HIV viral level and increasing the concentration of uninfected cells. 

 

6.4 The influence of fractional-order agent   on stability of equilibrium points 

 

Consider another group of initial conditions as IC4:                    
              . Figures 7 and 8 show the effect of fractional-order   on the 

system solutions for examples Case(i) and Case(iii) in the previous Subsection 6.1. 

According to the numerical simulations with the comparison between the results of the 

fractional order and integer model, if     and the fractional-order agent   value 

increases, uninfected cells increase accordingly, while the remaining concentrations 

approach zero. While the fractional order parameter   has no effect on the global 

dynamics of our model if     , but it can affect the time for arriving to the steady states 

and reduces the oscillations. The fractional-order enhances the dynamics of the system and 

increases stability region of the equilibrium points. 

 

 

 
Table  1: Parameters values of the model (4)-(7). 

 

 

 

7 CONCLUSION 

 

 

 In this paper, HIV type 1 infection model with saturated CTL immune response 

beside to two types of transmission have been considered. We proved that the proposed 

model solutions are bounded. We proved that the model exists with three possible 
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equilibrium points: an infection-free equilibrium   , an immune-free equilibrium   , an 

infection equilibrium with CTL response   , depending on the threshold parameters. We 

presented two threshold parameters: the basic reproductive rate of HIV-1 infection    and 

the CTL immune reproductive rate   . These govern the dynamic behaviour of the model 

as well as whether or not the equilibrium point exists. In order to verify the theoretical 

findings and investigate how the fractional-order affects the model solutions and the 

system’s dynamic behavior, we lastly conducted some numerical computations. We have 

assumed in this paper that HIV-1 attacks only one target cell which is CD   T cells, but 

some studies have shown that the virus attacks multiple target cells so the work can be 

improved by considering the infection between the virus and two targets cells or more. We 

will keep these points in mind for future work. 
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Figure  2: System (4)-(7) state trajectories with             and initial conditions 

IC1-IC3. 
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Figure  3: System (4)-(7) state trajectories with 

                                         and initial conditions IC1-IC3. 
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Figure  4: System (4)-(7) state trajectories with             and initial       

conditions IC1-IC3. 
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Figure 5: The influence of CTL response rate  . (a)      , (b)       and (c) 
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Figure  6: The influence of CTL killing rate  . (a)      , (b)       and (c)      
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Figure  7: System (4)-(7) state trajectories with the initial conditions (600,20,80,5) and 

different values of   when            . 
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Figure  8: System (4)-(7) state trajectories with the initial conditions (600,20,80,5) and 

different values of   when            . 
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