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Abstract  

In this paper, we apply the Adomian decomposition method (ADM) for solving linear and 

nonlinear ordinary differential equations (ODEs). The existence and uniqueness of the solution are 

proved. The convergence of the series solution and the error analysis are discussed. Some 

applications are solved such as relaxation-oscillation equation. 
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1 Introduction 

Differential equations have many applications in engineering and science, including electrical 

networks, fluid flow, control theory, fractals theory, electromagnetic theory, viscoelasticity, 

potential theory, chemistry, biology, optical and neural network systems [1]-[11]. In this paper, 

Adomian decomposition method (ADM) [12]-[19] is used to solve these type of equations. This 

method has many advantages, it is efficiently works with different types of linear and nonlinear 

equations in deterministic or stochastic fields and gives an analytic solution for all these types of 

equations without linearization or discretization. The convergence of the series solution and the 

error analysis are discussed. Some numerical examples and applications (such as relaxation-

oscillation equation) are solved. 

2 Problem solving 

2.1 The solution algorithm 

         (1)

Lyt  fy  xt,

yj  0, j  0,1,2, , n  1.

    1

                                                        

Where 
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L  L  R,

L  dn

dtn , and R 
k0

n1

akt dk

dtk
.

    2

    3

                                                    (2) L  L  R,

L  dn

dtn , and R 
k0

n1

akt dk

dtk
.

    2

    3

                                                    (3) 

And  fy   is the nonlinear term expanded in terms of Adomian polynomials,  

fy 


n0

 An ,

An  1
n!

dn

dn f



j0

  jyj

0

,

    4

    5

                                              (4) 

fy 


n0

 An ,

An  1
n!

dn

dn f



j0

  jyj

0

,

    4

    5

                                              (5) 

 

And the linear operator  L  as defined before in equations (2) and (3). Substitute from (3) and (2) 

into (1) we get,  

L  Ryt 


n0

 An  xt,     6

                                                               (6) 

Lyt  xt  Ryt 


n0

 An ,     7

                                                             (7) 

Applying  L
1

  to both sides of equation (7) we have,  

yt  L1xt  L1Ryt  L1



n0

 An ,     8

                                     (8) 

Decompose  

yt 


n0

 ynt
  and substitute in equation (8), we get the following recursive 

relations,  

y0t  L1xt,

ynt  L1Ryn1t  L1An1 .

    9

    10
                                                     (9) y0t  L1xt,

ynt  L1Ryn1t  L1An1 .

    9

    10
                                                     (10) 

 

Finally, the solution of (1) is  

yt 


n0

 ynt.     11

                                                                                (11) 
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3  Convergence analysis 

3.1. Existence and uniqueness of the solution 

Define the mapping  F : E  E  where  E  is the Banach space ( CI,  ), the space of all 

continuous functions on  I   with the norm  
yt 

tI

max |yt|
 ,  


k0

n1 akt  M
   

 0    t  T , M   is finite constant and  fy   satisfy Lipschitz condition with Lipschitz 

constants  C   such as, constants  C   such as,  

|fy  fz|  C|y  z|
 

Theorem 1: 

The problem (1) has a unique solution whenever  0    1   where,    TnM  C . 

Proof: 

The mapping  F : E  E  is defined as,  

Fyt  L1xt  L1Ryt  L1fy
 

Let  yt, zt  E :  

Fy  Fz 
tI

max L1Ryt  L1fy  L1Rzt  L1fzd


tI

max |L1Ryt  L1Rzt  L1fy  L1fzd|


tI

max L1R yt  zt 
tI

max |L1fy  fz|d


tI

max |yt  zt| L1R 1  C
tI

max |yt  zt||L11|d


tI

max |yt  zt| 
k0

n1

akt Tnk  CTn

tI

max |yt  zt|

 MTn  CTn y  z

 TnM  Cy  z

 y  z
 

Under the condition 0    1,   the mapping  F   is contraction and hence there exists a unique 
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solution of the problem (1) and this completes the proof.     

3.2. Proof of convergence 

 Theorem 2: 

The series solution  (11) of the problem (1) using ADM converges if  |y1 |    and  

0    1,   TnM  L.   

Proof:  Define the sequence  Sn  such that,  

Sn  
i0

n

yit
 is the sequence of partial sums from 

the series solution  


i0


yit

 since,  

fy  f 
i0



yit 
i0



Aiy0 , y1 , , yi

 
So,  

fSn 
i0

n

Aiy0 , y1 , , yi

 
 

Let  Sn   and  Sm   be two arbitrary partial sums with  n  m . Now, we are going to prove that  

Sn    is a Cauchy sequence in this Banach space.  

Sn  Sm 
tI

max |Sn  Sm | 
tI

max 
im1

n

yit


tI

max 
im1

n

L1Ryit  L1fy


tI

max L1R 
im1

n

yit  L1 
im1

n

Aid


tI

max L1R
im

n1

yit  L1 
im

n1

Aid


tI

max |L1RSn1  Sm1  L1fSn1  fSm1d|


tI

max L1R|Sn1  Sm1 |  L1 |fSn1  fSm1|d


tI

max L1R|Sn1  Sm1 |  L1 |fSn1  fSm1|d

 MTn  CTn Sn1  Sm1

 Sn1  Sm1
 



5 
 

Let  n  m 1  then,  

Sm1  Sm  Sm  Sm1  2Sm1  Sm2    mS1  S0
 

From the triangle inequality we have,  

Sn  Sm  Sm1  Sm  Sm2  Sm1   Sn  Sn1

 m  m1   n1 S1  S0

 m1     nm1 S1  S0

 m 1  nm

1   y1t
 

Since, 0    1 , and  n  m  then,  1  
nm  1  . Consequently,  

Sn  Sm  m

1  
y1t

 m

1  
tI

max |y1t|

 

but,  |y1t|    and as  m    then,  Sn  Sm  0   and hence,  Sn    is a Cauchy sequence 

in this Banach space so, the series  


n0


ynt

  converges and this completes the proof.    

3.3. Error analysis 

For ADM, we can estimate the maximum absolute truncated error of the Adomian's series 

solution in the following theorem. 

 

Theorem 3:  The maximum absolute truncation error of the series solution (11) to the problem 

(1) is estimated to be,  

tJ

max yt 
i0

m

yit  m

1  
tI

max |y1t|

 
 

Proof:  From theorem 2 we have,  

Sn  Sm  m

1  
tI

max |y1t|

 

But,  Sn     


i0

n

yit
  as  n    then, Sn  yt  so,  

yt  Sm  m

1  
tI

max |y1t|

 

So, the maximum absolute truncation error in the interval  I   is,  
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tI

max yt 
i0

m

yit  m

1  
tI

max |y1t|

 

And this completes the proof.      

4. Numerical Examples 

4.1. Application: relaxation-oscillation equation 

The Relaxation-Oscillation equation is,  

Dmyt  Ayt  ft, t  0,

yk0  0, k  0,1, ,m 1.

    12

                                             (12) 

We will solve it by using ADM in two cases when  m  1   and  m  2  . 

Case 1 ( m  1  ):  

In this case this problem is called the relaxation differential equation. If we take  A  1,    

ft  Ht,   and  y0  0,   the equation (12) will be,  

dy

dt
 yt  Ht, y0  0,     13

                                                                   (13) 

where  Ht   is the unit-step function, and it has the exact solution  yt  1  et
 .                                                                                   

Using ADM we get,   

y0t  
0

t

Hd,

ynt  
0

t

yn1d, n  1.

    14

    15

                                                               (14) y0t  
0

t

Hd,

ynt  
0

t

yn1d, n  1.

    14

    15

                                                              (15) 

from equations (14) and (15) we have,  

y0  t, y1   t2

2
, y2  t3

6
, y3   t4

24
, y4  t5

120
, 

 

hence,  
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yt 


n0

 yn  y0  y1  y2  y3  y4 

 

yt  t  t2

2
 t3

6
 t4

24
 t5

120


 1  et .

    16

                                                              (16) 

A comparison between the exact and ADM solutions is given in figures 1.a-1.c. From these 

figures, we see that when we increase the number of the terms  n , the solution will be more 

accurate, moreover, it gives the exact solution. 

Notices: 

1) All computations and figures are made using MATHEMATICA software for all the given 

examples. 

2) In all figures, the solid curve represents ADM solution, while the other curve for the other 

method. 

         

                                        

 

Fig2.1.a:ADMandExactSol. n 20 Fig2.1.b:ADMandExactSol. n 40 

Fig2.1.c:ADMandExactSol. n 60 
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Case 2 (  m  2  ): 

In this case this problem is called the oscillation differential equation. If we take  A  1,    

ft  Ht,    y0  0,   and  y0  0,   the equation (12) will be, 

d2y

dt2
 yt  Ht, y0  0, y0  0.     17

                                                              (17) 

which has the exact solution  yt  1  cost . 

Using ADM we get,  

y0t  
0

t 
0

t

Hdd,

ynt  
0

t 
0

t

yn1dd, n  1.     18

                                                                   (18) 

from equation (18) we have,  

y0  t2

2
, y1   t4

24
, y2  t6

720
, y3   t8

40320
, y4  t10

3628800
,

 

hence,  

yt 


n0

 yn  y0  y1  y2  y3  y4 

 t2

2
 t4

24
 t6

720
 t8

40320
 t10

3628800


 1  cost.

    19

                                                              (19) 

A comparison between the exact and ADM solutions is given in figure 2 .   
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4.1.2. Numerical Example 

 Example Consider the initial value problem,  

Dy  y2  1,

y0  0, 0  t  1.

    20

                                                                           (20) 

Which has the exact solution  yt  tant . 

Applying ADM to the problem (20) we have,  

y0  
0

t

1d,

yn  
0

t

An1d, n  1.     21

                                                                (21) 

From equation (21) we find that,  

y0  t, y1  t3

3
, y2  2t5

15
, y3  17t7

315
, y4  62t9

2835
,

 

Hence the approximate solution of the problem (20) is given by the truncated series,  

5t 
4

n0

 yn  y0  y1  y2  y3  y4

 t  t3

3
 2t5

15
 17t7

315
 62t9

2835
 tant.     22

                                      (22) 

A comparison between the exact and ADM solutions is given in figure 3. We see from this figure 

Fig2.2:ADMandExactSol. n 35 
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that ADM gives the exact solution. 

 

References 

1) K. S. Miller, and B. Ross, (1993), An Introduction to the Fractional Calculus and Fractional Differential 

Equations, Wiley-Interscience, New York. 
2) I. Podlubny, (1999), Fractional Differential Equations, Academic Press, New York. 
3) A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, (2006), Theory and Applications of Fractional differential 

equations, Elsevier, New York. 
4) Sh. A. Abd El-Salam, and A. M. A. El-Sayed, (2007), On the stability of some fractional-order non-

autonomous systems, Electronic Journal of Qualitative Theory of Differential Equations, 6, 1-14. 
5) A. M. A. El-Sayed, and Sh.A. Abd El-Salam, (2008), On the stability of a fractional-order differential 

equation with nonlocal initial condition, Electronic Journal of Qualitative Theory of Differential Equations, 

29, 1-8. 
6) D. J. Evans, and K. R. Raslan, (2005), The Adomian decomposition method for solving delay differential 

equation, International Journal of Computer Mathematics, (UK), 82, 49-54. 
7) Najeeb Alam Khan, Oyoon Abdul Razzaq, Asmat Ara, and Fatima Riaz (2016), Numerical Solution of 

System of Fractional Differential Equations in Imprecise Environment, DOI: 10.5772/64150. 
8) Abdon Atangana, and Ernestine Alabaraoye (2013), Solving a system of fractional partial differential 

equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel 

equations, Advances in Difference Equations, 94, 1-14. 
9) Hasanen A. Hammad, and Manuel De la Sen (2021), Tripled fixed point techniques for solving system of 

tripled-fractional differential equations, AIMS Mathematics 6 (3) 2330-2343. 
10) S. Z. Rida, and A. A. M. Arafa (2011), New Method for Solving Linear Fractional Differential Equations, 

International Journal of Differential Equations,1-8. doi:10.1155/2011/814132. 
11)  Daraghmeh, A., Qatanani, N. and Saadeh, A. (2020) Numerical Solution of Fractional Differential 

Equations. Applied Mathematics, 11, 1100-1115. doi: 10.4236/am.2020.1111074. 
12) G. Adomian, (1995), Solving Frontier Problems of Physics: The Decomposition Method, Kluwer. 
13) G. Adomian, (1983), Stochastic System, Academic press. 
14) G. Adomian, (1986), Nonlinear Stochastic Operator Equations, Academic press, San Diego. 
15) G. Adomian, (1989), Nonlinear Stochastic Systems: Theory and Applications to Physics, Kluwer. 
16) K. Abbaoui, and Y. Cherruault, (1994), Convergence of Adomian's method applied to differential equations, 

Computers Math. Applic., 28, 103-109. 
17) Y. Cherruault, G. Adomian, K. Abbaoui, and R. Rach, (1995), Further remarks on convergence of 

decomposition method, International J. of Bio-Medical Computing., 38, 89-93. 
18) N. T. Shawaghfeh, (2002), Analytical approximate solution for nonlinear fractional differential equations, J. 

Appl. Math. Comput., 131, 517-529. 
19) I. L. El-kalla, (2008), Convergence of the Adomian method applied to a class of nonlinear integral equations, 

Applied Mathematics Letters, 21, 372-376. 
 

Fig2.3:ADMandExactSol. n 5 


