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Abstract

In this paper, we apply the Adomian decomposition method (ADM) for solving linear and
nonlinear system of ordinary differential equations (ODES). The existence and uniqueness of the
solution are proved. The convergence of the series solution and the error analysis are discussed.
Some numerical examples are solved.
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1 Introduction

Differential equations have many applications in engineering and science, including electrical
networks, fluid flow, control theory, fractals theory, electromagnetic theory, viscoelasticity,
potential theory, chemistry, biology, optical and neural network systems [1]-[11]. In this paper,
Adomian decomposition method (ADM) [12]-[19] is used to solve these type of equations. This
method has many advantages, it is efficiently works with different types of linear and nonlinear
equations in deterministic or stochastic fields and gives an analytic solution for all these types of
equations without linearization or discretization. The convergence of the series solution and the
error analysis are discussed. Some numerical examples are solved.

2 Problem solving

2.1 The solution algorithm
Let us consider the system of nonlinear ODEs,
Lyi) + i) = x(9,  i=12,....m

) .
. :O’ :0,1,2,...,/7_1-
J}/ J (1)
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Where
L=L+R

)
n-1
_a _ a*
L= L and R_g;‘ak(odtk' 5

And ) are the nonlinear terms expanded in terms of Adomian polynomials,

ﬁ(y) :Z Ai,n,
(. 4)

An=(4)5 [ﬁ(Z ﬂtfy,) } ,
| & 0 (5)

And the linear operator L as defined before in equations (2) and (3). Substitute from (3) and (2)
into (1) we get,

(L+ Ry +), Ain = XD,
’H’ (6)
Lyt = XD = Ry(d =Y, Ain,

n=0 (7)
Applying L™ 10 both sides of equation (7) we have,

Y = LX) — LRy — L (Z A,-,n>,

n=0

. (8)
Vi) =22 Yin()
Decompose =0 and substitute in equation (8), we get the following recursive
relations,
(A = /Ly
Yio() = L= x(9, )
yln(l) =/ Ryi,n—l(o - L_lA/;n—l- (10)

Finally, the solution of (1) is

YD =D Yin(d.
n=0 (11)
3 Convergence analysis
3.1. Existence and uniqueness of the solution
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Define the mapping ©: £~ £ where £ is the Banach space ( S 11l Y, the space of all
€0 || =max | £ =72 a0 < M

continuous functions on !  with the norm tel
VO0s7=<?t=<7 M s finite constant and 7)) satisfy Lipschitz condition with Lipschitz
constants i such as, constants Ci such as,

1) - K| < Cyi— zi|
Theorem 1:

The problem (1) has a unique solution whenever 0 < B <1 where, = T'[M+C]

Proof:

The mapping #* £~ £ is defined as,
YD = LX) — LRy — L ()
Let XD, 4D < E.

| Fyi— Fzill =max |[=L Ry — L (Ky) + L Rz + L™ (£(z) ot |

tel

=max |[LRy(D — L Rz(9] + [L(£(y) — L7 (F(2))]ct|

tel

<max | LRI - 2(0]| +mex |L[5(3) ~ ()] ot

tel tel

<max |y — z(D|| L R[1]| + Ci max [yi(D — z(D|| L [1]|ck
tel tel

n-1

<max |yi(d — 29| D an(d ‘ T+ CiT" max |yi(D — z(D)|
tel k=0 tel

< [MT"+ CiT'llyi— Z|

< T'[M+ Cilllyi— z]

And let [Cil < G then

| Fvi— Fzil| < T'[M+ Clllyi— zl|l
< Bllyi— zll

Under the condition, 0<B <L the mapping F s contraction and hence there exists a unique
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solution of the problem (1)-(2) and this completes the proof. ®

3.2. Proof of convergence

Theorem 2:

The series solution (10) of the problem (1)-(2) using ADM converges if Wia| <o and
0<B<lp=T[M+L].

Sj,n = Z,V//(D

Proof: Define the sequence Sjiny such that, 0 is the sequence of partial sums
2 VD
from the series solution #0 since,
) = 6<Zy,;f<o> =" A6, D)
/=0 =0
So,

£Sin) = D AV, Vi, Vi)
=0

Let %7 and Sim be two arbitrary partial sums with 77> /7" Now, we are going to prove that
it isa Cauchy sequence in this Banach space.

>, yf,i(D‘

~m+1

1Sjn = Simll =max |S;n — Sjm| =max
tel tel

el | Eme1

—max | 37 (£ Ryh + L-lw-(yfm‘

=max || LR yild+ LD Aj,,-dr:H

el | Em+l Em+l

tel

n-1 n-1
= max L‘lRZy,;,-(D + L7 ZA/;,-O‘E:| ‘
E=m =m
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=max |[L P ASjp1 — Sjmal + LHESj 1) — £Sjm1)]d]|

tel

< max L_lﬁsjnfl - Sj,mfll + L_1|)(Sj,nfl) - }(Sj,mfl)ldt

tel

<max LrRS; 1 — Sima|+ LHKSp1) — KSjm1) |

tel

S MT+ CiT' 1 Sjp1 — Sjm-1 |l
S BlSin1—Sjmall

Let 7= M+1 then,
1Simia = Spmll < Bl Sjm = Sima | < BN Sjma = Spma | < -+ < BN Sj1 = Sol
From the triangle inequality we have,

|| 5/2/7 - Si,m ” < ||5j,m+1 - S/mH + ”5/§m+2 - Sj,m+1 ” +-+ ”5/',/7 - Sj,n—l ”
<[B7+ ™4+ B - Sl
SBTAABA -+ BTTHS - Spoll

<57 2755 ol

since, 9<B <1 and 7> then, 1=B"") =1 Consequently,
ﬁm
1-p

B" _
= 1_ﬁ n:EaIX |J//,1(D|

1 Sjn = Sjmll < 12 (Dl

but, V2 D1 < angas M= o then, 157 = Simll = 0 andhence, 15in7 isa Cauchy

3 it

sequence in this Banach space so, the series 70 converges and this completes the proof.
|

3.3. Error analysis

For ADM, we can estimate the maximum absolute truncated error of the Adomian's series
solution in the following theorem.

Theorem 3: The maximum absolute truncation error of the series solution (10) to the problem
(1)-(2) is estimated to be,
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max | y() - Zy,,m‘ <+ max 111 0|
te

teJ

Proof: From Theorem 2 we have,

150 Simll < £ max a0

tel

Zy/,(b

But, %in = 0 as 1= then, “in > V(D oo

0= Simll < 175

tel

Therefore, the maximum absolute truncation error in the interval / is,

ﬂ—ﬂ max 1y (9

max | yj( — Zy,,m

tel

And this completes the proof. ®
4. Numerical Examples

Example 1: Consider the following linear system of ODEs,

- =2t—- B+,
(/7
at =3,
a’
(12)

Subject to the initial conditions,
11(0) = »5(0) = y5(0) =0,

Which has the exact solution Y1(D = £ Cye(D = P and (=1t

Applying ADM to the system (12) we have,

Yip = £ - %! N = J.(: )/Z,j(T)dt’ (13)
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t
Yoo =0, Vo1 = 3_[() W [(0)ar,

(14)
t
Va0 =0, Jaj1 = 4J. Ve [(T) k.
’ (15)
Using the relations (13)-(15), the first three-terms of the series solution are,
m=pf-L_LpC104p)4-
4 40 (16)
Y= P % .
(17)
PR
(18)

Figures 1.a-1.c show a comparison between the exact and ADM solutions of J1:J2 and J3

(1= 50 ).
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Figure 1.a: ADM and Exact Sol. y1
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Figure 1.b: ADM and Exact Sol. y2
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Figure 2.c: ADM and Exact Sol. y3

Example 2: Consider the following nonlinear system of ODEs,

arn 5
e =2-P+)3,
a)e .
7 =61- £ + )t

(19)
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Subject to the initial conditions,
110 = ¥1(0) = y5(0) = )4(0) = 0,

Which has the exact solution Y1(D = £ ang () = £.
Applying ADM to the system (19) we have,

1

_p_ N A L

A0

__r_ ._l‘l‘.
Yoo = B %,)@H—LhAM@mm

(20)
Using the relations (20), the first two-terms of the series solution are,
I P £
%= £~ 5185 * 162000 ~ 723168000 © 1)
_a_ PO P £’ o
Y2 = £~ 5405 * 524600 ~ 443223000 * 303068700000 22)

Figures 2.a and 2.b show ADM solution of Y4:J2 (/71=5Y.
vl
1
¥
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Figure 2.a: ADM and Exact Sol. y1
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Figure 2.b: ADM and Exact Sol. y2
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