

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Shear Properties of Apparel Fabrics Using Different Spun Yarns

Ahmed Ramadan¹ and Mohamed Ezzat²

¹Faculty of Applied Arts, Damietta University, Egypt.

² Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.

THE SHEAR properties of a fabric determine its performance properties as well as the appearances where it is subjected to a wide variety of complex deformations during usage as apparel. In this paper, woven fabrics have been made of cotton spun yarns with three different spinning techniques (ring spun, open-end spun and compact ring spun yarns) in weft direction. Some twill based weave structures were manufactured on the weaving machine with varying the weft density level. The Kawabata Evaluation System was used to measure the shear properties; shear rigidity, shear hysteresis at 0.5 deg.shear angle and shear hysteresis at 5 deg. shear angle. A statistical analysis was performed to get the effect of decided parameters on shear. A highly significant effect of the weave structures and weft density on the measured shear properties were found, while the type of weft yarns has insignificant effect. A multiple linear regression equations were derived to get a mathematical relationship between the influencing parameters; (the float length, yarn diameter, and weft density) and the shear properties. The derived regression equations had high correlation coefficients values.

Keywords: Woven fabric, Shear angle, Spinningtechniques, Weave structure, Apparel fabrics, Kawabata Evaluation System, Regression analysis.

Introduction

The shear behavior of a fabric determines its performance properties when subjected to a wide variety of complex deformations in use. The ability of a fabric to be deformed by shearing distinguishes it from other thin sheet materials such as paper or plastic films. Jurgita and Eugenija[1] stated that this property enables fabric to undergo complex deformations and to conform to the shape of the body. They added that shearing influences draping, flexibility and also the handle of woven fabric. Shear properties are important not only for fabrics and/or clothing but for textile composites as well. Lo and Hu [2] stated that shear properties of woven fabrics are important in many applications the understanding of fabric shear behavior were introduced by many early trials of measuring it. Dreby [3], Go et al[4], Mornerand Eeg-Olofsson [5], and Kawabata [6, 7] each introduced a shear apparatus to measure fabric shear properties.

Fabric Objective measurements

Cusick [8], Lindberg et al. and Grosberg and Park [9] used a qualitative method to describe shear properties with a model which are based on the concept of Low-Stress Mechanical Properties of Fabrics. They indicated that the hysteresis produced during shearing is determined wholly by the frictional restraints arising in the rotation of the yams from the intersecting points in the fabric.

Fabric Hand, Drape, and Appearance

Many literature proves that the shear mechanism is one of the important properties influencing the draping, pliability, and handle of woven fabrics [6, 7, 11]. Shear deformation of woven fabrics also affects their bending and tensile properties in various directions other than just the warp and weft directions [3, 9, 12].

In addition some literature [12,13] have shown that shear rigidity can be calculated from the tensile properties of a fabric in bias (45deg) direction based on the interrelations of the in plane

Received 26/12/2018; Accepted 24/2/2019

DOI: 10.21608/ejchem.2019.6875.1577

^{*}Corresponding author e-mail: mezzat2012@gmail.com

^{©2019} National Information and Documentation Center (NIDOC)

properties of a plate. The uniaxial tension of a biascut fabric specimen is relatively simple and may be carried out on any extensometer. This method of fabric properties investigation is therefore the most appropriate for industrial use. However, when this test is applied to fabric, shearing is non-uniform throughout the specimen due to the distortion of width uniformity. Shear angle is one of the main criteria for characterizing the formability of fabrics. As the fabric is fitted onto a superficial surface, shearing occurs incrementally until the critical shearing angle is reached. When this angle exceeds a strict value, the specimen starts to buckle. wrinkling is observed.

Objectives of this article are Studying the effect of the weave structure, type of weft yarn spinning and weft density on the shear properties measured on Kawabata Evaluation System; KES-F (shear rigidity, shear hysteresis at 0.5 deg. shear angle and shear hysteresis at 5 deg. shear angle). In addition to deriving a mathematical relationship between the influencing parameters; (the float length, yarn diameter, and weft density) and the measured shear properties, to be used as reliable predictive models.

Experimental

Fabric samples:

The weaving machine: Rapier Vamatex HS, Italy

Three weave structures (shown in Table 1)

Warp yarns:

Ring spun (Giza 86 cotton), count Ne 40/1

Weft yarns:

Compact spun (Giza 86 cotton), Ne 40/1 Ring spun (Giza 86 cotton), count Ne 40/1 OE spun (Giza 86 cotton), count Ne 40/1

Weft densities: 36, 42, and 50 picks per cm

Warp density:

42 picks per cm

Fabric shear measurements: The KES-F system: The Tensile and Shear module Sukuagira Lab; Kyoto institute of technology, Kyoto, Japan

Fig. 1. Kawabata Evaluation; systemKES-F (Tensile and Shear).

Results and Discussion

The KES shear measurements

The measured shear properties G, 2HG, and 2HG5 of the fabrics under study are shown in Table 1. The 27 fabric samples contain 3 weave structures, 3 weft spun yarns, and 3 weft densities.

To achieve the objective of deriving mathematical reliable predictive models some calculations and measurements are developed to characterize both weave structures and weft spun yarns numerically.

Egypt. J. Chem. 62, No. 8 (2019)

Fabric float length

The average float length of the 3 fabric structures are calculated according to the following equation:

Fabric float length; AFL=

(no. of threads per repeat/ no. of intersections per repeat)*F

Where; F constant based on original weave type (for twill weave; F=0.39)

Fabric Code	Design	Spinning system	Weft/cm	Shear rigidity; G (gf/cm)	Shear hysteresis; 2HG (gf/cm)	Shear hysteresis; 2HG5 (gf/cm)
D111			36.0	2.044	1.391	6.700
D112		Compact	42.0	2.655	2.179	9.082
D113		yam	50.0	3.154	2.345	8.823
D121			36.0	2.327	2.556	8.610
D122		Ring yarn	42.0	2.301	2.594	7.984
D123			50.0	3.862	2.410	9.432
D131			36.0	2.445	2.574	8.946
D132		OE yarn	42.0	3.266	3.158	10.928
D133			50.0	3.022	2.762	9.114
D211			36.0	2.270	2.183	6.855
D212		Compact	42.0	1.916	1.944	6.077
D213		yanı	50.0	1.934	2.225	5.835
D221			36.0	1.131	1.312	3.948
D222		Ring yarn	42.0	1.575	1.515	5.543
D223			50.0	2.427	2.276	8.319
D231			36.0	1.162	1.391	4.071
D232		OE yarn	42.0	1.901	1.509	5.103
D233			50.0	2.478	2.056	8.157
D311		_	36.0	0.572	1.117	2.505
D312		Compact	42.0	0.867	1.365	3.758
D313		yam	50.0	0.931	1.497	4.072
D321			36.0	0.718	1.303	3.117
D322		Ring yarn	42.0	1.013	1.487	4.378
D323			50.0	1.311	1.709	5.610
D331			36.0	0.591	1.308	2.932
D332		OE yarn	42.0	0.739	1.579	2.983
D333			50.0	1.595	1.859	6.430

TABLE 1. Fabric shear measurements on KES-F (Tensile and Shear).

IABLE 2. The average float length of the 3 fabric structures	ABLE 2.	2 2. The average fl	oat length of the	3 fabric structures.
---	---------	---------------------	-------------------	----------------------

Design Code	Weave structure	AFL
D1		1.1
D2		1.3
D3		1.5

Egypt. J. Chem. 62, No. 8 (2019)

Yarn diameters:

The selected spun yarns used for weft insertion had different yarn diameters;

Ring spun yarn:	0.19mm
Compact spun yarn:	0.17mm
OE spun yarn	0.21mm

Regression analysis

To perform regression analysis, 3 predictors are used:

X1:	average float length AFL

X2: yarn dia (mm)

X3: weft density/cm

The response is the KES shear properties measured

The multiple linear regression model was performed and coefficient of correlation was calculated to check the linearity of the relationship

Shear rigidity; G (gf/cm)

The following table summarizes the Regression Statistics of Shear rigidity; G

TABLE 3. Regression Statistics of Shear rigidity; G.

Regression Statistics			
Multiple R	0.940460906		
R Square	0.884466716		
	Coefficients	P-value	
Intercept	4.921121584	5.86E-05	
X1	-4.65009722	1.88E-11	
X2	2.378777778	0.542142	
X3	0.059333168	1.65E-05	

From the previous table it could be concluded that linear regression model is acceptable for predicting Shear rigidity; G as coefficient of correlation R=0.94.

Both x1 and x3 have significant effect on G (p-value=1.88E-11 and 1.65E-05 resp.), while insignificant effect is found by x2 (p-value=0.542142.) which may indicate that the yarn diameters are close to each other.

Shear hysteresis at 0.5 deg. shear angle; 2HG (gf/ cm)

The following table summarizes the Regression Statistics of Shear hysteresis; 2HG

TABLE 4. Regression Statistics of Shear hysteresis;2HG

Regre	_	
Multiple R	0.82593273	
R Square	0.682164875	
	Coefficients	P-value
Intercept	2.700397898	0.01362
X1	-2.42941667	2.14E-06
X2	5.413611111	0.175731
X3	0.031416907	0.00912

From the previous table it could be concluded that linear regression model is acceptable for predicting Shear hysteresis; 2HGas coefficient of correlation R=0.83.

Both x1 and x3 have significant effect on G (p-value=2.14E-06 and 0.00912 resp.), while insignificant effect is found by x2 (p-value=0.175731.).

Shear hysteresis at 5 deg. shear angle; (gf/cm) The following table summarizes the Regression Statistics of Shear hysteresis; 2HG5

TABLE 5. Regression Statistics of Shear hysteresis;2HG5.

Regre	_	
Multiple R	0.912861862	
R Square	0.833316779	
	Coefficients	P-value
Intercept	13.36515818	0.00039
X1	-12.1761667	1.01E-09
X2	13.76694444	0.276666
X3	0.143413589	0.000465

From the previous table it could be concluded that linear regression model is acceptable for predicting Shear hysteresis; 2HGas coefficient of correlation R=0.91.

Both x1 and x3 have significant effect on G (p-value=1.01E-09 and 0.000465 resp.), while insignificant effect is found by x2 (p-value=0.276666).

Fig. 2. Predicted shear rigidity vs actual shear rigidity.

Fig. 3. Predicted shear hysteresis 2HGvs actual hysteresis 2HG.

Conclusion

The shear properties of apparel fabrics need to be measured and predicted accurately by both the fabric and clothing manufacturers for expecting its performance, hand, drape, and appearance. Shear properties executed by KES-F system can be easily mathematically predicted accurately using liner and/or nonlinear regression models from simple measurements for the fabric float length, density, and yarn diameter.

The fabric hand and drape have a direct relationship with the KES shear measurements.

More efforts are needed from researchers and product developers to facilitate shear characteristics by simpler and reasonable ways.

References

- Jurgita D., Eugenija S., Investigation of Fabric Shear Behavior, *Fibres & Textiles in Eastern Europe*, 13(2), 50 (2005).
- Lo W. M., Hu J. L.: Shear properties of woven fabrics in various directions, *Textile Res. J.* 72(5), (2002).
- 3. Dreby, E. C., The Planoflex: A Simple Device for

Egypt. J. Chem. 62, No. 8 (2019)

Evalu-ating the Pliability of Fabrics, *Am. Dyest. Rep.* **30**, 651-666 (1941).

- Go, Y., Shitrohara, A. and Matsuhashi, F., Viscoelastic: Studies of Textile Fabrics, Part 3: On the Shearing Buck-ling of Textile Fabrics, *Sen-i Gakkaishi* 13, 460-165 (1957).
- Morner, B., and Eeg-Olofsson, T., Measurement of the shearing Properties of Fabrics, *Textile Res. J.* 27, 611-614 (1957).
- Kawabata, S., Niwa, M., Ito, K., and Nitta, M., Application of Objective Measurements to Clothing Manufacture, *Int. J. Clothing Sci. Technol.* 2 (3/4), 18-31 (1972).
- Kawabata's Evaluation System for Fabric (KES-FB) Manual, Kato Tech Co. Ltd., (1972).
- Cusick, G. E., The Resistance of Fabrics to Shearing Forces, *J. Textile Inst.* 52 (9), T395-406 (1961).

- Grosberg, P., and Park, B.J., The Mechanical Properties of Woven Fabrics, Part V: The Initial Modulus and the Frictional Restraint in Shearing of Plain Woven Fabrics, *Tex-tile Res. J.* 36, 420-431 (1966).
- Kilby, W. F., Shear Properties in Relation to Fabric Hand, *Textile Res. J.* 31, 72-73 (1961).
- Chadwick, G. E., Shorter, S. A., and Weissenberg, K., A Trellis Model for the Application and Study of Simple Pulls in Textile Materials, *J. Textile Inst.* 40, T111-160 (1949).
- Kilby, W. F., Planar Stress-Strain Relationships in Woven Fabrics, *J. Textile Inst.* 54, T9-27 (1963).
- 13. Penava, Z., Penava, D., and Nakie: Woven fabric behavior in pure shear, *J. of Engineered Fibers and Fabrics*, **10**(4), (2015).

دراسه خصائص القص لاقمشه الملابس باستخدام خيوط مغزوله مختلفه

أحمد رمضان¹، محمد عزت² ¹كليه الفنون التطبيقيه - جامعه دمياط - مصر . ²شعبه الصناعات النسجيه - المركز القومي للبحوث - القاهرة -مصر .

تحدد خصائص اجهاد القص للقماش المنسوج خصائص أدائه وكذلك مظهريته. حيث يتعرض فيها لمجموعة واسعة من التشوهات المعقدة أثناء الاستخدام كملابس. في هذ البحث ، تم صنع أقمشة منسوجة من خيوط نسجيه قطن ومغزوله بثلاثة أساليب مختلفة للغزل (غزل حلقى ، غزل طرف مفتوح و غزل مدمج) في اتجاه اللحمة. تم تصنيع بعض التر اكيب النسجيه المستندة إلى نسيج مبر دى على ماكينه النسيج مع تغيير مستوى كثافة اللحمة. تم استخدام نظام تقييم كواباتا لقياس خصائص القص. و هى صلابة القص ، هستريسس القص (قدره القماش على تحمل اجهاد القصر) عند ز اوية قص 0.5 خصائص القص. و هى صلابة القص ، هستريسس القص (قدره القماش على تحمل اجهاد القصر) عند ز اوية قص 0.5 درجة. و هستريسس القص عند ز اوية قص 5 درجة. تم إجراء تحليل إحصائي للحصول على تأثير العوامل المحددة على القص. وجد ان هناك تأثير كبير للغاية للتركيب النسجي وكثافة اللحمة على خصائص القص القص المعاد أن نوع خيوط اللحمة له تأثير ضيئيل. تم استنتاج معادلات انحدار خطية متعددة للحصول على تأثير العوامل المحددة نوع خيوط اللحمة له تأثير ضيئيل. تم استنتاج معادلات انحدار خطية متعددة للحصول على على أن العوامل المحددة معلى القص. وجد ان هناك تأثير كبير للغاية للتركيب النسجي وكثافة اللحمة على خصائص القص المعاس المعاد في عن أن معلى القص. و معال منه القص المعاني الحماد على تأثير العوامل المحدة على القص. وجد ان مناك تأثير ضيئيل تبر للغاية للتركيب النسجي وكثافة اللحمة على خصائص القص المقاسة ، في حين أن معام المؤرة ؛ (طول التشييف ، قطر الخيط ، وكثافة اللحمة) و خصائص المقاسه. كان لمعادلات الانحدار المشتقة قيم معاملات ار تباط عالية.