Assiut University web-site: www.aun.edu.eg

ASSESSMENT AND EVALUATION OF BACTERIOLOGICAL HAZARDS FROM CRITICAL POINTS IN MEAT SHOPS CONCERNING SOME TOXIGENIC AND BIOFILM-FORMING BACTERIA

NAHLA, A. EBIED¹; MOSTAFA, S. ABDOU² AND HALA, A.M. ABDELHADY³

- ¹ Department of Food Hygiene, Animal Health Research Institute, Kafr El-Sheikh Branch, Agricultural Research Center (ARC), Egypt
- ^{2,3} Department of Bacteriology, Animal Health Research Institute, Kafr El-Sheikh Branch, Agricultural Research Center (ARC), Egypt

Received: 24 November 2022; **Accepted:** 18 December 2022

ABSTRACT

To manage public health threats in meat from meat shops, the present study aimed to identify and evaluate the bacteriological hazard from critical points (meat cuts, liver, minced meat, equipment including knives and mincing machines, Tables, workers' hands, and refrigerators) in retail meat shops of different regions in Kafr El-Sheikh city, Egypt, through total bacterial count (TBC), total coliform count (TCC), and Staphylococcus aureus count (SC) in examined samples and swabs from each source (n = 20) the mean count values in CFU/g were recorded higher (p< 0.05) in minced meat samples. Samples that exceeded permissible limits were also detected. S. aureus was isolated in descending order by a rate of 100%, 85%, 80%, 65%, 60%, 50%, and 40% from tables, workers' hands, refrigerators, minced meat, equipment, meat cuts and liver samples, respectively, this means instruments, and workers' hands are higher in isolation rate of S. aureus than meat products. Among 10 isolates of S. aureus from different points, the prevalent genotypes of biofilm-forming genes were ebps and eno in all samples, while enterotoxins genes represented by seb and sec. Fifty-four out of 100 E.coli isolates were identified serologically as EPEC (O146: H21, O44: H18, O20: H7, O163: H2), EHEC (O111: H2, O26: H11, O91: H21, O117: H18), ETEC (O125: H21, O128: H2), and EIEC (O159). Findings revealed that meat sold in our local meat shops contains high numbers of spoilage and pathogenic organisms that could be a possible threat to meat and consumers.

Keywords: Meat contamination, meat shops, biofilm-forming bacteria, S. aureus, E.coli

INTRODUCTION

Meat is considered one of the important sources of protein, essential amino acids, vitamins, and minerals, therefore it provokes the growth of microorganisms. Bacteriological hazard in meat is one of the potential biological hazards in meat are bacteria which cause a large proportion of all foodborne illnesses (FSIS, 1999). Focus is moved from food service to the retail sector, including butcher shops selling raw meat, as several *Escherichia coli* (*E. coli*) outbreaks have been linked to butcher shops (FSAI, 2006).

hazards, the most important microbiological

Corresponding author: NAHLA, A. EBIED E-mail address: nahla.nahla64@yahoo.com Present address: Department of Food Hygiene, Animal Health Research Institute, Kafr El-Sheikh Branch, Agricultural Research Center (ARC), Egypt As the carcass, raw cuts of meat, in general, have the same level of contamination. Plus contamination through handling and processing (Abdou *et al.*, 2015). As well as, during

manipulation, and distribution at retail establishments (Barros *et al.*, 2007).

Staphylococcus aureus bacteria is common in the environment. It is a major cause of foodborne diseases with a short incubation period. Contamination of meat is mainly from humans. It colonizes human skin and the front nares in a substantial fraction of the human population (Castro *et al.*, 2016). Production of heat-stable toxins is the risk of their growth (Wang and Ruan, 2017). As well as, *S. aureus* is capable of colonizing processing surfaces creating biofilms that result in the persistence of such bacteria in food processing environments (Coughlan *et al.*, 2016).

The ultimate source of *E. coli* is an apparently healthy animal that may shed these bacteria in their feces. Then found in slaughtered livestock after dressing the carcass. Foodborne disease outbreaks was associated with the consumption of contaminated meat products with these pathogens (El-Gamal *et al.*, 2016).

Through the consumption of raw or undercooked contaminated beef by pathogenic *E. coli*, especially Shiga toxin-producing types (STEC), a potent toxin secreted in the intestinal tract of infected people causes diarrhea that may be bloody, fever and may result in kidney failure and death, especially in children (FSIS, 2002). The attachment of these bacteria to the food contact surfaces in form of detrimental biofilms leads to serious hygienic problems (Carpentier and Cerf, 1993), due to cross-contamination of uncontaminated carcasses (Zottola and Sasahara, 1994).

Wet food processing environments and perishable food above 0.9 water activities are suitable for microorganism multiplication and biofilm formation, so the safety of food products is threatened by biofilms that developed by toxigenic and pathogenic bacteria such as *S. aureus* and pathogenic *E. coli* (Galié *et al.*, 2018; 2020; Sanches *et al.*, 2021).

Microbial biofilms could be formed on all surfaces in the food environment such as metal, glass, plastic, wood, and cement, in which tolerance of bacteria to environmental stresses will increase (Beloin and Ghigo, 2005). Biofilm is formed through the combination of an active matrix of cells and extracellular substances

(extracellular polymeric substance, EPS) with a solid conditioned surface with nutrients. Then cells grow and actively multiply to form a mass of cells that become large enough to entrap debris and other microorganisms (Kumar and Anand, 1998). This enforces the resistance of bacteria to disinfectants (Di Martino, 2018; Van Houdt and Michiels, 2005). Biofilm is also formed under strict genes essential for EPS synthesis and cell aggregation (Alvarez *et al.*, 2013).

The foodborne infections can mainly be traced to unhygienic food handling procedures (Ebied et al., 2022). So contamination prevention must be taken to ensure the safety of meat (NAS, 2003). This work aimed to evaluate the microbial quality and safety of raw meat and the hygienic conditions of the surrounding environment in meat shops in Kafr El-Sheikh city, based on the estimation of indicator microorganism counts as total bacterial count (TBC), total coliform count (TCC), and S. aureus count (SC), besides assessing microbial hazards by detection of S. aureus with enterotoxin genes (Sea, Seb, Sec) and biofilm-forming genes (Ebps, Cna, Eno). As well as detection and serological identification of pathogenic E. coli from critical points in meat shops that include (meat cuts, liver, minced meat and environmental swabs from equipment (knives and mincing machines), tables, workers' hands, and refrigerators)

MATERIALS AND METHODS

Experiments were carried out in both laboratories of Animal Health Research Institute (AHRI), Dokki, Giza, and Kafr El-Sheikh branch.

1. Samples collection

One hundred and forty samples of raw beef meat cuts, liver, minced meat, and environmental swaps from equipment (knives and mincing machines), tables, workers' hands, refrigerators (20 of each) were collected from different retail meat shops in Kafr El-sheikh city. Raw meat cuts, liver, and minced meat samples (200gm for each) were purchased in labeled sterile bags. Swabs were obtained from workers' hands and meat contact surfaces (equipment, tables, and refrigerators). Areas were sampled in centimeters with sterile swabs according to Köck et al. (2009). Samples were transported immediately in cooled ice boxes at 4°C to the laboratory were prepared, and subjected to different tests. The samples were sensory evaluated for color, odor and flavor according to Marriot (1995).

2. Preparation of Samples

Each sample of meat cut, liver, and minced meat, (25g) was prepared according to APHA (2001), while properly mixed with sterile peptone water, 225 mL (Oxoid, United Kingdom) to provide dilution of 10⁻¹ after homogenization for 60 seconds using a Stomacher Lab-Blender 400 (Seward Ltd, UK). Then tenfold serial decimal dilutions were done for bacterial counts. From the hand surface of butchers and workers as well as instruments swabs tips were taken from 10 cm² area, and suspended in 10 mL sterile peptone water. Then serial dilution was occurred, and calculation was done per 1cm² (FDA, 2002).

3. Microbial count

Each count was occurred according to the specific medium and the determination technique of each microbial group. Performed serially diluted samples, enumeration of TBC using standard plate count agar according to APHA (2001) was done. TCC was done according to APHA (2001) using the most probable number (MPN) technique. S. aureus count (SC) on Baird-Parker agar medium was done according to FAO (1992). Detection and enumeration of bacteria in swabs, according to PHE (2017). The swabs are vortex mixed to aid the release of organisms into the diluent. Then swab diluent serially diluted. After incubation, all colonies formed on plates were counted and the results were converted to CFU/g. or CFU/cm².

4. Isolation and identification of S. aureus

Suspected colonies appear as black colonies surrounded by a clear zone with a narrow white margin were enumerated and stabbed into semisolid agar tubes for further biochemical identification (Lancette and Bennett, 2001). *S. aureus* isolates were further tested by PCR to detect Enterotoxin genes as well as biofilm-forming genes using specific primers, target genes, and cycling conditions as illustrated in Table 1.

5. Polymerase chain reaction (PCR)

- Extraction of Bacterial genomic DNA from *S. aureus* isolates was performed using the QIAamp DNA Mini kit (Qiagen, Germany, GmbH) with modifications from the manufacturer's recommendations. Sample suspension (200 μ l), proteinase K (10 μ l), and lysis buffer (200 μ l) were incubated for 10 min. at 56°C. The lysate was supplemented with 200 μ l of 100% ethanol. Then washing and centrifugation according to the manufacturer's recommendations.

Oligonucleotide primers used were from Metabion, Germany; are listed in Table 1.

- Amplification of PCR:

50 μl of total PCR reaction volume were utilized containing 25 μl of Master Mix Emerald Amp Max PCR (Takara, Japan), 1 μl of each forward and reverse primer (20 pmol), 14 μl of free water, and 5 μl DNA template. Reaction in an applied bio system 2720 thermal cycler was performed.

PCR products were separated on 1.5% agarose gel (Applichem, Germany, GmbH) in gel electrophoresis, (40 $\,\mu$ l) of PCR product were loaded in each gel slot. To determine the fragment sizes, Gene ruler 100 bp ladder (Fermentas, Germany), gel pilot 100 bp, and DNA ladder (Qiagen, Gmbh, Germany) were used. The gel was photographed by a gel documentation system (Alpha Innotech, Biometra). Data were analyzed through computer software.

6. Isolation and Identification of E. coli

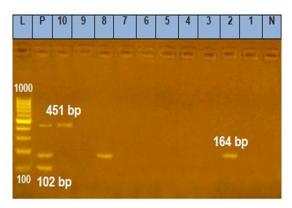
From positive MPN tubes confirmed in brilliant green lactose broth by gassing at (35 °C for 48h), loopful of broth were streaked onto plates of Eosin Methylene Blue agar (EMB, Oxoid, England) (ICMSF, 1996). Typical colonies of *E. coli* (green with metallic sheen) were biochemically identified using IMVIC analyses (Ewing and Edwards, 1986). Isolated *E. coli* were serologically identified using rapid diagnostic antisera sets for *E. coli* (DENKA SEIKEN Co., Japan), according to Kok *et al.* (1996)

Table 1: Primers sequences with cycling conditions.

PCR Target		Primers sequences		Amplified Primary Amplification (35 cycles)					Reference
type	gene	-	segment (bp)	denatura -tion	Secondary denatura- tion	Annealing	Exten- tion	exten- tion	
		Forward(F)			tion				
		Reverse(R)	•						
Multi-	cna	GTCAAGCAGTTA	423	94°C	94°C	55°C	72°C	72°C	Tristan et al.,
plex 1		TTAACACCAGAC	_	5 min.	30 sec.	40 sec.	45 sec.	10 min.	2003
		AATCAGTAATTG							
		CACTTTGTCCAC							
		TG							
	ebps	AGAATGCTTTTG	652						Vancraeynest
		CAATGGAT	_						et al., 2004
		AATATCGCTAAT							
		GCACCGAT							
	eno	ACGTGCAGCAG	302						Tristan et al.,
		CTGACT	_						2003
		CAACAGCATYCT							
		TCAGTACCTTC							
Multi-	Sea	GGTTATCAATGT	102	94°C	94°C	57°C	72°C	72°C	Mehrotra et al.,
plex 2		GCGGGTGG	=	5 min.	30 sec.	40 sec.	45 sec.	10 min.	2000
		CGGCACTTTTTT							
		CTCTTCGG							
	Seb	GTATGGTGGTGT	164						
		AACTGAGC	_						
		CCAAATAGTGA							
		CGAGTTAGG							
	Sec	AGATGAAGTAGTT	451						
		GATGTGTATGG	_						
		CACACTTTTAGA							
		ATCAACCG							

RESULTS

Table 2: Mean values \pm SEM of *TBC*, *TCC* and *S. C* in the examined meat products and instrument samples (n=20 for each) with samples exceed the permissible limits (PLs).


Samples (20 for each)	TBC				TCC		S. C		
Total samples (140)	Positive samples No. (%)	Mean Count (CFU/ g.cm ²)	Samples exceed PL No. (%)	Positive samples No. (%)	Mean Count (CFU/g.cm ²)	Samples exceed PL No. (%)	Positive samples No. (%)	Mean Count (CFU/g.cm ²)	Samples exceed PL No. (%)
Meat cuts	20 (100)	$\begin{array}{c} 4.1 \times 10^{4} \\ \pm 1.1 \times 10^{2} a \end{array}$	10 (50)*	13 (65)	7.3×10 ² ±1.1×10 ^a	6 (30)**	5 (25)	3.3×10 ² ±1.8×10 ^a	5 (25)*
Liver	20 (100)	$2.7 \times 10^4 \pm 0.6 \times 10^{2 \text{ b}}$	8 (40)*	18 (90)	1.6×10 ² ±0.2×10 ^b	9 (45)**	3 (15)	2.3×10 ² ±1.4×10 ^b	3 (15)*
Minced meat	20 (100)	$\substack{4.6\times10^4\\\pm1.2\times10^{2a}}$	13 (65)*	16 (80)	5.3×10 ² ±1.1×10 ^a	9 (45)**	11 (55)	4.3×10 ² ±0.9×10 ^a	11 (55)*
Equipment	19 (95)	2.7×10 ⁴ ± 0.6×10 ² b	4(20)***	13 (65)	1.6×10 ² ±0.2×10 ^b	2 (10)***	12 (60)	3.3×10 ² ±1.4×10 ^b	12 (60)*
Tables	20 (100)	4.6×10 ⁴ ±1.8×10 ² a	9(45)***	18 (90)	6.3×10 ² ±1.5×10 ^a	7 (35)***	20 (100)	6.3×10 ² ±1.4×10 ^a	20 (100)*
Workers' hands	19 (95)	$2.9 \times 10^4 \pm 0.9 \times 10^{2 \text{ b}}$	7(35)***	13 (65)	1.7×10 ² ±1.2×10 ^b	2 (10)***	17 (85)	2.3×10 ² ±1.1×10 ^b	17 (85)*
Refrigerators	20 (100)	4.8×10^4 $\pm 1.9 \times 10^2$ a	10(50)***	9 (45)	3.3×10 ² a ±1.1×10	6 (30)***	16 (80)	2.7×10 ² ±1.4×10 ^b	16 (80)*
Total.	138(98.57)		61(43.57)	100 (71.42)		41(29.28)	84(60)		84(60)

Means carrying different superscript letters [a (highest value), b (lowest value). Values in the same column differed significantly at P<0.05.

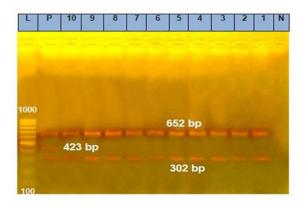

^{*} EOS No. 3602 (2013): TBC/cm² or/g limit $\leq 10^6$ cfu of meat surface, SC limit $\leq 10^2$, E.coli/g limit = Free. ** E.O.S.Q.C No. 2079 (2005): (TCC) /cm² or/g limit $\leq 10^2$ cfu. *** (GSO 2017): Indicated standard for surfaces swabs TBC $\leq 10^3$ cfu/cm², TCC were $\leq 10^1$ cfu/cm²

Table 3: Result of multiplex PCR for enterotoxins genes represented by *Sea* (102 bp), *Seb* (164 bp), and *Sec* (451bp) and Biofilm-forming genes represented by *ebps* (652bp), *cna* (423bp), and *eno* (302bp), of *S. aureus*.

Samples types	Isolate No.	Sea	Seb	Sec	ebps	cna	eno
Most outs	1	-	-	-	+	-	+
Meat cuts	2	-	+	-	+	-	+
12	3	-	-	-	+	-	+
liver	4	-	-	-	+	-	+
Mines I west	5	-	-	-	+	-	+
Minced meat	6	-	-	-	+	-	+
Equipment	7	-	-	-	+	-	+
Tables	8	-	+	-	+	-	+
Workers' hands	9	-	-	-	+	-	+
Refrigerators	10	-	-	+	+	-	+
Total No. (%)	10	0	2(20)	1(10)	10(100)	0	10(100)

Figure 1: Agarose gel electrophoresis of multiplex PCR for enterotoxins genes *Sea* (102 bp), *Seb* (164 bp), and *Sec* (451 bp) of *S. aureus*. Lane L: 100 bp ladder as a molecular size DNA marker. Lane P: Control positive genes. Lane N: Control negative. Lane 1 to 10: Negative for *Sea* gene. Lane 2 and 8: Positive for *Seb* genes. Lane 1, 3, 4, 5, 6, 7, 9, and 10: Negative for *Seb* gene. Lane 10: Positive for *Sec* gene. Lane 1 to 9: Negative for *Sec* gene.

Figure 2: Agarose gel electrophoresis of multiplex PCR for biofilm-forming genes *ebps* (652bp), *cna* (423 bp), *eno* (302 bp) of *S. aureus*. Lane L: 100 bp ladder as a molecular size DNA marker. Lane P: Control positive genes. Lane N: Control negative. Lane 1 to 10: Positive for *ebps* and *eno* genes and negative for *cna* gene.

Table 4: Serological identification of isolated *E. coli* (100 isolates).

Strain characterization	Serotypes	Serotypes No. (%)	Sources
	O146 : H21	6 (6)	1 Meat cuts, 1 Liver, 1 Minced meat, 1 Equipment, 1 Workers' hands, 1 Tables
	O44 : H18	4 (4)	1 Liver, 1 Minced meat, 1 Equipment, 1 Tables
EPEC	O20 : H7 5 (5)		1 Meat cuts, 1 Liver, 1 Minced meat, 1 Equipment, 1 Refrigerators
	O163 : H2	6 (6)	1 Meat cuts, 1 Liver, 1 Minced meat, 1 Equipment, 1 Tables, 1 Refrigerators
	O111 : H2	7 (7)	1 Meat cuts, 1 Liver, 1 Minced meat, 1 Equipment, 2 Tables, 1 Refrigerators
EHEC	O26 : H11	5 (5)	1 Meat cuts, 1 Liver, 1 Minced meat, 1 Equipment, 1Tables
	O91 : H21	6 (6)	1 Meat cuts, 1 Liver, 1 Minced meat, 1 Equipment, 1 Tables, 1 Refrigerators
	O117 : H18	3 (3)	1 Meat cuts, 1 Liver, 1 Minced meat
ETEC	O125 : H21	5 (5)	1 Meat cuts, 1 Liver, 1 Minced meat, 1 Refrigerators, 1 Workers' hands
ETEC	O128 : H2	4 (4)	1 Minced meat, 1 Workers' hands, 1 Refrigerators, 1 Tables
EIEC	O159	3 (3)	1 Minced meat, 1 Workers' hands, 1 Refrigerators
Total	11	54(54)	8 (40%) Meat cuts, 9 (45%) Liver, 11 (55%) Minced meat, 7 (35%) Equipment, 8 (40) Tables, 4 (20%) Workers' hands, 7 (35%) Refrigerators

DISCUSSION

Different examined samples (n=20 for each) presented in Table 2 show that the mean TBC in CFU/g. or cm² was recorded higher (p< 0.05) in minced meat $(4.6 \times 10^4 \pm 1.2 \times 10^2)$ than in meat cuts $(4.1 \times 10^4 \pm 1.1 \times 10^2)$ than liver samples $(2.7\times10^4 \pm 0.6\times10^2)$ and also samples exceeded PL (No., %) were in the same manner 13(65), 10(50) and 8(40), respectively. Higher results $(3.3 \times 10^5 \pm 1.6 \times 10^5)$ were reported in minced meat by Eltanani and Arab (2021) with 28% of the unaccepted sample that was found to be exceeding the PL. Lower results (8.20x10²) were reported by El-Shamy (2015). According to EOS No. 1651(2005), contamination levels over 10⁵ CFU/cm² indicate bad hygienic conditions. EOS No. 3602 (2013) stated TBC/g limit $\leq 10^6$ cfu/cm². However, meat contamination with 10⁶ CFU/cm² indicates a deterioration process as set by regulatory bodies in advanced countries for meat that must not be sold to consumers (Nieto et al., 2010). Moreover, the Contamination over 10⁵ CFU/cm² reflects unsatisfactory hygienic conditions by Barros et al. (2007). In addition, contamination exceeding 10^4 CFU/cm² is sufficient to begin biofilm formation, which is difficult to clean (Hood and Zottola, 1995).

The mean TCC in CFU/g. was higher (p< 0.05) in meat cuts and minced meat $(7.3\times10^2\pm1.1\times10)$ and $5.3\times10^2\pm1.1\times10$) than liver $(1.6\times10^2\pm0.2\times10)$, lower results were detected by Barros *et al.* (2007) in meat cuts $(1.68\pm1.28\times10)$. Unaccepted samples that exceed PL in (No. %) were 6(30) in meat cuts, while (No. %) was 9(45) in both minced meat and liver. Fecal matter is the major source of contamination through contaminated carcasses, workers, equipment, and air (FSA, 2020).

The mean S. C in CFU/g. was also significantly higher in minced meat $(4.3 \times 10^2 \pm 0.9 \times 10)$ than meat cuts than liver with the same descending manner in exceeding PL (No., %), as follows, 11(55%), 5(25), and 3(15) respectively. Nearly similar result was recorded in minced meat by Eltanani and Arab (2021) $(0.2x10^2 \pm 0.$ $13x10^{2}$ cfu/g) and by Ashraf *et al.* (2016) (1.1) $\times 10^3$ cfu/g). Contamination with S. aureus may occur at the slaughter or from human contact due to their poor hygiene practices through sneezing, coughing, and wounds in the hands of food handlers (Abdalhamid et al., 2013). All positive samples for S. aureus isolation in the current study were exceed permissible limit (10²) according to E.O.S.Q.C No. 2079 (2005).

Processing, such as grinding, distributes bacteria on the surface throughout the ground meat and raises the temperature of meat allowing bacteria to grow rapidly. (GAO, 2002), that explains our higher results of minced meat count.

Concerning instrument samples and workers' hands, the samples that exceeded TBC PL No. (%) were estimated in a descending manner in refrigerators, tables, Workers' hands, and equipment with a mean count of 4.8×10^4 ± 1.9×10^2 , $4.6 \times 10^4 \pm 1.8 \times 10^2$, $2.9 \times 10^4 \pm 0.9 \times 10^2$ and $2.7 \times 10^4 \pm 0.6 \times 10^2$ respectively. This agreed with that recorded by Eisel et al. (1997). The recorded high levels of contamination may be due to inefficient cleaning which leads to the accumulation of organic matter that encourages microbial growth and reduces sanitization procedures efficiency. Samples exceeded TCC PL No. (%) were 7(35) and 6(30) in tables and refrigerators and were equal to 2(10) in both Workers' hands and equipment. Most of the sampled tables and the traditional refrigerator boxes in local meet shops were made of wood, whose porous nature allows for the accumulation of organic matter. Nevertheless, the dirty floor of meat shops can offer an appreciative environment for microbial growth, and enforce propagation and preservation of microorganisms, also the meat is hung in the shops without any segregation or protection by glass against the outlet of the shop. Barros et al. (2007), identified equipment as the main contamination point in butcher shops and found that samples collected from facilities showed a logarithmic mean of 5.38 log CFU.cm⁻ ² for TBC and the average contamination level of TCC was 3.28 log CFU.cm⁻². Additionally for his examined products, the ground (minced) beef was the most severely contaminated product in his study, then meat cuts, just like our results. In order that exploring bacterial count can predict the presence of spoilage and pathogenic bacteria (Jay, 2005).

As shown in Table 2, *S. aureus* was isolated from 84(60%) out of a total of 140 examined samples. The lower value was detected by Telli *et al.* (2022) who isolate *S. aureus* from only17% of the total examined samples of his study. *S. aureus* was found isolated in descending order by the rate of 100%, 85%, 80%, 65%, 60%, 50%, and 40% from tables, Workers' hands, Refrigerators, Minced meat, Equipment, Meat cuts, and liver samples, respectively. This is means instruments and workers' hands are higher in isolation rate of

S. aureus than meat products. This nearly parallel to results detected by Bughti et al. (2017) who detected S. aureus in 30% of cattle beef samples and in 66.6% of the equipment used in meat shops. S. C that exceeded PL, No. (%) was highly recorded in Tables, Workers' hands, refrigerators, and equipment in a descending manner of 20(100), 17(85), 16(80), and 12(60), respectively. This reflects bad hygienic practices in the place that affect the hygiene of meat.

Table 3 shows that three classical S. aureus enterotoxins genes (SEs genes) represented by sea, seb, and sec (Fig 1) and biofilm-forming genes represented by ebps, cna, and eno were targeted to detected by PCR (Fig 2), and illustrated that, from 10 out of 84 S. aureus isolates (2 meat cuts (1, 2), 2 liver (3,4), 2 minced meat (5,6), 1 equipment (7), 1 tables (8), 1 workers' hands (9) and 1from refrigerators (10). Sea gene was not found in any of the isolates tested. Two isolates (20%) harbored the seb genes recovered from meat cuts and tables, and only one isolate harbored the sec gene which recovered from refrigerators. Seb and sec genes are classical antigens identified to be including staphylococcal enterotoxins B and C which are the most commonly related to food poisoning cases worldwide (Sezer et al., 2015).

Biofilms are important virulence factors in the development of pathogens (Tahaei et al., 2021), ebps, cna, and eno genes involved in the biofilm formation of S. aureus that play important role in adhesion (Vergara et al., 2017). Several outbreaks were caused by biofilm-forming S. aureus in the EU (EFSA, 2015). In the United States, 241,994 cases of this food poisoning type were reported, with 1,067 hospitalizations and 6 deaths (CDC, 2016). Toxins can be secreted by biofilm and can contaminate food, causing multiple intoxications in the case of an outbreak (Galié et al., 2018). A study on retail foods in China (Wang and Ruan, 2017) detected more than 90% of the isolates carrying S. aureus with enterotoxins genes with the ability to form biofilm.

In our study *cna* gene was not found in any of the isolates tested, while *ebps* and *eno* genes were detected in 100% of *S. aureus* isolates. Isolates 2, 8, and 10 that harbored enterotoxin genes harbored also biofilm-forming genes, which amplify the risk of foodborne outbreaks.

Kowalska *et al.* (2020) found that bacterial pathogens isolated from retail food samples including *S. aureus* in his study formed biofilms. Biofilm-forming serovars are the most persistent in food processing environments (Meyer, 2015). *S. aureus*, was detected with *E. coli* in meat samples of cattle beef and meat-cutting equipment samples in butcher's shops by Bughti *et al.* (2017).

One hundred isolates of *E.coli* from positive MPN tubes after phenotypic and biochemical examination were subjected to serological identification, and resulted in 54 out of 100 isolates being serotyped pathogenic as illustrated in table 4 which indicated that the rate of isolation of pathogenic *E. coli* from each source (No. =20) were 40% Meat cuts, 45% Liver, 55% Minced meat, 35% Equipment, 40% Tables, 20% Workers' hands, and 35% Refrigerators. This means the higher percentage was in minced meat followed by the liver then meat cuts. Tables were the most contaminated instrument followed by workers' hands. EHEC including (O111, O91, O26, and O117) is considered as Shiga toxinproducing E. coli (STEC) these were detected in raw beef samples and instruments samples obtained from 25 retail markets in Kafr El-sheikh governorate by El-Gamal et al. (2016) that agreed with our results. Conversely, with us, the prevalence of (STEC) strains in instrumental samples was more than in raw ground beef samples in his results.

Different *E. coli* serotypes have been reported to form biofilms through their Flagella, pili, and membrane proteins that are used to initiate attachment on inanimate surfaces (Vogeleer *et al.*, 2016). *E. coli* strains, such as O111 and O26 displayed a biofilm formation ability (Chagnot *et al.*, 2014). Additional 13 cases were belonged to serotype O157 which developing hemolytic uremic syndrome (HUS) foodborne outbreak was reported in Romania and Italy in 2016, with an overall of 19 cases and 3 deaths, the majority of the cases were due to serotype O26 (EFSA, 2016).

Bacteria *E. coli* is usually present in high numbers than other pathogens (FSA, 2020). So, to achieve the lowest microbial load, Food safety management systems including hazard analysis and critical Control points systems (HACCP) should be applied strictly. In developing countries like Egypt, the meat shops environment, is not

only contaminated but also enhances the growth of bacteria (WHO, 2011; EFSA, 2015).

CONCLUSIONS AND RECOMENDATIONS

The current study evaluated the bacterial contamination in raw meat, liver, butchers' instruments, and workers' hands in Kafr El-Sheikh city, Egypt, and it was found that meat sold in the shops contain high numbers of viable bacteria that could be a potential threat to consumers' health since pathogens such as toxigenic -forming *S. aureus* and pathogenic *E. coli* could be detected in the raw meat cuts, minced meat, liver, and processing environment.

This work is expected to aid butchers in meat shops to improve their hygienic procedures to reduce microbial contamination. For consumers' health. The findings of this research will provide the necessary information for relevant authorities to manage public health threats associated with the consumption of meat and offal from meat shops that consider a part of the meat production chain. Compliance with hazard analysis and controlling CCPs for ensuring the safety of meat for consumers was recommended in this study.

REFERENCES

Abdalhamid, S.A.; Farj, A.A. and Ali, A.B. (2013):
Bacterial Contamination of Ready to Eat.
Foods (shawerma sandwiches), presented at
2nd International Conference on
Environment. Agriculture and Food Sciences
(ICEAFS). 6-7. Misurata City. Libya

Abdou, M.S.; El-Gamal, A.M.; Ebied, N.A. and Elkassas, W.M. (2015): Phenotypic and molecular characterization of MRSA from chicken meat and its slaughter units. A. H. R Jour. 3 (1): 272-282

Alvarez-Ordez, A.; Alvseike, O.; Omer, M.K.; Heir, E.; Axelsson, L. and Holck, A. (2013): Heterogeneity in resistance to food related stresses and biofilm formation ability among vero cytotoxigenic Escherichia coli strains. International Journal of Food Microbiology. 161(3): 220-230. DOI: 10.1016/j. ijfoodmicro. 2012.12.008

APHA (American Public Health association) (2001): Compendiums of methods for microbiological examination of foods. 4th ed. 365-366. 800.1st, NW Washington DC.2000. 1-3710.

Ashraf, A.A.E.T.; Ahmed, A.A.; Maarouf, Fatma I.; El-Hofyand, Dina, H. Mousa, (2016):

- Bacteriological and Molecular studies on Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from chicken meat and itsproducts in Kaliobia Governorate. Benha veterinary medical journal 31(1), 64-72.
- Barros, M.A.F.; Nero, L.A.; Monteiro, A.A. and Beloti, V. (2007): Identification of main contamination points by hygiene indicator microorganisms in beef processing plants. Ciênc. Tecnol. Aliment. Campinas. 27(4): 856-862. Out.-dez.
- Beloin, C. and Ghigo, J.M. (2005): Finding gene expression patterns in bacterial biofilms Trends in Microbiology. 13: 16-19. DOI: 10.1016/j.tim.2004.11.008
- Bughti, A.; Abro, S.H.; Kamboh, A.A.; Leghari, R.A.; Kumar, C. and Koondhar, S.A. (2017):
 Bacterial contamination of raw meat and butchers' equipment in retail shops in Tando-Allahyar, Pakistan. J. Anim. Health Prod. 5(3): 115-119.
- Carpentier, B. and Cerf, O. (1993): Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 75: 499–511.
- Castro, A.J.; Vaughn, C.C.; García- Llorente, M.; Julian, J.P. and Atkinson, C.L. (2016): Willingness to pay for ecosystem services among stakeholder groups in a South-Central US watershed with regional conflict. Journal of Water Resources Planning and Management, 142(9): 05016006.
- CDC (2016): Estimates of Foodborne Illness in the United States. Available at: www.cdc.gov/foodborneburden/index.html
- Chagnot, C.; Caccia, N.; Loukiadis, E.; Ganet, S.; Durand, A. and Bertin, Y. (2014):
 Colonization of the meat extracellular matrix proteins by O157 and non-O157 enterohemorrhagic Escherichia coli. Int. J. Food Microbiol. 188: 92–98. doi:10.1016/j.ijfoodmicro.2014.07.016.
- Coughlan, L.M.; Cotter, P.D.; Hill, C. and Alvarez-Ordóñez, A. (2016): New weapons to fight old enemies: novel strategies for the (bio) control of bacterial biofilms in the food industry. Front. Microbiol. 7:1641. doi: 10.3389/fmicb.2016.
- *Di Martino*, *P. (2018):* Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 4: 274–288. doi: 10.3934/microbiol. 2018.2.274.
- E.O.S.Q.C (Egyptian Organization for Standardization and Quality Control) (2005): Egyptian standard no. 2097 for requirements of Minced meat.
- Ebied, N.A.; Elsebaey, E.F.; Abass, M.E. and Abdou, M.S. (2022): A trial for Application

- of Food Safety Tool (HACCP) on Small Cheese Processing Unit for Reduction of Microbiological and Chemical Contamination. *Egypt. J. Vet. Sci.* 53(2): 193-208
- EFSA (European Food Safety Authority) (2015):
 Panel on Biological Hazards [BIOHAZ]
 Public health risks associated with Entero
 aggregative Escherichia coli (EAEC) as a
 food-borne pathogen. EFSA J. 13, 1–88. doi:
 10.2903/j.efsa.2015.4330.
- EFSA (European Food Safety Authority) (2016):
 Multi-Country Outbreak of Shiga ToxinProducing Escherichia coli Infection
 Associated with Hemolytic Uremic
 Syndrome. Parma: European Food Safety
 Authority.
- Eisel, W.G.; Linton, R.H. and Muriana, P.M.A. (1997): Survey of microbial levels for incoming raw beef, environmental sources, and ground beef in a processing plant. Food Microbiology, Illinois, v. 14, n. 3, p. 273-282.
- El-Gamal, A.M.; Abdou, M.S.; Salem, N.I.E. and Ebied, N.A. (2016): Isolation and Molecular Characterization of Shiga Toxin-Producing Escherichia Coli in Beef Retail Markets. Alexandria Journal of Veterinary Sciences. Jan. 48 (1): 50-56 ISSN 1110-2047, www.alexjvs.com. DOI: 10.5455/ajvs.205072.
- Eltanani, G.S.A. and Arab, W.S. (2021): Quality Assurance of Some Meat Products. AJVS. 69 (1): 70-75. DOI: 10.5455/ajvs.85466.
- EL- Shamy, S. (2015): Microbiological criteria of some meat products. Ph. D. Thesis (Meat Hygiene). Faculty .Vet .Med. Alex Univ. Egypt.
- EOS NO. 1651 (2005): Egyptian Organization for Standardization and Quality Control for chicken carcasses, No. 1651.
- EOS No. 3602 (2013): Egyptian Organization for Standardization and Quality Control for chilled meat. www.eos.org.eg
- Ewing, W.H. and Edwards, P.R. (1986): Edwards and Ewing, s Identification of *Enterobacteriaceae*. New York, N Y: El Sevier.
- FAO (Food and Agriculture Organization) (1992): Food and Agriculture Organization of United Nations Manual of Food Quality Control. 1-Microbiological analysis. Staphylococcus counts .p.131.
- FDA (Food and Agriculture Organization) (2002): Isolation and Identification of Staph. Aureus. Academia PI 7112 rev 6, March.

- FSA (2020): Guidance on how to clean equipment and surfaces to prevent harmful bacteria from spreading on to food.
- FSAI (2006): Assessment of HACCP Compliance in Butcher Shops and Supermarket Butcher's Counters Targeted under the FSAI-HSE HACCP Strategy. July 2006 https://www.fsai.ie/uploadedfiles/food_businesses/haccp/fsai_hse_haccp_strategy/survey y haccp_july2006.pdf
- FSIS (The Food Safety and Inspection Service)
 (1999): Microbiological Hazard
 Identification Guide for Meat and Poultry
 Components of Products Produced By Very
 Small Plants. https://www.fsis.usda.gov/sites/default/files/import/Meat
 and Poultry Hazards Controls Guide 10
 042005.pdf
- FSIS (2002): E. coli O157:H7 contamination of beef products. Fed Regist. 67:62325–62334
- Galié, S.; Garcia-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J. and Lombo, F. (2018): Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology. 9: 898. DOI:10.3389/ fmicb.2018.00898
- GAO (2002): Meat and Poultry: Better USDA Oversight and Enforcement of Safety Rules Needed to Reduce Risk of Foodborne Illnesses. Appendix II: Comments from the U.S. Department of Agriculture. GAO-02-902. Washington. DC: GAO.
- GSO (Gulf Standardization Organization) (2017): Microbiological Criteria for Food Stuffs GSO 05 FDS 1016: 2017 P. 37.
- Hood, S.K. and Zottola, E.A. (1995): Biofilms in food processing. Food Control, Reading. 6 (1): 9-18.
- ICMSF (1996): "Microorganisms in foods" intestinally pathogenic E. coli International Commission on Microbiological Specification for food. Blackie Academic and professional London .J. Food. Sc. Agric. 1(9): 366.
- Jay, J.M. (2005): Indicators of Food Microbial Quality and Safety. In: JAY, J.M.; Loessner, M. J. Golden, D. A. (Eds) Modern Food Microbiology. Berkeley: Springer. 387-409.
- Köck, R.; Harlizius, J. and Bressan, N. (2009): Prevalence and molecular characteristics of MRSA among pigs in German farms and import of livestock-related MRSA into hospitals. Eur. J. Clin Microbiol. Infect. Dis. 28: 1375-1382.
- Kok, T.; Worswich, D. and Gowans, E. (1996): Some serological techniques for microbial and viral infections. In Practical Medical Microbiology (Collee J, Fraser A., Marmion

- B, and Simmons A., eds.) 14th ed., Edinburgh. Churchill Livingstone. UK.
- Kowalska, J.; Mackiw, E.; Staslak, M.; Kucharek, K. and Postupolski, J. (2020): Biofilm-Forming Ability of Pathogenic Bacteria Isolated from Retail Food in Poland. J Food Prot. 83 (12): 2032–2040. https://doi.org/10.4315/JFP-20-135
- Kumar, CG. and Anand, SK. (1998): Significance of microbial biofilms in food industry. International Journal of Food Microbiology 42: 9–27
- Lancette, G.A. and Bennett, R.W. (2001): Staphylococcus aureus and staphylococcal enterotoxins. Compendium of methods for the microbiological examination of foods. 4: 387-403.
- Marriot, N. (1995): Score sheet for pane test. Personal communication.
- Meat Industry Guide (2012): Food hygiene and other regulations for the UK meat industry, part three 2. Microbiological Criteria, January.
- Mehrotra, M.; Wang, G. and Johnson, W.M. (2000):

 Multiplex PCR for Detection of Genes for Staphylococcus aureus Enterotoxins, Exfoliative Toxins, Toxic Shock Syndrome Toxin 1, and Methicillin Resistance. J. Of clinical microbial. 38(3).
- Meyer, R.L. (2015): Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front. Microbiol. 6:841. doi: 10.3389/fmicb..00841
- NAS (National Academy of Sciences) (2003):
 Scientific Criteria and Performance
 Standards to Control Hazards in Meat and
 Poultry Products. Washington (DC):
 National Academies Press (US): 4 Available
 from:
 https://www.ncbi.nlm.
 nih.gov/books/NBK221574/
- Nieto, G.; Diaz, P.; Banon, S. and Garrido, M.D. (2010): Effect on lamb meat quality of including thyme (*Thymus zygis* ssp. gracilis) leaves in ewes' diet. Meat Sci. 85:82–88. https://doi.org/10.1016/j.meatsci.2009.12.009
- PHE (Public Health England) (2017): Detection and enumeration of bacteria in swabs and other environmental samples. National Infection Service; Food Water and Environmental Microbiology Standard Method. Document number FNES4 Version (4) Effective Date 23.05.17
- Sanches, M.S.; da Silva, C.R.; Silva, L.C.; Montini, V.H.; Barboza, M.G.L; Guidone, G.H.M.; and Rocha, SPD. (2021): Proteus mirabilis from community-acquired urinary tract infections (UTI-CA) shares genetic similarity

- and virulence factors with isolates from chicken, beef and pork meat. *Microbial Pathogenesis*. 158, 105098.
- Sezer, Ç.; Özgü,r Ç.; Aksem, A. and Leyla, V. (2015): Food Handlers: a bridge in the journey of enterotoxigenic MRSA in Food. Journal für Verbraucherschutz und Lebensmittelsicherheit.10 (2): 123-129. https://doi.org/10.1007/s00003-015-0939-7
- Tahaei, S.A.S.; Stájer, A.; Barrak, I.; Ostorházi, E.; Szabó, D. and Gajdács, M. (2021): Correlation between biofilm-formation and the antibiotic resistant phenotype in Staphylococcus aureus isolates: a laboratory-based study in Hungary and a review of the literature. Infection and drug resistance, 14, p.1155.
- Telli, N.; Telli, A.; Bicer, Y.; Turcal, G. and Ucar, G. (2022): Isolation and antimicrobial resistance of vancomycin resistant Enterococcus spp. (VRE) and methicillinresistant S. aureus (MRSA) on beef and chicken meat, and workers' hands from slaughterhouses and retail shops in Turkey. Journal of the Hellenic Veterinary Medical Society, 72(4), 3345-3354. https://doi.org/10.12681/jhyms.29373.
- Tristan, A.; Ying, L.; Bes, M.; Etienne, J.; Vandenesch, F. and Lina, G. (2003): Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. Journal of Clinical Microbiology, 41, 4465_4467.

- Vancraeynest, D.; Hermans, K. and Haesebrouck, F. (2004): Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Veterinary Microbiology, 103, 241_247.
- Van Houdt, R. and Michiels, C.W. (2005): Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in microbiology, 156(5-6), 626-633
- Vergara, A.; Normanno, G.; Di Ciccio, P.; Pedonese, F.; Nuvoloni, R. and Parisi, A. (2017): Biofilm formation and its relationship with the molecular characteristics of food-related methicillinresistant Staphylococcus aureus (MRSA). J. Food Sci. 82, 2364–2370. doi: 10.1111/1750-3841.13846
- Vogeleer, P.; Tremblay, Y.D.N.; Jubelin, G.; Jacques, M. and Harel, J. (2016): Bioflm forming abilities of Shiga toxinproducing Escherichia coli isolates associated with human infections. Applied and Environmental Microbiology, 82(5): 1448-1458. DOI: 10.1128/AEM.02983-15
- Wang, L. and Ruan, S. (2017): Modeling nosocomial infections of methicillin-resistant Staphylococcus aureus with environment contamination. Sci Rep. 7: 580.
- WHO (2011): http://www.who.int/zoonoses/ vph/en.
- Zottola, E.A. and Sasahara, K.C. (1994): Microbial biofilms in the food industry- Should they be a concern? Int. J. Food Microbiol. 23, 125–148

تعيين وتقييم الخطر الميكروبيولوجي من النقاط الحرجه في محلات بيع اللحوم وخاصة بعض البكتيريا المنتجه للسموم و المكونه للبيوفيلم

نهله أحمد عبيد ، مصطفى صفوت عبده ، هاله أمين عبد الهادى

نظرا لحدوث مشاكل صحيه مثل حالات النزلات المعويه والتسمم الغذائي وما يترتب على ذلك من خسائر اقتصاديه وذلك لتأثير بيئة العمل والعاملين انفسهم على اللحوم لذا تم تحديد اماكن الخطر الميكروبي عامة وبالأخص بعض البكتيريا المنتجه للسموم والمكونه للبيوفيلم في محلات بيع اللحوم بمدينة كفر الشيخ - مصر على مستوى المحل ككل وذلك بالفحص الميكروبي الشامل للحوم وبيئة العمل اولا، ثم أخذ عينات من قطعيات اللحم والكبد، واللحم المفروم، ومسحات من المعدات والمناضد، وأيدي العمال والثلاجات ثم عد الميكروبات المختلفه، وعزل ميكروب المكور العنقودى الذهبي المنتج للسموم المعويه وميكروب القولون النموذجي (الايشيرشيا القولونيه) و باستخدام انزيم البلمره المتسلسل تم الكشف عن تواجد بعض الجينات المسؤله عن حدوث مخاطر التسمم وهي (seb, sec)، وخاصة ان السموم المنتجه غير قابله للتكسير بالحراره، وكذلك تم الكشف عن بعض الجينات المسؤوله عن تكوين البيوفيلم في تلك وخاصة ان السموم المنتج والمكان المحيط حيث العترات (ebps, eno) والتي تمثل خطر كبير في انتشار التلوث البكتيري بهذه السلالات الخطيره في المنتج والمكان المحيط حيث وجد ان أعلي معدل تلوث بكتيري (العد الكلي للبكتيريا الهوائيه، وبكتيريا الإيشرشيا القولونيه، ميكروب القولون وأيلي نسبة عزل لميكروب المكور العنقودي الذهبي كانت في الأدوات وأيدي العمال، كما تم عزل وتصنيف ميكروب القولون الممان برالاجراءات اللازمه عند كل نقطه لضمان جودة وسلامة اللحم ورفع كفاءة العمل بالمكان بالإضافه الى ان نتائج الدراسه تدعم تطبيق نظام تحليل المخاطر ونقاط التحكم الحرجه في محلات بيع اللحوم وتوصى بتطبيقه لضمان سلامة المنتج.