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Abstract 
Instance segmentation is a challenging computer vision task that requires the prediction of object 

instances and their per-pixel segmentation mask. This makes it a hybrid of semantic segmentation and 

object detection. It detects and delineates each distinct object of interest appearing in an image. Mask R-

CNN model is common for instance segmentation that has several versions for improving this task. We 

proposed a simple comparison between Fifteenth different version frameworks from Mask-RCNN for 

object instance segmentation. Our survey representing the difference between the popular versions of 

Mask R-CNN. The Mask R-CNN method extends Faster R-CNN by adding a branch for predicting an 

object mask in parallel with the existing branch for bounding box recognition. The results in most 

versions were implemented on of the COCO dataset that created for instance segmentation tasks.   

 

Keywords: Open CV, CNN, Mask R-CNN models, COCO dataset, instance segmentation tasks.  

1. Introduction 

Computer vision tasks include methods for acquiring, processing, analyzing and understanding 

digital images, and extraction of high-dimensional data from the real world[1]. Real-time 

computer vision can be performed using the open-source computer vision (OpenCV) 

programming library. OpenCV has vast application areas such as facial recognition systems, 

human-computer interaction, object identification, mobile robotics, motion tracking, and 

augmented reality. R-CNNs (Region Based Convolutional Neural Networks) are a kind of 

machine learning model used in computer vision, specifically object detection. As a result, Mask 

R-CNN is a natural and intuitive concept. However, the additional mask output differs from the 

class and box outputs, necessitating the extraction of a much finer spatial layout of an object. For 

each candidate item, Mask R-CNN produces two outputs: a class label and a bounding-box 

offset; to this, we add a third branch that produces the object mask[2]. As a result, Mask R-CNN 

is a natural and intuitive concept. However, the additional mask output differs from the class and 

box outputs, necessitating the extraction of a much finer spatial arrangement of an item. This is 

accomplished by adding a branch for anticipating an object mask alongside the existing branch 

for bounding box recognition as shown in Figure 1. 

Mask R-CNN is an intuitive extension of Faster R-CNN in theory, but properly designing the 

mask branch is important for good results. Most crucially, faster R-CNN was not designed to 

align network inputs and outputs pixel by pixel [1]. Mask R-CNN is straightforward to train and 

adds only a minor overhead to Faster R-CNN, which runs at 5 frames per second. Furthermore, 
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Mask R-CNN is easily generalizable to various tasks, such as estimating human poses within the 

same framework. We achieved top results in all three COCO challenge tracks, including instance 

segmentation, bounding box object detection, and person key point detection. Mask R-CNN 

surpasses all previous, single-model entrants on every job, including the COCO 2016 challenge 

winners, even without any bells and whistles [3]. Over a short period of time, the vision 

community has quickly improved object detection and semantic segmentation outcomes. These 

advancements have been fueled in large part by powerful baseline systems, such as the 

Fast/Faster RCNN and Fully Convolutional Network (FCN) frameworks for object detection and 

semantic segmentation, respectively[4]. 

These approaches are theoretically simple and provide flexibility and resilience, as well as quick 

training and inference times. It is based on the R-CNN series, FPN, FCIS, etc. The idea of 

MRCNN is very simple: Faster R-CNN has two outputs for each candidate area: category label 

and box bias[5]. MRCNN adds another branch based on the Faster R-CNN and adds an output, 

the object mask. We instantiate Mask R-CNN with several architectures to showcase the 

generality of our technique [4]. To be clear, we distinguish between the convolutional backbone 

architecture used for feature extraction over the whole image and (ii) the network head for 

bounding-box identification (classification and regression) and mask prediction that is applied to 

each RoI separately. Mask R-CNN is an enhancement of the Faster RCNN method that adds a 

segmentation mask along with the bounding boxes to each RoI. This additional segment 

facilitates a wide range of use cases. Mask R-CNN requires an inference time of 350-200 ms. 

Mask rcnn is a new convolutional network proposed based on the previous fast rcnn architecture. 

The object instance segmentation is completed in one fell swoop[6]. This method accomplishes 

high-quality semantic segmentation while effectively targeting. The main idea of the article is to 

extend the original Faster-RCNN, add a branch, and use the existing detection to predict the 

target in parallel. At the same time, this network structure is relatively simple to implement and 

train, with a speed of 5fps that can be easily applied to other areas such as target detection, 

segmentation, and character key point detection.is better than the existing algorithm, and it is 

shown in the later experimental results [3]. Fast/Faster R-CNN, Good speed, Good accuracy, 

Intuitive and simple to use. Fully Convolutional Net (FCN), fast and accurate, intuitive and 

simple to use. Instance Segmentation Mask R-CNN's goals are to be fast, accurate, intuitive, and 

simple to use[7].  

Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 

fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate 

human poses in the same framework as shown in figure (2). We show top results in all three 

tracks of the COCO suite of challenges, including instance segmentation, bounding box object 

detection, and person key point detection. Without bells and whistles, Mask R-CNN outperforms 

all existing, single-model entries on every task, including the COCO 2016 challenge winners. 

The vision community has rapidly improved object detection and semantic segmentation results 

over a short period of time. In large part, these advances have been driven by powerful baseline 

systems, such as the Fast/Faster RCNN and Fully Convolutional Network (FCN) frameworks for 
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object detection and semantic segmentation, respectively [5]. These methods are conceptually 

intuitive and offer flexibility and robustness, together with fast training and inference time. Our 

goal in this work is to develop a comparably enabling framework for instance segmentation. 

First, let's review the Faster R-CNN. The Faster R-CNN consists of two phases: (i) The Region 

Proposal Network (RPN) and the basic Fast R-CNN model. (ii) RPN is employed in the 

generation of candidate regions. 

 

Figure 1:The general mechanism of R-CNN mask model 

This survey is organized as follows: Section 2 describes the Mask RCNN model Versions, and 

finally the paper concludes in section 3. 

 

Figure 2:  common tasks for RCNN mask model 

 

2. Mask RCNN model Versions 

In this section, we describe different Mask R-CNN models. 

2.1. Mask R-CNN (R101-C4, 3x) 

Mask R-CNN (R101-C4, 3x) is a common version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. The COCO dataset is a large-scale object detection, 

segmentation, and captioning dataset. The implementation with COCO is a fantastic idea with 

many features. Object segmentation, recognition in context, super pixel stuff segmentation, etc. 

R101 depends on SGD with Momentum training techniques and 8 NVIDIA V100 GPUs as 

training resources that make it a robust framework with speed and flexibility. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the 
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convolution layer, RoIAlign Softmax layer, RPN layer, Dense Connections layer, ResNet layers 

and it The maximum number of iterations was 270000, with 55 million parameters, a training 

time of 0.652 seconds per iteration, and an inference time of 0.145 seconds per iteration. It has a 

huge amount of data that requires training memory of 6.3 (GB). Table 1 represents extra and 

main details about this version. 

2.2. Mask R-CNN (R101-DC5, 3x) 

Mask R-CNN (R101-DC5, 3x) is a common version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its Max Iteration reached 270000 iterations with 191 Million Parameters, training 

time of 0.545 (s/iter) and inference time of 0.092 (s/im). It has a huge amount of data that 

requires training memory of 7.6 (GB). Table 1 represents extra and main details about this 

version. 

2.3. Mask R-CNN (R101-FPN, 1x, LVIS) 

Mask R-CNN (R101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer and it The maximum number of iterations was 90000, with 70 million parameters, a 

training time of 0.371 seconds per iteration, and an inference time of 0.114 seconds per iteration. 

It has a huge amount of data that requires training memory of 7.8 (GB). Table 1 represents extra 

and main details about this version. 

2.4. Mask R-CNN (R101-FPN, 3x) 

Mask R-CNN (R101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer and it The maximum number of iterations was 270000, with 63 million parameters, 

a training time of 0.34 seconds per iteration, and an inference time of 0.056 seconds per iteration. 

It has a huge amount of data that requires training memory of 4.6 (GB). Table 1 represents extra 

and main details about this version. 

2.5. Mask R-CNN (R50-C4, 1x) 
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Mask R-CNN (R50-C4, 1x) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per second. it depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its maximum iteration reaches 90000 iterations with 36 million parameters, 

training time of 0.584 (s/iter), and inference time of 0.11 (s/im). It has a huge amount of data that 

requires training memory of 5.2 (GB). Table 1 represents extra and main details about this 

version. 

2.6. Mask R-CNN (R50-C4, 3x) 

Mask R-CNN (R101-C4, 3x) is a common version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. The COCO dataset is a large-scale object detection, 

segmentation, and captioning dataset. The implementation with COCO is a fantastic idea with 

many features. Object segmentation, recognition in context, super pixel stuff segmentation, etc. 

R101 depends on SGD with Momentum training techniques and 8 NVIDIA V100 GPUs as 

training resources that make it a robust framework with speed and flexibility[8]. 

2.7. Mask R-CNN (R50-C4, VOC) 

Mask R-CNN (R50-C4, VOC) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the PASCAL 

VOC 2007 dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as 

training resources, which makes it a robust framework with speed and flexibility to use. The 

R101 has a Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on 

the convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its Max Iteration reached 18000 iterations with 33 Million Parameters, training 

time of 0.537 (s/iter) and inference time of 0.081 (s/im). It has a huge amount of data that 

requires training memory of 4.8 GB. Table 1 represents extra and main details about this 

version[9]. 

2.8. Mask R-CNN (R50-DC5, 1x) 

Mask R-CNN (R50-DC5, 1x) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its max iteration reached 90000 iterations with 172 Million Parameters, training 

time of 0.471 (s/iter) and inference time of 0.076 (s/im). It has a huge amount of data that 
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requires training memory of 6.5 (GB). Table 1 represents extra and main details about this 

version. 

2.9. Mask R-CNN (R50-FPN, 1x) 

Mask R-CNN (R50-FPN, 1x) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its max iteration reached 270000 iterations with 36 million parameters, training 

time of 0.47 (s/iter) and inference time of 0.076 (s/im). It has a huge amount of data that requires 

training memory of 5.2 (GB). Table 1 represents extra and main details about this version. 

2.10. Mask R-CNN (R50-FPN, 1x, LVIS) 

Mask R-CNN (R50-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer and it The maximum number of iterations was 90000, with 44 million parameters, a 

training time of 0.261 seconds per iteration, and an inference time of 0.043 seconds per iteration. 

It has a huge amount of data that requires training memory of 3.4 (GB). Table 1 represents extra 

and main details about this version. 

2.11. Mask R-CNN (R50-FPN, 3x) 

Mask R-CNN (R50-FPN, 3x) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its maximum iteration reaches 90000 iterations with 50 million parameters, 

training time of 0.292 (s/iter), and inference time of 0.0107 (s/im). It has a huge amount of data 

that requires training memory 7.1 (GB). Table 1 represents extra and main details about this 

version. 

2.12. Mask R-CNN (X101-FPN, 1x, LVIS) 

Mask R-CNN (X101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 
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Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer and it The maximum number of iterations was 27000, with 44 million parameters, a 

training time of 3.4 seconds per iteration, and an inference time of 0.043 seconds per iteration. It 

has a huge amount of data that requires training memory of 0.261 (GB). Table 1 represents extra 

and main details about this version. 

2.13. Mask R-CNN (R50-FPN, Cityscapes) 

Mask R-CNN (R50-FPN, Cityscapes) is a version of the Mask R-CNN framework for instance 

segmentation. It differentiates with several metadata descriptions where it used the Cityscapes 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its max iteration reached 90000 iterations with 36 million parameters, training 

time of 0.24 (s/iter) and inference time of 0.078 (s/im). It has a huge amount of data that requires 

training memory of 4.4 (GB). Table 1 represents extra and main details about this version. 

2.14. Mask R-CNN (X101-FPN, 1x, LVIS) 

Mask R-CNN (X101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer and the maximum number of iterations was 90000, with 114 million parameters, 

training time of 0.712 seconds per iteration, and inference time of 0.151 seconds per iteration. It 

has a huge amount of data that requires training memory of 10.2 GB. Table 1 represents extra 

and main details about this version[10]. 

2.15. Mask R-CNN (X101-FPN, 3x) 

Mask R-CNN (X101-FPN, 3x) is a version of the Mask R-CNN framework for instance 

segmentation. It is distinguished with several metadata descriptions where it used the COCO 

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training 

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a 

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the 

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and 

ResNet layer. Its max iteration reached 27000 iterations with 107 Million Parameters, training 

time of 0.69 (s/iter) and inference time of 0.103 (s/im). It has a huge amount of data that requires 

training memory 7.2 (GB). Table 1 represents extra and main details about this version. 

Table. 1. General Comparison between the all types of Mask RCNN framework 
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3. Conclusions  

In this survey, we proposed common types of RCNN mask models that are used in instance 

segmentation task. Versions of RCNN mask have different properties which mask it helpful for 

more many situations and cases. The Mask R-CNN modes and Faster R-CNN are helping for 

expecting an object mask in parallel with the branch for bounding box recognition. The results in 

most versions were implemented on of the COCO dataset that generated for instance 

segmentation tasks.   
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