

1

Nile Journal of Communication & Computer Science

Journal Webpage: https://njccs.journals.ekb.eg

Volume 3 , Number 1, May 2022

Review: Mask R-CNN Models
Esraa Hassan1, Nora El-Rashidy1 Fatma M. Talaa1*

fatma.nada@ai.kfs.edu.eg

Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt

*: corresponding author; ORCID: 0000-0001-6116-2191

Abstract
Instance segmentation is a challenging computer vision task that requires the prediction of object

instances and their per-pixel segmentation mask. This makes it a hybrid of semantic segmentation and

object detection. It detects and delineates each distinct object of interest appearing in an image. Mask R-

CNN model is common for instance segmentation that has several versions for improving this task. We

proposed a simple comparison between Fifteenth different version frameworks from Mask-RCNN for

object instance segmentation. Our survey representing the difference between the popular versions of

Mask R-CNN. The Mask R-CNN method extends Faster R-CNN by adding a branch for predicting an

object mask in parallel with the existing branch for bounding box recognition. The results in most

versions were implemented on of the COCO dataset that created for instance segmentation tasks.

Keywords: Open CV, CNN, Mask R-CNN models, COCO dataset, instance segmentation tasks.

1. Introduction

Computer vision tasks include methods for acquiring, processing, analyzing and understanding

digital images, and extraction of high-dimensional data from the real world[1]. Real-time

computer vision can be performed using the open-source computer vision (OpenCV)

programming library. OpenCV has vast application areas such as facial recognition systems,

human-computer interaction, object identification, mobile robotics, motion tracking, and

augmented reality. R-CNNs (Region Based Convolutional Neural Networks) are a kind of

machine learning model used in computer vision, specifically object detection. As a result, Mask

R-CNN is a natural and intuitive concept. However, the additional mask output differs from the

class and box outputs, necessitating the extraction of a much finer spatial layout of an object. For

each candidate item, Mask R-CNN produces two outputs: a class label and a bounding-box

offset; to this, we add a third branch that produces the object mask[2]. As a result, Mask R-CNN

is a natural and intuitive concept. However, the additional mask output differs from the class and

box outputs, necessitating the extraction of a much finer spatial arrangement of an item. This is

accomplished by adding a branch for anticipating an object mask alongside the existing branch

for bounding box recognition as shown in Figure 1.

Mask R-CNN is an intuitive extension of Faster R-CNN in theory, but properly designing the

mask branch is important for good results. Most crucially, faster R-CNN was not designed to

align network inputs and outputs pixel by pixel [1]. Mask R-CNN is straightforward to train and

adds only a minor overhead to Faster R-CNN, which runs at 5 frames per second. Furthermore,

2

Mask R-CNN is easily generalizable to various tasks, such as estimating human poses within the

same framework. We achieved top results in all three COCO challenge tracks, including instance

segmentation, bounding box object detection, and person key point detection. Mask R-CNN

surpasses all previous, single-model entrants on every job, including the COCO 2016 challenge

winners, even without any bells and whistles [3]. Over a short period of time, the vision

community has quickly improved object detection and semantic segmentation outcomes. These

advancements have been fueled in large part by powerful baseline systems, such as the

Fast/Faster RCNN and Fully Convolutional Network (FCN) frameworks for object detection and

semantic segmentation, respectively[4].

These approaches are theoretically simple and provide flexibility and resilience, as well as quick

training and inference times. It is based on the R-CNN series, FPN, FCIS, etc. The idea of

MRCNN is very simple: Faster R-CNN has two outputs for each candidate area: category label

and box bias[5]. MRCNN adds another branch based on the Faster R-CNN and adds an output,

the object mask. We instantiate Mask R-CNN with several architectures to showcase the

generality of our technique [4]. To be clear, we distinguish between the convolutional backbone

architecture used for feature extraction over the whole image and (ii) the network head for

bounding-box identification (classification and regression) and mask prediction that is applied to

each RoI separately. Mask R-CNN is an enhancement of the Faster RCNN method that adds a

segmentation mask along with the bounding boxes to each RoI. This additional segment

facilitates a wide range of use cases. Mask R-CNN requires an inference time of 350-200 ms.

Mask rcnn is a new convolutional network proposed based on the previous fast rcnn architecture.

The object instance segmentation is completed in one fell swoop[6]. This method accomplishes

high-quality semantic segmentation while effectively targeting. The main idea of the article is to

extend the original Faster-RCNN, add a branch, and use the existing detection to predict the

target in parallel. At the same time, this network structure is relatively simple to implement and

train, with a speed of 5fps that can be easily applied to other areas such as target detection,

segmentation, and character key point detection.is better than the existing algorithm, and it is

shown in the later experimental results [3]. Fast/Faster R-CNN, Good speed, Good accuracy,

Intuitive and simple to use. Fully Convolutional Net (FCN), fast and accurate, intuitive and

simple to use. Instance Segmentation Mask R-CNN's goals are to be fast, accurate, intuitive, and

simple to use[7].

Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5

fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate

human poses in the same framework as shown in figure (2). We show top results in all three

tracks of the COCO suite of challenges, including instance segmentation, bounding box object

detection, and person key point detection. Without bells and whistles, Mask R-CNN outperforms

all existing, single-model entries on every task, including the COCO 2016 challenge winners.

The vision community has rapidly improved object detection and semantic segmentation results

over a short period of time. In large part, these advances have been driven by powerful baseline

systems, such as the Fast/Faster RCNN and Fully Convolutional Network (FCN) frameworks for

3

object detection and semantic segmentation, respectively [5]. These methods are conceptually

intuitive and offer flexibility and robustness, together with fast training and inference time. Our

goal in this work is to develop a comparably enabling framework for instance segmentation.

First, let's review the Faster R-CNN. The Faster R-CNN consists of two phases: (i) The Region

Proposal Network (RPN) and the basic Fast R-CNN model. (ii) RPN is employed in the

generation of candidate regions.

Figure 1:The general mechanism of R-CNN mask model

This survey is organized as follows: Section 2 describes the Mask RCNN model Versions, and

finally the paper concludes in section 3.

Figure 2: common tasks for RCNN mask model

2. Mask RCNN model Versions

In this section, we describe different Mask R-CNN models.

2.1. Mask R-CNN (R101-C4, 3x)

Mask R-CNN (R101-C4, 3x) is a common version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. The COCO dataset is a large-scale object detection,

segmentation, and captioning dataset. The implementation with COCO is a fantastic idea with

many features. Object segmentation, recognition in context, super pixel stuff segmentation, etc.

R101 depends on SGD with Momentum training techniques and 8 NVIDIA V100 GPUs as

training resources that make it a robust framework with speed and flexibility. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the

4

convolution layer, RoIAlign Softmax layer, RPN layer, Dense Connections layer, ResNet layers

and it The maximum number of iterations was 270000, with 55 million parameters, a training

time of 0.652 seconds per iteration, and an inference time of 0.145 seconds per iteration. It has a

huge amount of data that requires training memory of 6.3 (GB). Table 1 represents extra and

main details about this version.

2.2. Mask R-CNN (R101-DC5, 3x)

Mask R-CNN (R101-DC5, 3x) is a common version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its Max Iteration reached 270000 iterations with 191 Million Parameters, training

time of 0.545 (s/iter) and inference time of 0.092 (s/im). It has a huge amount of data that

requires training memory of 7.6 (GB). Table 1 represents extra and main details about this

version.

2.3. Mask R-CNN (R101-FPN, 1x, LVIS)

Mask R-CNN (R101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer and it The maximum number of iterations was 90000, with 70 million parameters, a

training time of 0.371 seconds per iteration, and an inference time of 0.114 seconds per iteration.

It has a huge amount of data that requires training memory of 7.8 (GB). Table 1 represents extra

and main details about this version.

2.4. Mask R-CNN (R101-FPN, 3x)

Mask R-CNN (R101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer and it The maximum number of iterations was 270000, with 63 million parameters,

a training time of 0.34 seconds per iteration, and an inference time of 0.056 seconds per iteration.

It has a huge amount of data that requires training memory of 4.6 (GB). Table 1 represents extra

and main details about this version.

2.5. Mask R-CNN (R50-C4, 1x)

5

Mask R-CNN (R50-C4, 1x) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per second. it depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its maximum iteration reaches 90000 iterations with 36 million parameters,

training time of 0.584 (s/iter), and inference time of 0.11 (s/im). It has a huge amount of data that

requires training memory of 5.2 (GB). Table 1 represents extra and main details about this

version.

2.6. Mask R-CNN (R50-C4, 3x)

Mask R-CNN (R101-C4, 3x) is a common version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. The COCO dataset is a large-scale object detection,

segmentation, and captioning dataset. The implementation with COCO is a fantastic idea with

many features. Object segmentation, recognition in context, super pixel stuff segmentation, etc.

R101 depends on SGD with Momentum training techniques and 8 NVIDIA V100 GPUs as

training resources that make it a robust framework with speed and flexibility[8].

2.7. Mask R-CNN (R50-C4, VOC)

Mask R-CNN (R50-C4, VOC) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the PASCAL

VOC 2007 dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as

training resources, which makes it a robust framework with speed and flexibility to use. The

R101 has a Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on

the convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its Max Iteration reached 18000 iterations with 33 Million Parameters, training

time of 0.537 (s/iter) and inference time of 0.081 (s/im). It has a huge amount of data that

requires training memory of 4.8 GB. Table 1 represents extra and main details about this

version[9].

2.8. Mask R-CNN (R50-DC5, 1x)

Mask R-CNN (R50-DC5, 1x) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its max iteration reached 90000 iterations with 172 Million Parameters, training

time of 0.471 (s/iter) and inference time of 0.076 (s/im). It has a huge amount of data that

6

requires training memory of 6.5 (GB). Table 1 represents extra and main details about this

version.

2.9. Mask R-CNN (R50-FPN, 1x)

Mask R-CNN (R50-FPN, 1x) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its max iteration reached 270000 iterations with 36 million parameters, training

time of 0.47 (s/iter) and inference time of 0.076 (s/im). It has a huge amount of data that requires

training memory of 5.2 (GB). Table 1 represents extra and main details about this version.

2.10. Mask R-CNN (R50-FPN, 1x, LVIS)

Mask R-CNN (R50-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer and it The maximum number of iterations was 90000, with 44 million parameters, a

training time of 0.261 seconds per iteration, and an inference time of 0.043 seconds per iteration.

It has a huge amount of data that requires training memory of 3.4 (GB). Table 1 represents extra

and main details about this version.

2.11. Mask R-CNN (R50-FPN, 3x)

Mask R-CNN (R50-FPN, 3x) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its maximum iteration reaches 90000 iterations with 50 million parameters,

training time of 0.292 (s/iter), and inference time of 0.0107 (s/im). It has a huge amount of data

that requires training memory 7.1 (GB). Table 1 represents extra and main details about this

version.

2.12. Mask R-CNN (X101-FPN, 1x, LVIS)

Mask R-CNN (X101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

7

Floating Point Operations (FLOP) Input Number of 100 Per Second., it depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer and it The maximum number of iterations was 27000, with 44 million parameters, a

training time of 3.4 seconds per iteration, and an inference time of 0.043 seconds per iteration. It

has a huge amount of data that requires training memory of 0.261 (GB). Table 1 represents extra

and main details about this version.

2.13. Mask R-CNN (R50-FPN, Cityscapes)

Mask R-CNN (R50-FPN, Cityscapes) is a version of the Mask R-CNN framework for instance

segmentation. It differentiates with several metadata descriptions where it used the Cityscapes

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its max iteration reached 90000 iterations with 36 million parameters, training

time of 0.24 (s/iter) and inference time of 0.078 (s/im). It has a huge amount of data that requires

training memory of 4.4 (GB). Table 1 represents extra and main details about this version.

2.14. Mask R-CNN (X101-FPN, 1x, LVIS)

Mask R-CNN (X101-FPN, 1x, LVIS) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer and the maximum number of iterations was 90000, with 114 million parameters,

training time of 0.712 seconds per iteration, and inference time of 0.151 seconds per iteration. It

has a huge amount of data that requires training memory of 10.2 GB. Table 1 represents extra

and main details about this version[10].

2.15. Mask R-CNN (X101-FPN, 3x)

Mask R-CNN (X101-FPN, 3x) is a version of the Mask R-CNN framework for instance

segmentation. It is distinguished with several metadata descriptions where it used the COCO

dataset in the training data process. R101 depends on 8 NVIDIA V100 GPUs as training

resources, which makes it a robust framework with speed and flexibility to use. The R101 has a

Floating Point Operations (FLOP) Input Number of 100 per Second. It depends on the

convolution layer, RoIAlign layer, Softmax layer, RPN layer, Dense Connections layer, and

ResNet layer. Its max iteration reached 27000 iterations with 107 Million Parameters, training

time of 0.69 (s/iter) and inference time of 0.103 (s/im). It has a huge amount of data that requires

training memory 7.2 (GB). Table 1 represents extra and main details about this version.

Table. 1. General Comparison between the all types of Mask RCNN framework

8

(1)

(2)

(3)

(4)

(5)

(6)

 Parameter

s

FLOP

s

File

Size

Trainin

g Data

Training

Resource

s

Trainin

g Time

Architecture ID Max

Iter

lr

sche

d

FLOP

s

Input

No

train

time

(s/iter)

Training

Memory

(GB)

inference

time (s/im)

R10

-1

C4,

3x

55 Million 937

Billio

n

210.1

0 MB

COCO 8

NVIDIA

V100

GPUs

2.04

days

Convolution ,

RoIAlign,

ResNet ,Dense Connections ,RPN ,Softmax

13836

3239

27000

0

3x 100 0.652 6.3 0.145

R10

-1

DC5

, 3x

191

Million

0.092 730.6

0 MB

COCO 8

NVIDIA

V100

GPUs

1.7 days ConvolutionDense ,RPN ,Softmax ,RoIAlign ,

ResNet ,Connections

13836

3294

27000

0

3x No 0.545 67. 0.092

R10

-1

FPN

, 1x,

LVI

S

70 Million 527

Billio

n

265.9

0 MB

COCO 8

NVIDIA

V100

GPUs

 ConvolutionDense ,RPN ,Softmax ,RoIAlign ,

ResNet ,Connections

14421

9035

90000 1x 100 0.371 7.8 0.114

R10

-1

FPN

, 3x

63 Million 290

Billio

n

242.2

9 MB

COCO 8

NVIDIA

V100

GPUs

1.06

days

ConvolutionDense ,RPN ,Softmax ,RoIAlign ,

ResNet ,Connections

13820

5316

27000

0

3x 100 0.34 4.6 0.056

R50

C4, -

1x

36 Million 890

Billio

n

137.4

2 MB

COCO 8

NVIDIA

V100

GPUs

15

hours

ConvolutionDense ,RPN ,Softmax ,RoIAlign ,

ResNet ,Connections

13725

9246

90000 1x 100 0.584 .25 0.11

R50

-C4,

3x

36 Million 890

Billio

n

137.4

2 MB

COCO 8

NVIDIA

V100

1.8 days

Convolution

, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

13784

9525

27000

0

3x

100 0.575 5.2 0.111

(7) R50

-C4,

VO

C

33 Million 0.081 127.0

0 MB

PASCA

L VOC

2007

8

NVIDIA

V100

GPUs

3 hours

Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

14220

2221

18000 100 0.537 4.8 0.081

(8) R50

-

DC5

, 1x

172

Million

0.076 657.9

2 MB

COCO 8

NVIDIA

V100

GPUs

12

hours

Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

13726

0150

90000 1x 100 0.471 6.5 0.076

(9) R50

-

DC5

, 3x

172

Million

0.076 657.9

2 MB

COCO 8

NVIDIA

V100

GPUs

1.47

days

Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

13784

9551

27000

0

3x 100 0.47 6.5 0.076

(10) R50

-

FPN

44 Million 0.043 169.6

0 MB

COCO 8

NVIDIA

V100

7 hours Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

13726

0431

90000

1x 100 0.261 3.4 0.043

https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/resnet
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/softmax
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/pascal-voc-2007
https://paperswithcode.com/dataset/pascal-voc-2007
https://paperswithcode.com/dataset/pascal-voc-2007
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet

9

3. Conclusions

In this survey, we proposed common types of RCNN mask models that are used in instance

segmentation task. Versions of RCNN mask have different properties which mask it helpful for

more many situations and cases. The Mask R-CNN modes and Faster R-CNN are helping for

expecting an object mask in parallel with the branch for bounding box recognition. The results in

most versions were implemented on of the COCO dataset that generated for instance

segmentation tasks.

References

[1] E. Hassan, M. Shams, N. A. Hikal, and S. Elmougy, “Plant Seedlings Classification using

Transfer,” no. July, pp. 3–4, 2021.

[2] Q. Li, L. Shen, S. Guo, and Z. Lai, “Wavelet Integrated CNNs for Noise-Robust Image

Classification.”

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 42, no. 2, pp. 386–397, 2020, doi: 10.1109/TPAMI.2018.2844175.

[4] S. Elmuogy, N. A. Hikal, and E. Hassan, “An efficient technique for CT scan images classification

of COVID-19,” vol. 40, pp. 5225–5238, 2021, doi: 10.3233/JIFS-201985.

[5] H. tao Zhang et al., “Automated detection and quantification of COVID-19 pneumonia: CT

, 1x GPUs

(11) R50

-

FPN

, 1x,

LVI

S

50 Million

460

Billion

193.21

MB

COCO 8 NVIDIA

V100 GPUs

7 hours

ConvolutionDense ,RPN ,Softmax ,RoIAlign ,

ResNet ,Connections

442191

072

90000 1x 100 0.292 7.1 0.107

(12

)

R50

-

FPN

, 3x

44 Million

0.043 169.6

0 MB

COCO 8

NVIDIA

V100

GPUs

20

hours

Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

13784

9600

27000

0

3x 100 0.261 3.4 0.043

(13

)

R50

-

FPN

,

City

scap

es

44 Million 464

Billio

n

168.1

3 MB

Citysca

pes

8

NVIDIA

V100

GPUs

2 hours Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNet

14242

3278

0.01 100 0.24 4.4 0.078

(14

)

X10

1-

FPN

, 1x,

LVI

S

114

Million

686

Billio

n

435.0

4 MB

COCO 8

NVIDIA

V100

GPUs

18

hours

Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNeXt

 1x 100 0.712 10.2

0.151

(15

)

X10

1-

FPN

, 3x

107

Million

0.103

411.4

3 MB

COCO 8

NVIDIA

V100

GPUs

2.16

days

Convolution, RoIAlign, Softmax, RPN, Dense

Connections, ResNeXt

13965

3917

27000

0

3x 0.69 7.2

https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/cityscapes
https://paperswithcode.com/dataset/cityscapes
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnext
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/convolution
https://paperswithcode.com/method/roi-align
https://paperswithcode.com/method/softmax
https://paperswithcode.com/method/rpn
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/dense-connections
https://paperswithcode.com/method/resnext

10

imaging analysis by a deep learning-based software,” Eur. J. Nucl. Med. Mol. Imaging, vol. 47,

no. 11, pp. 2525–2532, 2020, doi: 10.1007/s00259-020-04953-1.

[6] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware semantic

segmentation,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-

Janua, pp. 4438–4446, 2017, doi: 10.1109/CVPR.2017.472.

[7] V. Birodkar, Z. Lu, S. Li, V. Rathod, and J. Huang, “The surprising impact of mask-head

architecture on novel class segmentation.”

[8] N. K. Chowdhury, M. A. Kabir, M. M. Rahman, and N. Rezoana, “ECOVNet: An Ensemble of

Deep Convolutional Neural Networks Based on EfficientNet to Detect COVID-19 From Chest X-

rays,” 2020, doi: 10.7717/peerj-cs.551.

[9] F. O. Giuste and J. C. Vizcarra, “CIFAR-10 Image Classification Using Feature Ensembles,” pp.

1–5, 2020, [Online]. Available: http://arxiv.org/abs/2002.03846.

[10] J. C. Spall, Stochastic Optimization. 2012.

