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SQUARE-MEAN ASYMPTOTICALLY ALMOST AUTOMORPHIC

SOLUTIONS FOR NONLOCAL NEUTRAL STOCHASTIC

FUNCTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN

HILBERT SPACES

ZUOMAO YAN, HONG-WU ZHANG

Abstract. In this paper, we prove the existence and uniqueness of square-
mean asymptotically almost automorphic mild solution of a class of partial
nonlocal neutral stochastic functional integro-differential equations with resol-

vent operators in a real separable Hilbert space. An example illustrating our
main result is given.

1. Introduction

In this paper we study the existence and uniqueness of square-mean asymptot-
ically almost automorphic solutions for the following nonlocal neutral stochastic
functional integro-differential equations in the abstract form

dN(t, x(t)) = AN(t, x(t))dt+

∫ t

0

B(t− s)N(s, x(s))dsdt

+h(t, x(γ2(t)))dt+ f(t, x(γ3(t)))dW (t), t ≥ 0, (1)

x(0) + g(x) = x0, (2)

whereA : D(A) ⊆ L2(P,H) → L2(P,H), B(t) : D(B(t)) ⊆ L2(P,H) → L2(P,H), t ≥
0, are linear, closed, and densely defined operators on L2(P,H), and W (t) is a two-
sided standard one-dimensional Brownian motion defined on the filtered probabil-
ity space (Ω,F ,P,Ft), where Ft = σ{W (u) −W (v);u, v ≤ t}. Here N(t, x(t)) =
x(0) + a(t, x(γ1(t))), a, h, f, g and γi, i = 1, 2, 3, are appropriate functions to be
specified later.

The existence of almost automorphic, asymptotically almost automorphic, and
pseudo-almost automorphic solutions is one of the most attracting topics in the
qualitative theory of differential equations, due both to its mathematical interest
and to the applications. Some recent contributions on the existence of such solu-
tions for abstract differential equations, partial differential equations, functional-
differential equations and integro-differential equations have been made; we refer the
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reader to the monographs of N’Guérékata [33],[34], the papers [3],[4],[14],[15],[16],
[20],[26],[29],[30],[37] and the references therein. Ding et al.[17] established asymp-
totically almost automorphic solutions for integrodifferential equations with non-
local initial conditions in Banach spaces. Diagana et al. [13] concerned with the
existence and uniqueness of an asymptotically almost automorphic mild solution
for partial neutral integro-differential equations with unbounded delay. Dos Santos
and Cuevas [18] studied asymptotically almost automorphic solutions of abstract
fractional integrodifferential neutral equations. Caicedo et al. [7] also considered
asymptotically almost automorphic solution of some semilinear functional differen-
tial and integro-differential equations with infinite delay a complex Banach space.
In recent years, stochastic differential equations have attracted great interest due to
their applications in characterizing many problems in physics, biology, mechanics
and so on; see [1],[10],[19],[22],[23],[28],[35],[36] and the references therein. Very
Recently, Fu et al. [21] introduced a new concept of a square-mean almost au-
tomorphic stochastic process. The paper discussed the existence and uniqueness
of square-mean almost automorphic mild solutions for stochastic differential equa-
tions in Hilbert spaces, which further generalized the almost automorphic theory
from the deterministic version to the stochastic one. Chang et al. [8] proved the
existence and uniqueness of square-mean almost automorphic mild solutions for a
class of non-autonomous stochastic differential equations. In [9], the authors also
established a new composition theorem for square-mean almost automorphic func-
tions and applications to stochastic differential equations. Bezandry and Diagana
[2] studied the existence of square-mean almost periodic solutions to the second
order stochastic differential equations on a Hilbert space.

On the other hand, the nonlocal Cauchy problem was considered by Byszewski
[5],[6] and the importance of nonlocal conditions in different fields has been dis-
cussed in [1],[11],[31],[38] and the references therein. In addition, the nonlinear
integro-differential equations with resolvent operators serve as an abstract formula-
tion of partial integro-differential equations that arise in many physical phenomena.
One can see [12],[23],[24]and references therein.

In this paper, we will introduce the notion of square-mean asymptotically almost
automorphy for stochastic processes and apply this new concept to investigate the
existence and uniqueness of square-mean asymptotically almost automorphy mild
solutions for the partial nonlocal neutral stochastic functional integro-differential
equations in a real separable Hilbert space.

The paper is organized as follows. In Section 2, we recall briefly some basic nota-
tions and definitions, lemmas and preliminary facts which will be used throughout
this paper. Section 3 includes some preliminaries results not only on the complete-
ness of the space that consists of the square-mean asymptotically almost automor-
phic processes but also on the composition of such processes. Section 4 verifies the
existence and uniqueness of the square-mean asymptotically almost automorphic
solutions for the problem (1)-(2). Finally in Section 5, an illustrative example is
provided to show the feasibility of the theoretical results developed in the paper.

2. Existence and uniqueness

In this section, we introduce some basic definitions, notations and lemmas which
are used throughout this paper.
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Throughout the paper, we assume that (H, ∥ · ∥, ⟨·, ·⟩) and (K, ∥ · ∥K, ⟨·, ·⟩K) are
two real separable Hilbert spaces. Let (Ω,F ,P) be a complete probability space.
The notation L2(P,H) stands for the space of all H-valued random variables x such
that

E ∥ x ∥2=
∫
Ω

∥ x ∥2 dP <∞.

For x ∈ L2(P,H), let

∥ x ∥2=
(∫

Ω

∥ x ∥2 dP
) 1

2

.

It is routine to check that L2(P,H) is a Hilbert space equipped with the norm
∥ · ∥. We let L(K,H) be the space of all linear bounded operators from K into
H, equipped with the usual operator norm ∥ · ∥L(K,H); in particular, this is simply
denoted by L(H) when K = H.

We denote by C0(R+, L2(P,H)) the space of all continuous functions h : R+ →
L2(P,H) such that limt→∞E ∥ h(t) ∥2= 0, and by C0(R+ × L2(P,H), L2(P,H))
the space of all continuous functions h : R+ × L2(P,H) → L2(P,H) such that
limt→∞E ∥ h(t, x) ∥2= 0 uniformly for x in any compact subset of L2(P,H).

Definition 2.1. A family of bounded linear operators {R(t) : t ≥ 0} from
L2(P,H) into L2(P,H) is a resolvent operator family for the problem

dx(t) = Ax(t)dt+

∫ t

0

B(t− s)x(s)dsdt, t ≥ 0, (3)

x0 = x(0) ∈ L2(P,H), (4)

if the following conditions are verified.
(a) R(0) = I (the identity operator on L2(P,H) ) and the function R(t)x is contin-
uous on [0,+∞) for every x ∈ L2(P,H);
(b) R(t)D(A) ⊆ D(A) for all t ≥ 0 and for x ∈ D(A), AR(t)x is continuous on
[0,+∞) and R(t)x is continuously differentiable on [0,+∞);
(c) For x ∈ D(A), the next resolvent equations hold,

d

dt
R(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds, t ≥ 0,

d

dt
R(t)x = R(t)Ax+

∫ t

0

R(t− s)AB(s)xds, t ≥ 0.

For more details on semigroup theory and resolvent operators, we refer [12],[23],
[24].

Definition 2.2([21]). A stochastic process x : R → L2(P,H) is said to be
stochastically continuous if

lim
t→s

E ∥ x(t)− x(s) ∥2= 0.

Definition 2.3([21]). A stochastically continuous stochastic process x : R →
L2(P,H) is said to be square-mean almost automorphic if for every sequence of real
numbers (s′n)n∈N there is a subsequence (sn)n∈N and a stochastic process y : R →
L2(P,H) such that

lim
n→∞

E ∥ x(t+ sn)− y(t) ∥2= 0 and lim
n→∞

E ∥ y(t− sn)− x(t) ∥2= 0

holds for each t ∈ R.
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The collection of all square-mean almost automorphic stochastic processes x :
R → L2(P,H) is denoted by AA(R, L2(P,H)).

Lemma 2.1([21]). If x, x1 and x2 are all square-mean almost automorphic
stochastic processes, then the following hold true:
(a) x1 + x2 is square-mean almost automorphic.
(b) λx is square-mean almost automorphic for every scalar λ.
(c) There exists a constant M > 0 such that supt∈R ∥ x(t) ∥2≤ M. That is, x is
bounded in L2(P,H).

Lemma 2.2([21]). (AA(R, L2(P,H)), ∥ · ∥∞) is a Banach space when it is
equipped with the norm

∥ x ∥∞:= sup
t∈R

∥ x(t) ∥2= sup
t∈R

(E ∥ x(t) ∥2) 1
2

for x ∈ AA(R, L2(P,H)).
Lemma 2.3([33]). Let f ∈ AA(R, L2(P,H)). Then we have

(I) h(t) := f(−t) ∈ AA(R;L2(P,H)).
(II) fa(t) := f(t+ a) ∈ AA(R;L2(P,H)).

Definition 2.4([21]). A function f : R × L2(P,H) → L2(P,H), (t, x) → f(t, x),
which is jointly continuous, is said to be square-mean almost automorphic in t ∈ R
for each x ∈ L2(P,H) if for every sequence of real numbers {s′n}n∈N there exists a

subsequence {sn}n∈N and a stochastic process f̃ : R × L2(P,H) → L2(P,H) such
that

lim
n→∞

E ∥ f(t+ sn, x)− f̃(t, x) ∥2= 0 and lim
n→∞

E ∥ f̃(t− sn)− f(t, x) ∥2= 0

for each t ∈ R and each x ∈ L2(P,H).
It is well known that the range Rf = {f(t) : t ∈ R} of an almost function f is

relatively compact in L2(P,H), thus bounded in norm (cf. [35], Theorem 1.31).
Definition 2.5. A continuous function f : R+ → L2(P,H) is said to be square-

mean asymptotically almost automorphic if it can be written as f = g + h, where
g ∈ AA(R, L2(P,H)) and h ∈ C0(R+, L2(P,H)). Denote by AAA(R+, L2(P,H)) the
set of all such functions.

Definition 2.6. A continuous function f : R+ × L2(P,H) → L2(P,H) is said
to be square-mean asymptotically almost automorphic in t uniformly for x in com-
pact subsets of L2(P,H) if it can be written as f = g + h, where g ∈ AA(R ×
L2(P,H), L2(P,H)) and h ∈ C0(R+ × L2(P,H), L2(P,H)). Denote by AAA(R+ ×
L2(P,H), L2(P,H)) the set of all such functions.

Lemma 2.4([21]). Let f : R× L2(P,H) → L2(P,H), (t, x) → f(t, x) be square-
mean almost automorphic in t ∈ R for each x ∈ L2(P,H), and assume that f
satisfies a Lipschitz condition in the following sense:

E ∥ f(t, ϕ)− f(t, ψ) ∥2≤ M̃E ∥ ϕ− ψ ∥2

for all ϕ, ψ ∈ L2(P,H) and for each t ∈ R, where M̃ > 0 is independent of t.
Then for any square-mean almost automorphic process x : R → L2(P,H), the
stochastic process F : R → L2(P,H) given by F (·) = f(·, x(·)) is square-mean
almost automorphic.

Definition 2.7. A stochastically continuous stochastic process x : [0,∞) →
L2(P,H) is called a mild solution of the system (1.1)-(1.2) if x(0) + g(x) = x0 and
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x(t) satisfies

x(t) = R(t)[x0 − g(x)− a(0, x(γ1(0)))] + a(t, x(γ1(t)))

+

∫ t

0

R(t− s)h(s, x(γ2(s)))ds+

∫ t

0

R(t− s)f(s, x(γ3(s)))dW (s), t ≥ 0.

3. Preliminary Results

Our main results on the existence of square-mean asymptotically almost auto-
morphic solutions for the problem (1)-(2). For that, we need to introduce a few
preliminary and important results.

Lemma 3.1. Assume f ∈ AAA(R+, L2(P,H)) admits a decomposition f =

g + h, where g ∈ AA(R, L2(P,H) and h ∈ C0(R+, L2(P,H)). Then {g(t) : t ∈ R} ⊂
{f(t) : t ∈ R+}.

One may refer to Lemma 1.7 in [17] for the proof of Lemma 3.1.
Lemma 2.2 and Lemma 3.1 together lead to the following Lemma. One can refer

to Lemma 1.8 in [17] for a detailed proof.
Lemma 3.2. AAA(R+, L2(P,H)) is a Banach space with the norm

∥ f ∥∞= sup
t∈R+

∥ f(t) ∥2= sup
t∈R+

(E ∥ f(t) ∥2) 1
2 .

Lemma 3.3. Let f ∈ AAA(R+, L2(P,H)). Then the rangeRf = {f(t) : t ∈ R+}
is relatively compact in L2(P,H).

One may refer to Lemma 1.9 in [17] for the proof of Lemma 3.3.
Let K ⊂ L2(P,H) and Y ⊂ R. We denote by CK(Y × L2(P,H), L2(P,H)) the

set of all the functions f : Y × L2(P,H) → L2(P,H) satisfying f(t, ·) is uniformly
continuous on L2(P,H) uniformly for t ∈ Y.

Lemma 3.4. Let x ∈ AA(R, L2(P,H)), K = {x(t) : t ∈ R} and f ∈ AA(R ×
L2(P,H), L2(P,H))∩CK(R×L2(P,H), L2(P,H)). Then f(·, x(·)) ∈ AA(R, L2(P,H)).

One may refer to Lemma 2.2 in [17] for the proof of Lemma 3.4.
Lemma 3.5. LetK ⊂ L2(P,H) be compact and f ∈ AA(R×L2(P,H), L2(P,H))∩

CK(R× L2(P,H), L2(P,H)). Then f ∈ CK(R× L2(P,H), L2(P,H)).

The proof of Lemma 3.5 can be performed along the direction of the proof of
Lemma 2.4 in [17].

Lemma 3.6. Let x ∈ AAA(R, L2(P,H)), K = {x(t) : t ∈ R+} and

f ∈ AAA(R+ × L2(P,H), L2(P,H)) ∩ CK(R+ × L2(P,H), L2(P,H)).

Then f(·, x(·)) ∈ AAA(R+, L2(P,H)).
Lemma 3.6 can be proved by using Lemmas 3.1,3.3 and Lemmas 3.4,3.5, and one

may refer to Theorem 2.2 in [17] for more details about the proof of Lemma 3.6.
Lemma 3.7. Let (R(t))t≥0 be a family of continuous linear operators on

L2(P,H) satisfying ∥ R(t) ∥≤Me−δt for all t ≥ 0 and let h, f ∈ AAA(R+, L2(P,H)),
and

H(t) =

∫ t

0

R(t− s)h(s)ds, t ≥ 0,

F (t) =

∫ t

0

R(t− s)f(s)dW (s), t ≥ 0.

Then H(·), F (·) ∈ AAA(R+, L2(P,H)).
Proof. Since H is a continuous function and h ∈ AAA(R+, L2(P,H)), there exist
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h1 ∈ AA(R, L2(P,H)), h2 ∈ C0(R+, L2(P,H)) such that h has a decomposition
h = h1 + h2. We observe that

H(t) =

∫ t

0

R(t− s)h1(s)ds+

∫ t

0

R(t− s)h2(s)ds

=

∫ t

−∞
R(t− s)h1(s)ds−

∫ 0

−∞
R(t− s)h1(s)ds+

∫ t

0

R(t− s)h2(s)ds.

Let

H1(t) =

∫ t

−∞
R(t− s)h1(s)dw(s), t ∈ R,

and

H2(t) = −
∫ 0

−∞
R(t− s)h1(s)ds+

∫ t

0

R(t− s)h2(s)ds, t ≥ 0.

We claim that H1 ∈ AA(R, L2(P,H)). In fact, for every real sequence (sm)m∈N,
there exists a subsequence (sn)n∈N such that

lim
n→∞

E ∥ h1(t+ sn)− h̃1(t) ∥2= 0

is well defined for each t ∈ R and

lim
n→∞

E ∥ h̃1(t− sn)− h1(t) ∥2= 0

for each t ∈ R. Also, if we let

H̃1(t) =

∫ t

−∞
R(t− s)h̃1(s)ds.

We get

E ∥ H1(t+ sn)− H̃1(t) ∥2

= E

wwww∫ t+sn

−∞
R(t+ sn − s)h1(s)ds−

∫ t

−∞
R(t− s)h̃1(s)ds

wwww2

= E

wwww∫ t

−∞
R(t− s)h1(s+ sn)ds−

∫ t

−∞
R(t− s)h̃1(s)ds

wwww2

≤ E

(∫ t

−∞
∥ R(t− s) ∥∥ h1(s+ sn)− h̃1(s) ∥ ds

)2

≤M2E

(∫ t

−∞
e−δ(t−s) ∥ h1(s+ sn)− h̃1(s) ∥ ds

)2

≤M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)E ∥ h1(s+ sn)− h̃1(s) ∥2 ds

)
≤M2

(∫ t

−∞
e−δ(t−s)ds

)2

sup
s∈R

E ∥ h1(s+ sn)− h̃1(s) ∥2

≤ M2

δ2
sup
s∈R

E ∥ h1(s+ sn)− h̃1(s) ∥2 .

Thus, we immediately obtain that

lim
n→∞

E ∥ H1(t+ sn)− H̃1(t) ∥2= 0.
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Analogously to the above proof, we can obtain

lim
n→∞

E

wwww∫ t−sn

−∞
R(t− sn − s)h̃1(s)ds−H1(t)

wwww2

= 0.

Next, let us show that H2 ∈ C0(R+, L2(P,H)). Since h2 ∈ C0(R+, L2(P,H)),
ε > 0, there exists a constant T > 0 such that E ∥ h2(s) ∥2≤ ε for all s ≥ T. Then,
by using Cauchy-Schwarz inequality, we deduce for all t ≥ 2T,

E ∥ H2(t) ∥2

= E

wwww∫ t
2

0

R(t− s)h2(s)ds+

∫ t

t
2

R(t− s)h2(s)ds−
∫ 0

−∞
R(t− s)h1(s)ds

wwww2

≤ 3M2E

(∫ t
2

0

e−δ(t−s) ∥ h2(s) ∥ ds
)2

+ 3M2E

(∫ t

t
2

e−δ(t−s) ∥ h2(s) ∥ ds
)2

+ 3M2E

(∫ 0

−∞
e−δ(t−s) ∥ h1(s) ∥ ds

)2

≤ 3M2

(∫ t
2

0

e−δ(t−s)ds

)(∫ t
2

0

e−δ(t−s)E ∥ h2(s) ∥2 ds
)

+ 3M2

(∫ t

t
2

e−δ(t−s)ds

)(∫ t

t
2

e−δ(t−s)E ∥ h2(s) ∥2 ds
)

+ 3M2

(∫ 0

−∞
e−δ(t−s)ds

)(∫ 0

−∞
e−δ(t−s)E ∥ h1(s) ∥2 ds

)
≤ 3M2

(∫ t
2

0

e−δ(t−s)ds

)2

∥ h2 ∥2∞ +3M2

(∫ t

t
2

e−δ(t−s)ds

)2

ε

+ 3M2

(∫ 0

−∞
e−δ(t−s)ds

)2

∥ h1 ∥2∞

≤ 3M2

δ2
∥ h2 ∥2∞ e−δt +

3M2

δ2
ε+

3M2

δ2
∥ h1 ∥2∞ e−2δt.

Therefore, limt→∞E ∥ H2(t) ∥2= 0, that is, H2 ∈ C0(R+, L2(P,H)). Recalling that
H(t) = H1(t) +H2(t) for all t ≥ 0, we get H ∈ AAA(R+, L2(P,H)).

Similarly, F is a continuous function. Since f ∈ AAA(R+, L2(P,H)), f has a
decomposition f = f1 + f2, where f1 ∈ AA(R, L2(P,H)), f2 ∈ C0(R+, L2(P,H)).
We observe that

F (t) =

∫ t

0

R(t− s)f1(s)dW (s) +

∫ t

0

R(t− s)f2(s)dW (s)

=

∫ t

−∞
R(t− s)f1(s)dW (s)−

∫ 0

−∞
R(t− s)f1(s)dW (s) +

∫ t

0

R(t− s)f2(s)dW (s).

Let

F1(t) =

∫ t

−∞
R(t− s)f1(s)dW (s), t ∈ R,

and

F2(t) = −
∫ 0

−∞
R(t− s)f1(s)dW (s) +

∫ t

0

R(t− s)f2(s)dW (s), t ≥ 0.
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We claim that F1 ∈ AA(R, L2(P,H)). In fact, for every real sequence (sm)m∈N,
there exists a subsequence (sn)n∈N such that

lim
n→∞

E ∥ f1(t+ sn)− f̃1(t) ∥2= 0

is well defined for each t ∈ R and

lim
n→∞

E ∥ f̃1(t− sn)− f1(t) ∥2= 0

for each t ∈ R. Let W̃ (σ) := W (σ + sn) −W (sn) for each mσ ∈ R. We know that

W̃ is also a Brownian motion and has the same distribution as W . Moreover, if we
let

F̃1(t) =

∫ t

−∞
R(t− s)f̃1(s)dW (s),

then by making a change of variables σ = s− sn, We get

E ∥ F1(t+ sn)− F̃1(t) ∥2

= E

wwww∫ t+sn

−∞
R(t+ sn − s)f1(s)ds−

∫ t

−∞
R(t− s)f̃1(s)ds

wwww2

= E

wwww∫ t

−∞
R(t− σ)[f1(σ + sn)− f̃1(σ)]dW̃ (σ)

wwww2

.

Thus, using an estimate on Ito integral established in Ichikawa [27], we obtain that

E ∥ F1(t+ sn)− F̃1(t) ∥2

≤ E

(∫ t

−∞
∥ R(t− σ)[f1(σ + sn)− f̃1(σ)] ∥2 ds

)
≤M2

∫ t

−∞
e−2δ(t−s)E ∥ f1(s+ sn)− f̃1(s) ∥ ds

≤M2

∫ t

−∞
e−2δ(t−s)ds sup

s∈R
E ∥ f1(s+ sn)− f̃1(s) ∥2

≤ M2

2δ
sup
s∈R

E ∥ f1(s+ sn)− f̃1(s) ∥2 .

Thus, we immediately obtain that

lim
n→∞

E ∥ F1(t+ sn)− F̃1(t) ∥2= 0.

Analogously to the above proof, we can obtain

lim
n→∞

E

wwww∫ t−sn

−∞
R(t− sn − s)f̃1(s)ds− F1(t)

wwww2

= 0.

Next, let us show that F2 ∈ C0(R+, , L2(P,H)). Since f2 ∈ C0(R+, L2(P,H)),
ε > 0, there exists a constant T > 0 such that E ∥ f2(s) ∥2≤ ε for all s ≥ T. Then,
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by the Ito integral, we deduce for all t ≥ 2T,

E ∥ F2(t) ∥2

= E

wwww∫ t
2

0

R(t− s)f2(s)dW (s) +

∫ t

t
2

R(t− s)f2(s)dW (s)

−
∫ 0

−∞
R(t− s)f1(s)dW (s)

wwww2

≤ 3E

(∫ t
2

0

∥ R(t− s)f2(s) ∥2 ds
)
+ 3E

(∫ t

t
2

∥ R(t− s)f2(s) ∥2 ds
)

+ 3E

(∫ 0

−∞
∥ R(t− s)f1(s) ∥2 ds

)
≤ 3M2

∫ t
2

0

e−2δ(t−s)E ∥ f2(s) ∥2 ds+ 3M2

∫ t

t
2

e−2δ(t−s)E ∥ f2(s) ∥2 ds

+ 3M2

∫ 0

−∞
e−2δ(t−s)E ∥ f1(s) ∥2 ds

≤ 3M2

(∫ t
2

0

e−2δ(t−s)ds

)
∥ f2 ∥2∞ +3M2

(∫ t

t
2

e−2δ(t−s)ds

)
ε

+ 3M2

(∫ 0

−∞
e−2δ(t−s)ds

)
∥ f1 ∥2∞

≤ 3M2

2δ
∥ f2 ∥2∞ e−2δt +

3M2

2δ
ε+

3M2

2δ
∥ f1 ∥2∞ e−2δt.

Therefore, limt→∞E ∥ F2(t) ∥2= 0, that is, F2 ∈ C0(R, L2(P,H)). Recalling that
F (t) = F1(t) + F2(t) for all t ≥ 0, we get F ∈ AAA(R+, L2(P,H)).

4. Existence Results

In this section, we prove that there is a unique mild solution for the problem
(1)-(2). For that, we make the following hypotheses:

(H1) There exists a resolvent operator R(·) of Eq. (1.1) and R(·) is exponentially
stable, i.e., ∥ R(t) ∥≤Me−δt for all t ≥ 0 and some constant M, δ > 0.
(H2) The functions a, h, f ∈ AAA(R+×L2(P,H), L2(P,H)) and there exist contin-
uous and nondecreasing functions La, Lh, Lf : R+ → R+ such that for each l ≥ 0
and E ∥ x ∥2, E ∥ y ∥2≤ l,

E ∥ a(t, x)− a(t, y) ∥2≤ Lg(l)E ∥ x− y ∥2,

E ∥ h(t, x)− h(t, y) ∥2≤ Lh(l)E ∥ x− y ∥2,
and

E ∥ f(t, x)− f(t, y) ∥2≤ Lf (l)E ∥ x− y ∥2

for all t ∈ R+ and each x, y ∈ L2(P,H).
(H3) The functions γi ∈ C(R+,R+), i = 1, 2, 3, and g : C(R+, L2(P,H)) → L2(P,H)
satisfies that there exists a continuous and nondecreasing function Lg : R+ → R+

such that for each l ≥ 0 and ∥ x ∥2∞, ∥ y ∥2∞≤ l,

E ∥ g(x)− g(y) ∥2≤ Lg(l) ∥ x− y ∥2∞, for x, y ∈ C(R+, L2(P,H)).
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(H4) There exists a positive number l such that

l − 24M2Lg(l)l − 8(3M2 + 1)La(l)l −
8M2

δ2
Lh(l)l −

4M2

δ
Lf (l)l > Λ, (5)

where Λ = 12M2[E ∥ x0 ∥2 +2L∗
g + 2L∗

a] + 8L∗
a + 8M2

δ2 L∗
h + 4M2

δ L∗
f , L

∗
g = E ∥

g(0) ∥2, L∗
a = supt∈R+ E ∥ a(t, 0) ∥2, L∗

h = supt∈R+ E ∥ h(t, 0) ∥2, L∗
f = supt∈R+ E ∥

f(t, 0) ∥2 .
Theorem 4.1. If the assumptions (H1)-(H4) are satisfied, then the system (1)-(2)
has a square-mean asymptotically almost automorphic mild solution.
Proof. Let D = {x ∈ AAA(R+, L2(P,H)) : E ∥ x ∥2≤ l}. Then D is a closed
subspace of AAA(R+, L2(P,H)).

Define an operator Φ on D by

(Φx)(t) = R(t)[x0 − g(x)− a(0, x(γ1(0)))] + a(t, x(γ1(t)))

+

∫ t

0

R(t− s)h(s, x(γ2(s)))ds

+

∫ t

0

R(t− s)f(s, x(γ3(s)))dW (s), t ≥ 0.

It follows that s → R(t − s)h(s, x(γ2(s))) and s → R(t − s)f(s, x(γ3(s))) are in-
tegrable on [0, t) for every t > 0, therefore, Φx is well defined. First, let us check
that Φ(AAA(R+, L2(P,H))) ⊂ AAA(R+, L2(P,H)). Take x ∈ AAA(R+, L2(P,H)).
It is easy to prove that Φx is continuous. We define K = {x(t) : t ∈ R+}. It
follows from (H2)-(H3) that a, h, f ∈ AAA(R+ × L2(P,H), L2(P,H)) ∩ CK(R+ ×
L2(P,H), L2(P,H)). Then Lemma 3.6 gives that

h(·, x(·)), f(·, x(·)) ∈ AAA(R+, L2(P,H)).

Now, by Lemma 3.7, we have

H(t) =

∫ t

0

R(t− s)h(s, x(γ2(s)))ds ∈ AAA(R+, L2(P,H)

and

F (t) =

∫ t

0

R(t− s)f(s, x(γ3(s)))dw(s) ∈ AAA(R+, L2(P,H)).

On the other hand, since R(·) is exponentially stable,

lim
t→∞

E ∥ R(t)[x0 − g(x)− a(0, x(γ1(0)))] ∥2= 0.

Thus, Φx ∈ AAA(R+, L2(P,H)).
Next, we prove that Φ(·) is a contraction from D into D. Note that (Φx)(0) =

x(0). Moreover, if x ∈ D and t ≥ 0, we then get

E ∥ (Φx)(t) ∥2 ≤ 4E ∥ R(t)[x0 − g(x)− a(0, γ1(0))] ∥2 +4E ∥ a(t, γ1(t)) ∥2

+ 4E

wwww∫ t

0

R(t− s)h(s, γ2(s))ds

wwww2

+ 4E

wwww∫ t

0

R(t− s)f(s, γ3(s))dW (s)

wwww2

.
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By using the Cauchy-Schwarz inequality, we first evaluate the first three term of
the right-hand side

4E ∥ R(t)[x0 − g(x)− a(0, x(γ1(0)))] ∥2 +4E ∥ a(t, x(γ1(t))) ∥2

+ 4E

wwww∫ t

0

R(t− s)h(s, x(γ2(s)))ds

wwww2

≤ 12M2[E ∥ x0 ∥2 +2(E ∥ g(x)− g(0) ∥2 +E ∥ g(0) ∥2)
+ E ∥ a(0, x(γ1(0))) ∥2] + 8[E ∥ a(t, x(γ1(t)))− a(t, 0) ∥2 +E ∥ a(t, 0) ∥2]

+ 4M2E

(∫ t

0

e−δ(t−s) ∥ h(s, x(γ2(t))) ∥ ds
)2

≤ 12M2[E ∥ x0 ∥2 +2(Lg(l) ∥ x ∥∞ +L∗
g) + 2(La(l)E ∥ x(γ1(0)) ∥2 +L∗

a)]

+ 8[La(l)E ∥ x(γ1(t)) ∥2 +L∗
g] + 8M2

(∫ t

0

e−δ(t−s)ds

)
×
(∫ t

0

e−δ(t−s)[E ∥ h(s, x(γ2(s)))− h(s, 0) ∥2 +E ∥ h(s, 0) ∥2]ds
)

≤ 12M2[E ∥ x0 ∥2 +2(Lg(l)l + L∗
g) + 2(La(l)l + L∗

a)]

+ 8[La(l) sup
t∈R+

E ∥ x(t) ∥2 +L∗
g]

+ 8M2

(∫ t

0

e−δ(t−s)ds

)(∫ t

0

e−δ(t−s)[Lh(l)E ∥ x(γ2(s)) ∥ +L∗
h]ds

)
≤ 12M2[E ∥ x0 ∥2 +2(Lg(l)l + L∗

g) + 2(La(l)l + L∗
a)] + 8[Lg(l)l + L∗

g]

+ 8M2

(∫ t

0

e−δ(t−s)ds

)(∫ t

0

e−δ(t−s)[Lh(l) sup
s∈R+

E ∥ x(s) ∥2 +L∗
h]ds

)
≤ 12M2[E ∥ x0 ∥2 +2(Lg(l)l + L∗

g) + 2(La(l)l + L∗
a)] + 8[Lg(l)l + L∗

g]

+ 8M2

(∫ t

0

e−δ(t−s)ds

)2

[Lh(l)l + L∗
h]

≤ 12M2[E ∥ x0 ∥2 +2(Lg(l)l + L∗
g) + 2(La(l)l + L∗

a)] + 8[Lg(l)l + L∗
g]

+
8M2

δ2
[Lh(l)l + L∗

h]

for all t ≥ 0.
As to the four term, by the Ito integral, we get

4E

wwww∫ t

0

R(t− s)f(s, x(γ3(s)))dW (s)

wwww2

≤ 4E

(∫ t

0

∥ R(t− s)f(s, x(γ3(s))) ∥2 ds
)

≤ 8M2

∫ t

0

e−2δ(t−s)[E ∥ f(s, x(γ3(s)))− f(s, 0) ∥2 +E ∥ f(s, 0) ∥2]ds

≤ 8M2

∫ t

0

e−2δ(t−s)[Lf (l)E ∥ x(γ3(s)) ∥ +L∗
f ]ds
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≤ 8M2

∫ t

0

e−2δ(t−s)[Lf (l) sup
s∈R+

E ∥ x(s) ∥2 +L∗
f ]ds

≤ 8M2

∫ t

0

e−2δ(t−s)ds[Lf (l)l + L∗
f ] ≤

4M2

δ
[Lf (l)l + L∗

f ]

for all t ≥ 0. Thus, by combining the above inequality together, we obtain that,

E ∥ (Φx)(t) ∥2 ≤ 12M2[E ∥ x0 ∥2 +2(Lg(l)l + L∗
g) + 2(La(l)l + L∗

a)]

+ 8[La(l)l + L∗
a] +

8M2

δ2
[Lh(l)l + L∗

h] +
4M2

δ
[Lf (l)l + L∗

f ] < l

for each t ≥ 0, where (4.1) was used in the last inequality. Thus, E ∥ Φx(t) ∥2≤ l.
For x, y ∈ D and t ≥ 0, we have

E ∥ (Φx)(t)− (Φy)(t) ∥2

≤ 4E ∥ R(t)[g(x)− g(y)− a(0, x(γ1(0))) + a(0, y(γ1(0)))] ∥2

+ 4E ∥ a(t, x(γ1(t)))− a(t, y(γ1(t))) ∥2

+ 4E

wwww∫ t

0

R(t− s)[h(s, x(γ2(s)))− h(s, y(γ2(s)))]ds

wwww2

+ 4E

wwww∫ t

0

R(t− s)[f(s, x(γ3(s)))− f(s, y(γ3(s)))]dW (s)

wwww2

.

By using the Cauchy-Schwarz inequality, we first evaluate the first three term of
the right-hand side

4E ∥ R(t)[g(x)− g(y)− a(0, x(γ1(0))) + a(0, y(γ1(0)))] ∥2

+ 4E ∥ a(t, x(γ1(t)))− a(t, y(γ1(t))) ∥2

+ 4E

wwww∫ t

0

R(t− s)[h(s, x(γ2(s)))− h(s, y(γ2(s)))]ds

wwww2

≤ 8M2[E ∥ g(x)− g(y) ∥2 +E ∥ a(0, x(γ1(0)))− a(0, y(γ1(0))) ∥2]
+ 4La(l)E ∥ x(γ1(t))− y(γ1(t)) ∥2

+ 4M2E

(∫ t

0

e−δ(t−s) ∥ h(s, x(γ2(s)))− h(s, y(γ2(s))) ∥ ds
)2

≤ 8M2[Lg(l) ∥ x− y ∥2∞ +La(l) sup
s∈R+

E ∥ x(s)− y(s) ∥2]

+ 4La(l) sup
s∈R+

E ∥ x(s)− y(s) ∥2 +4M2

(∫ t

0

e−δ(t−s)ds

)
×
(∫ t

0

e−δ(t−s)E ∥ h(s, x(γ2(s)))− h(s, y(γ2(s))) ∥2 ds
)

≤ 8M2[Lg(l)E ∥ x− y ∥2∞ +La(l)E ∥ x− y ∥2∞] + 4La(l) ∥ x− y ∥2∞

+ 4M2Lh(l)

(∫ t

0

e−δ(t−s)ds

)(∫ t

0

e−δ(t−s)E ∥ x(γ2(s))− y(γ2(s)) ∥2 ds
)

≤ [8M2Lg(l) + 4(2M2 + 1)La(l) ∥ x− y ∥2∞
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+ 4M2Lh(l)

(∫ t

0

e−δ(t−s)ds

)2

sup
s∈R+

E ∥ x(s)− y(s) ∥2

≤
[
8M2Lg(l) + 4(2M2 + 1)La(l) +

4M2

δ2
Lh(l)

]
∥ x− y ∥2∞ .

As to the four term, by the Ito integral, we get

4E

wwww∫ t

0

R(t− s)[f(s, x(γ3(s)))− f(s, y(γ3(s)))]dW (s)

wwww2

≤ 4M2

∫ t

0

e−2δ(t−s)E ∥ f(s, x(γ3(s)))− f(s, y(γ3(s))) ∥2 ds

≤ 4M2Lf (l)

∫ t

0

e−2δ(t−s)E ∥ x(γ3(s))− y(γ3(s)) ∥2 ds

≤ 4M2Lf (l)

∫ t

0

e−2δ(t−s)ds sup
s∈R+

E ∥ x(s)− y(s) ∥2

≤ 2M2

δ
Lf (l) ∥ x− y ∥2∞ .

Thus, by combining the above inequality together, we obtain that, for each t ≥ 0,

E ∥ (Φx)(t)− (Φy)(t) ∥2 ≤
[
8M2Lg(l) + 4(2M2 + 1)La(l)

+
4M2

δ2
Lh(l) +

2M2

δ
Lf (l)

]
∥ x− y ∥2∞ .

Taking supremum over t,

∥ Φx− Φy ∥2∞≤ L0 ∥ x− y ∥2∞,

where L0 = [8M2Lg(l)+ 4(2M2 +1)La(l)+
4M2

δ2 Lh(l)+
2M2

δ Lf (l)]. From (4.1), we
know that

l − 24M2Lg(l)l − 8(3M2 + 1)La(l)l −
8M2

δ2
Lh(l)l −

4M2

δ
Lf (l)l > 0,

Therefore,

24M2Lg(l) + 8(3M2 + 1)La(l) +
8M2

δ2
Lh(l) +

4M2

δ
Lf (l) < 1,

which implies that L0 < 1. Thus Φ is a contraction from D to D. So Φ has a unique
fixed point in D, which means there exists a square-mean asymptotically almost
automorphic mild solution to the problem (1)-(2).

5. Application

Consider the following neutral stochastic partial functional integrodifferential
equations of the form

dN(t, u(t))(ξ) =
∂2N(t, u(t))(ξ)

∂x2
dt

+

∫ t

0

(t− s)ηe−γ(t−s) ∂
2N(t, u(t))(ξ)

∂x2
dsdt

+ϑ(t, u(λt+ λ0, ξ))dt+ θ(t, u(λt+ λ0, ξ))dW (t), (6)
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u(t, 0) = u(t, π) = 0, (7)

u(0, ξ) +

∫ π

0

k(ξ, τ)u(0, τ)dτ = u0(ξ), (8)

for (t, ξ) ∈ [0,∞) × [0, π], where W (t) is a two-sided standard one-dimensional
Brownian motion defined on the filtered probability space (Ω,F ,P,Ft), where Ft =
σ{W (u) −W (v);u, v ≤ t}. In this system, the constants λ > 0, λ0 ≥ 0, and k :
[0, π]× [0, π] → R is continuous functions. The η and γ are positive numbers and

N(t, u(t))(ξ) = u(t, ξ) + µ(t, u(λt+ λ0, ξ)).

Let H = L2([0, π]) with the norm ∥ · ∥ and define the operators A : H → H by
Aω = ω′′ with the domain

D(A) := {ω ∈ H : ω, ω′′ are absolutely continuous, ω′′ ∈ H, ω(0) = ω(π) = 0}.
Then

Aω =
∞∑

n=1

n2⟨ω, ωn⟩ωn, ω ∈ D(A),

where ωn(x) =
√

2
π sin(nx), n = 1, 2, . . . is the orthogonal set of eigenvectors of A.

It is well known that A generates a strongly continuous semigroup that is analytic,
and resolvent operator R(t) can be extracted this analytic semigroup and given by

R(t)ω =
∞∑

n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ H

with ∥ R(t) ∥≤ Me−δt for all t ≥ 0 and constants M, δ > 0. We also consider the
operator B(t) : D(A) ⊆ H → H, t ≥ 0, B(t)ω = tηe−γtω′′ for ω ∈ D(A).

For t ∈ R+, φ ∈ L2(P,H), we define respectively

a(t, φ)(ξ) = µ(t, φ(ξ)), N(t, φ)(ξ) = u(0, ξ) + µ(t, φ(ξ)),

h(t, φ)(ξ) = ϑ(t, φ(ξ)), f(t, φ)(ξ) = θ(t, φ(ξ)),

and

g(x)(ξ) =

∫ π

0

k(ξ, τ)x(τ)dτ, x ∈ C(R+, L2(P,H)).

Let γ1(t) = γ2(t) = γ3(t) = λt + λ0, and the above equation can be writ-
ten in the abstract form as the system (1)-(2). Moreover, a, h, f ∈ AAA(R+ ×
L2(P,H), L2(P,H)). Further, we can impose some suitable conditions on the above-
defined functions to verify the assumptions on Theorem 4.1, we can conclude that
the problem (6)-(8) has a unique asymptotically almost automorphic mild solution
u ∈ AAA(R+, L2(P,H)).

In particular, we can take

µ(t, u(t, ξ)) = u(t, ξ) sin
1

2 + cos t+ cos
√
2t
,

ϑ(t, u(t, ξ)) = u(t, ξ) sin
1

2 + cos t+ cos
√
3t
,

θ(t, u(t, ξ)) = u(t, ξ) sin
1

2 + cos t+ cos
√
5t
.

It follows that

a(t, φ) = φ sin
1

2 + cos t+ cos
√
2t

∈ AAA(R+ × L2(P,H), L2(P,H)),
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h(t, φ) = φ sin
1

2 + cos t+ cos
√
3t

∈ AAA(R+ × L2(P,H), L2(P,H)),

f(t, φ) = φ sin
1

2 + cos t+ cos
√
5t

∈ AAA(R+ × L2(P,H), L2(P,H)).

Clearly, the a, h and f set above satisfy the Lipschitz conditions, respectively.
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[4] D. Bugajewski and G.M. N’Guérékata, On the topological structure of almost automorphic
and asymptotically almost automorphic solutions of differential and integral equations in
abstract spaces, Nonlinear Anal. 59, 1333-1345, 2004.

[5] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear

evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162, 494-505, 1991.
[6] L. Byszewski and V. Lakshmikantham, Theorem about existence and uniqueness of a solutions

of a nonlocal Cauchy problem in a Banach space, Appl. Anal. 40, 11-19, 1990.
[7] A.Caicedo, C.Cuevas, G.M.Mophou and G.M. N’Guérékata, Asymptotic behavior of solutions
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