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EXISTENCE OF PERIODIC SOLUTIONS FOR A 2n TH-ORDER

NEUTRAL NONLINEAR DIFFERENCE EQUATION

HOUSHAN TENG, ZHENLAI HAN, FENGJUAN CAO, SHURONG SUN

Abstract. In this paper, applying Linking theorem and critical point theory,
we consider a class of 2nth-order neutral difference equations. By establishing

the variational framework of this class equation and transferring the existence
of periodic solutions of it into the existence of critical points of some functional,
the existence and multiplicity of periodic solutions of such equations were
obtained based on some new criteria.

1. Introduction

As is well known, the theory of nonlinear difference equations has been widely
used to study discrete models appearing in many fields such as computer science,
economics, neural network, ecology, cybernetics, etc. The difference equations the-
ory rapid development as the need of theoretics and actuality in the last decade.
There have been many scholars contribute to the research of difference equations,
most literature are about the qualitative properties of difference equations, such as
stability, attraction, oscillation and so on.

Periodic phenomena widely exist in the nature and the people’s social practice,
so many scholars invest much efforts in the research of periodicity of differential
equations in the last decade. Although the development of the study of periodic
solutions of differential equations is relatively rapid, we can refer to refs [1–3] and
the references therein, the paper for the difference equations is not sufficient [4–
14]. Among many of the branches of difference equations, the development of
periodicity and boundary value problems are relatively slowness, and the main
reason is lacking in the powerful technical and methods to deal with the existence
of periodic solutions for discrete system.

Many experts and scholars such as J. S. Yu, Z. M. Guo, A. Peterson, L. H. Erbe,
C. D. Ahlbrandt, M. Bohner, P. W. Eloe, D. Reid, F. M. Atici, F. M. Atici, G. Sh.
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Guseinov, Y. Raffoul, et al. bend themselves to improve and perfect the theory
of difference equations, and made the fixed point theory, Kaplan–Yorke method,
critical point theory, coincidence degree theory, bifurcation theory be the useful
tools to study the difference equations. A series of existence results for periodic
solutions have been obtained by many researcher in there papers. Among these
approaches, the critical point theory seems to be a very powerful tool to deal with
these problems.

In [4], Guo and Yu consider the existence of periodic and subharmonic solutions
for second-order superlinear difference equations

∆2xn−1 + f(n, xn) = 0,

by the critical point theory for the first time, where f ∈ C(R × R,R). Some new
results are obtained for the above problems when f(t, z) has superlinear growth
at zero and at infinity in z. At the same time, Zhou, Yu and Guo in [6] have
been applying critical point theory to investigate the existence of periodic and
subharmonic solutions for system

∆2Xn−1 + f(n,Xn) = 0,

where f = (f1, f2, · · · , fm) ∈ C(R × Rm, Rm). The existence of periodic and sub-
harmonic solutions have been discussed when the above system is suplinear, which
extent the result of reference [4]. These papers show that the critical point method
is an effective approach to the study of periodic solutions of second-order difference
equations.

Compared to one-order or second-order difference equations, the study of higher-
order equations has received considerably less attention. In 1994, Ahlbrandt and
Peterson [7] studied the 2nth-order difference equations of the form

n∑
i=0

∆i(ri(t− i)∆iy(t− i)) = 0

in the context of the discrete calculus of variations.
The paper [14] consider the 2n th-order difference equations

∆n(rt−n∆
nxt−n) + f(t, xt) = 0

by using critical point theory. By establishing the variational framework of the
above equations and transferring the existence of periodic solutions of it into the
existence of critical points of some functional, the authors obtain some sufficient
conditions for the existence of periodic solutions of above equations.

But there are some errors in [14], all the results are righter when n as a even
number, but when n as an odd number all the results can’t obtained.

The paper is organized as following: In Section 2, we introduce some basic
notations. In Section 3, we establish the variational framework of (1.1) and transfer
the existence of periodic solutions of (1.1) into the existence of critical points of some
functional, obtain some sufficient conditions for the existence of periodic solutions
of (1.1). In the case when at ≡ 0 our results reduce to existence of periodic solutions
in [14]. In Section 4, we give an examples to illustrate Theorem 1.1.

In this paper, we denote by N, Z, R the sets of all natural numbers, integers
and real numbers, respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, when
a ≤ b.
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Consider the nonlinear neutral 2n th-order difference equation

at[∆
n(rt−n∆

n(xt−n+1 + at−nxt−n))]

+∆n(rt−n−1∆
n(xt−n + at−n−1xt−n−1)) + (−1)nf(t, xt) = 0, (1.1)

where n ∈ Z(1), t ∈ Z, ∆ is the forward difference operator defined by ∆xt =
xt+1 − xt, ∆2xt = ∆(∆xt) and the real sequence rt, at and the function f satisfy
the following conditions:
(a) rt+T = rt > 0, at+T = at > 0, for a given positive integer T and for all t ∈ Z.
(b) f : Z×R → R is a continuous function in the second variable and f(t+T, z) =
f(t, z) for all (t, z) ∈ Z ×R.

Let X be a real Hilbert space, J ∈ C1(X,R), which means that J is a con-
tinuously Fréchet differentiable functional defined on X. J is said to satisfy the
Palais-Smale condition (P-S condition for short) if any sequence {ut} ⊂ X for which
{J(ut)} is bounded and J ′(ut) → 0 as t → ∞, possesses a convergent subsequence
in X.

Let Bρ be the open ball in X with radius ρ, centered at 0 and let ∂Bρ denote
its boundary. Denote v1 = min

t∈Z(1,T )
rt, v2 = max

t∈Z(1,T )
rt, Q1 = min

t∈Z(1,T )
at, Q1 =

max
t∈Z(1,T )

at. Clearly, vi > 0, Qi > 0, for i = 1, 2.

Lemma 1.1 (Linking Theorem)([4]). Let X be a real Hilbert space, X =
X1⊕X2, whereX1 is a finite-dimensional subspace ofX. Assume that J ∈ C1(X,R)
satisfies the P-S condition and
(C1) there exist constants σ > 0 and ρ > 0 such that J |∂Bρ∩X2 ≥ σ.
(C2) there is e ∈ ∂Bρ ∩X2 and a constant R1 > ρ such that J |∂Q ≤ 0, where

Q = (BR1 ∩X1)⊕ {re|0 < r < R1}.
Then J possesses a critical value c ≥ σ, where c = inf

h∈Γ
max
u∈Q

J(h(u)), Γ = {h ∈

C(Q,X)|∂Q = id} and id denotes the identity operator.
Now we state the main results.
Theorem 1.1 Assume that the following conditions are satisfied:

(A1) For all z ∈ R, one has
∫ z

0
f(t, s)ds ≤ 0 and limz→0

f(t,z)
z = 0.

(A2) There exist R2 > 0 and β > 2 such that, for every z with |z| ≥ R2 one has

zf(t, z) ≤ β

∫ z

0

f(t, s)ds < 0.

(A3) For all at, t ∈ Z(1, T ) one has 1 +Q1 − 2Q
1
2
2 > 0.

Then Eq. (1.1) has at least two nontrivial T-periodic solutions.
If f(n, xn) ≡ qng(xn)+en, Eq.(1.1) reduces to the following 2n th-order nonlinear

equation

at[∆
n(rt−n∆

n(xt−n+1+at−nxt−n))]+∆n(rt−n−1∆
n(xt−n+at−n−1xt−n−1)), (1.2)

where g ∈ C(R,R), qt+T = qt > 0, et+T = et > 0 for all t ∈ Z. Then we have the
following result.

Corollary 1.1 Assume that the following conditions are satisfied:

(A4) For all at, t ∈ Z(1, T ) one has 1 +Q1 − 2Q
1
2
2 > 0.

(A5) For all z ∈ R and t ∈ Z, one has
∫ z

0
g(s)ds+ zpt ≤ 0 and limz→0

g(z)+pt

z = 0,
where et

qt
= pt.
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(A6) There exist R3 > 0 and β > 2 such that, for every z with |z| ≥ R3, one has

zg(z) + pt ≤ β[

∫ z

0

g(s)ds+ zpt] < 0.

Then for a given positive integer T , Eq. (1.2) exists at least two nontrivial T-periodic
solutions.

2. Preliminaries

The Linking Theorem is crucial for our paper, first, let us introduce some basic
notations which will be used in this paper.

Let S be the set of sequences x = (· · · , x−t, · · · , x−1, x0, x1, · · · , xt, · · · ) =
{xt}+∞

t=−∞, i.e., S = {x = {xt} : xt ∈ R, t ∈ Z}. For any x, y ∈ S, a, b ∈ R, ax+ by

is defined by ax+ by := {axt + byt}+∞
t=−∞, and then S is a vector space.

For a given positive integer T, ET is defined as a subspace of S by ET = {x =
{xt} ∈ S : xt+T = xt, t ∈ Z}. ET can be endowed with the inner product < x, y >=
T∑

i=1

xiyi, ∀x, y ∈ ET . By and the norm ∥x∥ := (
T∑

i=1

x2
i )

1
2 , ∀x ∈ ET . Clearly, ET with

the inner product is a finite-dimensional Hilbert space and linearly homeomorphic
to RT .

Defined the functional J on ET as follows

J(x) =
1

2

T∑
t=1

rt−1(△n(xt + at−1xt−1))
2 −

T∑
t=1

F (t, xt), ∀x ∈ ET ,

where F (t, z) = −
∫ z

0
f(t, s)ds. Clearly, J ∈ C1(ET , R) and for any x = {xt}t∈Z ∈

ET , by using xi + T = xi for any i = Z, and △nxt−1 =
n∑

k=0

(−1)k
(

n
k

)
xt+n−k−1,

for every t ∈ Z(1, T ), we can compute the partial derivative as

∂J

∂xt
= (−1)n[∆n[rt−n−1∆

n(xt−n + at−n−1xt−n−1)]

+at∆
n[rt−n∆

n(xt−n+1 + at−nxt−n)]] + f(t, xt).

Then, x = {xt}t∈Z is a critical point of J on ET if and only if

at[∆
n(rt−n∆

n(xt−n+1 + at−nxt−n))]

+∆n(rt−n−1∆
n(xt−n + at−n−1xt−n−1)) + (−1)nf(t, xt) = 0.

Consider the periodicity of xt and f(t, z) in the first variable t, we can translate
the existence of periodic solutions of Eq.(1.1) into the existence of critical points of
J on ET . That is, the functional J is just the variational framework of (1.1). For
convenience, we identify x ∈ ET with x = (x1, x2, · · · , xT )

T .
Denote W = {(x1, x2, · · · , xT )

T ∈ ET : ∆n−1xi ≡ 0,∆n−1aixi ≡ 0, i ∈ Z(1, T )}
then there exists W⊥ = Y such that ET = Y ⊕W. Defined the norm ∥ ·∥β on ET as

follows: ∥x∥β = (
T∑

i=1

|xi|β)
1
β , for all x ∈ ET and β > 1. Clearly, ∥x∥2 = ∥x∥, Since

∥ · ∥β and ∥ · ∥ are equivalent, there exist constants C1, C2 such that C2 ≥ C1 > 0,
and C1∥x∥ ≤ ∥x∥β ≤ C2∥x∥, ∀x ∈ ET .
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3. Proofs of the main results

In this section, combining Lemma 1.1, we shall give the proof of our main result
stated in section 1. First we shall introduce two lemmas which are useful in the
proof of theorem.

Lemma 3.1 Assume that f(t, s) satisfies condition (A2) of Theorem 1.1, then
the functional

J(x) =
1

2

T∑
t=1

rt−1(∆
n(xt + at−1xt−1))

2 −
T∑

i=1

F (t, xt)

is bounded from above on ET .
Proof. Combining the reference [6] and condition (A2), there exist two positive

constants M and N such that, for all z ∈ R, −
∫ z

0
f(t, s)ds ≥ M |z|β −N. For every

x ∈ ET , let zt−1 = xt + at−1xt−1. We have

∥z∥2 =

T∑
t=1

|zt|2 =

T∑
t=1

|xt+1 + atxt|2 ≤
T∑

t=1

|xt+1|2 +
T∑

t=1

|atxt|2 + 2

T∑
t=1

|atxtxt+1|

≤ ∥x∥2 +Q2∥x∥2 +
T∑

t=1

|xt+1|2 +
T∑

t=1

|atxt|2 = 2(1 +Q2)∥x∥2.

Then we have

J(x) ≤ v2

2

T∑
t=1

(∆n−1zt −∆n−1zt−1)
2 −M

T∑
t=1

|xt|β +NT

≤ v2
2

T∑
t=1

2[(∆n−1zt)
2 + (∆n−1zt−1)

2]−M
T∑

t=1
|xt|β +NT

= 2v2
T∑

t=1
(∆n−1zt)

2 −M
T∑

t=1
|x|β +NT ≤ 8v2

T∑
t=1

(∆n−2zt)
2 −M∥x∥ββ +NT

≤ v24
n

2 ∥z∥2 −M(C1)
β∥x∥β +NT.

Then obtain J(x) ≤ v24
n(1 +Q2)∥x∥2 −M(C1)

β∥x∥β +NT.
Since β > 2 and the above inequality, there exists a constant M1 such that, for

every x ∈ ET , J(x) ≤ M1. The proof is complete.

Lemma 3.2 Assume that f(t, z) satisfies condition (A2) of Theorem 1.1, then
the functional J(x) satisfies the P-S condition.

Proof. Let x(k) ∈ ET , k ∈ Z(1), be such that{J(x(k))} is bounded. Then there
exists M2 such that, for every k ∈ N, |J(x(k))| ≤ M2. From the proof of Lemma
3.1, we have for every k ∈ N,

−M2 ≤ J(x(k)) ≤ v24
n(1 +Q2)∥x∥2 −M(C1)

β∥x∥β +NT.

That is

M(C1)
β∥x∥β − v24

n(1 +Q2)∥x∥2 ≤ M2 +NT, ∀k ∈ N.

Thus, {x(k)} is bounded on ET . Since ET is finite-dimensional, there exists a
subsequence of {x(k)}, which is convergent in ET , and the P-S condition satisfied.

Proof of Theorem 1.1 From (A1), we know f(t, 0) = 0, then {xt} = 0, i.e.
xt ≡ 0 (t ∈ Z) is a trivial T−periodic solution of Eq.(1.1). Combining Lemma 3.1,
J is bounded from above. We denote C0 as the supremum of {J(x), x ∈ ET }. The
proof of Lemma 3.2 implies lim∥x∥→+∞ J(x) = −∞, −J is coercive. By continuity
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of J on ET , there exists x ∈ ET such that J(x) = C0, and x is a critical point of J.
We claim that C0 > 0.

In fact, by condition (A1), we known limz→0
F (t,z)
z2 = 0. For any ε > 0, there

exists η > 0 such that for every z with |z| ≤ η, F (t, z) ≤ εz2.
For every x = (x1, x2, · · · , xT )

T ∈ T with ∥x∥ ≤ η, |xt| ≤ η, t ∈ Z(1, T ). When
T > 2, we have

J(x) ≥ v1
2

T∑
t=1

(∆n−1zt −∆n−1zt−1)
2 −

T∑
i=1

F (t, xt) ≥
v1
2
yTAy − ε

T∑
i=1

|xt|2,

where y = (∆n−1z1,∆
n−1z2, · · · ,∆n−1zT )

T , and

A =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


T×T

.

Clearly, 0 and ξ = (v, v, · · · , v)T ∈ ET is an eigenvalue of A and the eigenvector
corresponding to 0, where v ̸= 0 and v ∈ R. Let λ1, λ2, · · · , λT−1 be the other
eigenvalues of A. By matrix theory, we have λj > 0, ∀j ∈ Z(1, T −1). Without loss
of generality, we assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λT−1, then J(x) ≥ v1

2 λ1∥y∥2 −

ε∥x∥2. In view of ∥y∥2 =
T∑

t=1
(∆n−2zt+1−∆n−2zt)

2 ≥ λ1

T∑
t=1

(∆n−2zt)
2 ≥ λn−1

1 ∥z∥2,

Since

∥z∥2 =
T∑

t=1

|zt|2 =
T∑

t=1

|xt+1 + atxt|2 ≥
T∑

t=1

|xt|2 +
T∑

t=1

|atxt|2 − 2
T∑

t=1

|atxtxt+1|,

and
T∑

t=1
|xt+1|2 =

T∑
t=1

|xt|2, we have
T∑

t=1
|xtxt+1| ≤

T∑
t=1

|xt|2, then we obtain

−2

T∑
t=1

|atxtxt+1| ≥ −2Q
1
2
2 ∥x∥2,

so we get ∥z∥ ≥ (1 +Q1 − 2Q
1
2
2 )∥x∥2,

J(x) ≥ v1
2
λn−1
1 [(1 +Q1 − 2Q

1
2
2 )∥x∥2]− ε∥x∥2 = [

v1
2
λn−1
1 (1 +Q1 − 2Q

1
2
2 )− ε]∥x∥2.

Take ε = v1

4 λn−1
1 (1+Q1−2Q

1
2
2 ), and δ = v1

4 λn−1
1 (1+Q1−2Q

1
2
2 ). By (A3), we have

δ > 0, then

J(x) ≥ δ > 0, ∀Y ∩ ∂Bη.

Thus, there exists x ∈ ET such that J(x) ≥ δ > 0, and C0 = sup
x∈ET

J(x) ≥ δ > 0,

which implies that J satisfies condition (C1) of the Linking Theorem, and the
critical point of C0 is a nontrivial T-periodic solution of Eq.(1.1). Now, we need to
verify other conditions of the Linking Theorem. By Lemma 3.2, J satisfies the P-S
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condition (C2). So it suffices to verify the condition. Take e ∈ ∂B1 ∩ Y. For any
w ∈ W and r ∈ R, let x = re+ w, we obtain,

J(x) ≤ v2

2

T∑
t=1

(∆nzt−1)
2 −

T∑
t=1

F (t, ret + wt)

≤ v2

2

T∑
t=1

(∆n(ret + wt + ret−1at−1 + wt−1at−1))
2 −M

T∑
t=1

|ret + wt|β +NT

≤ v2

2

T∑
t=1

(r∆n(et + et−1at−1) + ∆n(wt + wt−1at−1))
2 −M

T∑
t=1

|ret + wt|β +NT

= v2

2

T∑
t=1

r2(∆n(et + et−1at−1))
2 −M

T∑
t=1

|ret + wt|β +NT.

Let ft−1 = et + et−1at−1, so we have

T∑
t=1

(∆nft−1)
2 =

T∑
t=1

(∆n−1ft −∆n−1ft−1)
2 ≤ 4

T∑
t=1

(∆n−1ft)
2 ≤ 4n

T∑
t=1

f2
t

= 4n
T∑

t=1
|et + et−1at−1|2

≤ 2 · 4n(
T∑

t=1
|et|2 +

T∑
t=1

|et−1at−1|2) = 2 · 4n(1 +Q2).

So J(x) ≤ 4nv2r
2(1 +Q2)−M(C1)

βrβ −M(C1)
β∥w∥2 +NT.

Let g1(z) = 4nv2z
2(1 +Q2)−M(C1)

βzβ , g2(z) = −M(C1)
β∥z∥2 +NT.

We get limz→+∞ g1(z) = −∞, limz→+∞ g2(z) = −∞, and g1(z), g2(z) are bounded
from above. Thus, there exists a constant R4 > η such that J(x) ≤ 0, ∀x ∈ ∂Q,
where Q = (BR4

∩W )⊕ {re|0 < r < R4}.
By the Linking theorem, J possesses critical value c ≥ δ > 0, where c =

inf
h∈Γ

max
u∈Q

J(h(u)),Γ = {h ∈ C(Q,ET ) : h|∂Q = id}.

Let x̂ ∈ ET be a critical point associated to the critical value c of J , i.e. J(x) = c,
If x̂ ̸= x, then the proof is complete. If x̂ = x, then C0 = J(x) = J(x̂) = c, that is,

sup
x∈ET

J(x) = inf
h∈Γ

sup
u∈Q

J(h(u)).

We choose h = id, then supx∈Q J(x) = C0. Since the choice of e ∈ ∂B1 ∩ Y in
Q is arbitrary, we can take −e ∈ ∂B1 ∩ Y . Similarly, for any x ∈ ∂Q1, there exists
R5 > η such that J(x) ≤ 0, where Q = (BR5 ∩W )⊕ {−re|0 < r < R5}.

By Lemma 1.1, J possesses critical value c′ ≥ δ > 0, where c′ = inf
h∈Γ

max
u∈Q

J(h(u)),

Γ1 = {h ∈ C(Q1, ET ) : h|∂Q = id}.
If c′ ̸= C0, the proof is complete; otherwise c′ = C0, then C0 = supx∈Q1

J(x).
Due to the fact that J |∂Q ≤ 0 and J |∂Q1 ≤ 0, J attains its maximum at some
points in the interior of the sets Q and Q1. On the other hand, Q ∩Q1 ⊂ W and
for any x ∈ W, J(x) ≤ 0. This shows that there must be a point x′ ∈ ET such that
x̂ ̸= x′ and J(x′) = c′ = C0.

The above argument implies that, if c < C0, Eq. (1.1) possesses infinitely many
nontrivial T−periodic solutions. Otherwise c = C0, Eq.(1.1) possesses infinitely
many nontrivial T−periodic solutions. The proof of Theorem 1.1 is completed.

4. Example

We have the following example to illustrate Theorem 1.1.
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Example Assume that

f(t, z) = −(az|z|+ bz|z|)(φ(t) +M),

where a ≥ 0, b > 0, M > 0, φ(t) is a continuous T-periodic function and |φ(t)| ≤
M.

Consider the 2n th-order difference equations

3[∆2n(xt−n+1 + 3xt−n)] + ∆2n(xt−n + 3xt−n−1) + (−1)nf(t, xt) = 0, t ∈ Z,

it is easy to verify that the conditions of Theorem 1.1 are satisfied, thus this equa-
tions possesses at least two nontrivial T-periodic solutions.
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