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THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM

MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE

DOMAIN

H. JIANG, F. LIU, M. M. MEERSCHAERT, R. J. MCGOUGH, Q. LIU

Abstract. Fractional partial di?erential equations with more than one frac-
tional derivative term in time, such as the Szabo wave equation, or the power
law wave equation, describe important physical phenomena. However, studies

of these multi-term time- space or time fractional wave equations are still un-
der development.
In this paper, multi-term modifed power law wave equations in a finite domain
are considered. The multi-term time fractional derivatives are defined in the

Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n)
(n > 2), respectively. Fundamental solutions of the multi-term modi?ed power
law wave equations are derived. These new techniques are based on Luchko’s
Theorem, a spectral representation of the Laplacian operator, a method of

separating variables and fractional derivative techniques. Then these general
methods are applied to the special cases of the Szabo wave equation and the
power law wave equation. These methods and techniques can also be extended
to other kinds of the multi-term time-space fractional models including frac-

tional Laplacian.

1. Introduction

In recent years, a growing number of works by many authors from various fields
of science and engineering deal with dynamical systems described by fractional
partial differential equations (see [3, 14, 15, 23]). These new models improve on
the previously used integer-order models. Generalized fractional partial differen-
tial equations have been used for describing important physical phenomena [20].
Baleanu et al. [1, 2] investigated an existence result for a superlinear fractional
differential equation and on the global existence of solutions to a class of fractional
differential equations. However, studies of the multi-term time and space fractional
wave equations are still under development.
The effect of the attenuation plays a prominent role in many acoustic and ultra-
sound applications, for instance, the ultrasound second harmonic imaging and high
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intensity focused ultrasound beam for therapeutic surgery. The attenuation coef-
ficient for biological tissue may be approximated by a power law [8] over a wide
range of frequencies used in ultrasonic imaging and thermal therapy applications.
Frequency-dependent loss and dispersion are typically modeled with a power-law
attenuation coefficient, where the power-law exponent ranges from 0 to 2. To fa-
cilitate analytical solution, a fractional partial di?erential equation is derived that
exactly describes power-law attenuation and the Szabo wave equation [24] is an
approximation to this equation.
Measurements on the changes in phase velocity with frequency have been reported
for at least 70 years, and much of this data, together with the results of more
recent measurements, have been reported by Szabo [25]. He compared the ex-
perimental results with those predicted from absorption measurements based on
causal dispersion relations. The Szabo wave equation was originally presented as
an integro-differential equation for fractional power law media.
Stojanovic [26] found solutions for the diffusion-wave problem in 1-D with n-term
time fractional derivatives whose orders belong to the intervals (0, 1), (1, 2) and
(0, 2), respectively, using the method of the approximation of the convolution by
Laguerre polynomials in the space of tempered distributions. Time domain wave-
equations for lossy media obeying a frequency power-law [13]. Mathematically, the
power-law frequency dependence of the attenuation coefficient cannot be modeled
with standard dissipative partial differential equations with integer-order deriva-
tives.
However, the multi-term time-space fractional wave equations successfully capture
this power-law frequency dependence. Kelly [13] considered a power law wave equa-
tion:

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos(πy/2)

∂y+1p

∂ty+1
− α2

0

cos2(πy2 )

∂2yp

∂t2y
= 0

The power law wave equation with the n-term time fractional derivatives whose
orders belong to the intervals [2, 3) (if 1 < y < 3/2) and [2, 4) (if 3/2 < y < 2),
respectively. The Riemann-Liouville fractional derivative ∂yt =0 D

y
t p

0D
y
t p(t) =

1

Γ(m− y)

dm

dtm

∫ t

0

p(τ)dτ

(t− τ)α+1−m
.

Kelly [13] also considered the Szabo wave equation:

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos(πy/2)

∂y+1p

∂ty+1
= 0.

The Szabo wave equation with the n-term time fractional derivatives whose orders
belong to the intervals (1, 2] (if 0 < y < 1) and [2, 3) (if 1 < y < 2), respectively.
The third term is defined by the Riemann-Liouville fractional derivative of order
y + 1.
The generalized time-fractional diffusion equation corresponds to a continuous time
random walk model where the characteristic waiting time elapsing between two
successive jumps diverge, but the accumulated jump length variance remains fi-
nite and is proportional to tα. The exponent α of the mean square displacement
proportional to tα often does not remain constant and changes. To adequately
describe these phenomena with fractional models, multi-term modified power law
wave equations and several approaches have been suggested in the literature (for
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example, [6, 9, 10, 12, 16, 18, 19, 20, 21, 22]). However, studies of the multi-term
modified power law wave equations are still limited.
In this paper, a method of separating variables is used to solve the multi-term mod-
ified power law wave equations in a finite domain. It is found that these models
can be recast with the Riemann-Liouville fractional derivative or Caputo fractional
derivative for noninteger power. Then, the basic strategy of this study is that the
Riemann-Liouville fractional derivative is replaced by the Caputo fractional deriv-
ative to derive a modified Szabo model, where the initial conditions can be easily
prescribed. We discuss and derive the analytical solutions of these equations with
nonhomogeneous Dirichlet boundary conditions.
The rest of this paper is organized as follows. In section 2, we give some relevant
definitions and lemmas. The analytical solutions of the multi-term modified power
law wave equations with nonhomogeneous Dirichlet boundary conditions are de-
rived in sections 3. Some special cases are considered in section 4. Finally, we
summarise the main research findings of our work in section 5.

2. Background Theory

For convenience, we introduce the following definitions and theorems, which are
used throughout this paper. A modified time fractional wave equation can be
written in the following form:

Dα
t u(x, t) = k∇2u(x, t) + f(x, t), 0 < x < L, t > 0, (1)

where x and t are the space and time variables, k is an arbitrary positive constant,

∇2 = △ = ∂2u(x,t)
∂x2 , (△) is Laplacian, f(x, t) is a sufficiently smooth function,

0 < α ≤ 4 and Dα
t is a Caputo fractional derivative of order α defined as [23]

Dα
t f(x, t) =

{
1

Γ(m−α)

∫ t

0
f(m)(τ)dτ

(t−τ)1+α−m ,
dm

dtm f(t),
(2)

where m− 1 < α < m,α = m ∈ N .
When 1 < α < 2, Eq. (1) is the time-fractional wave equation and when 0 < α <

1, Eq. (1) is a fractional diffusion equation. When α = 2, it represents a traditional
wave equation; while if α = 1, it represents a traditional diffusion equation.
In some practical situations the underlying processes cannot be described by Eq.
(1), but by its modified multi-term time-fractional wave and diffusion equations
that are given by [19], namely

Pα,α1,··· ,αn(Dt)u(x, t) = k
∂2u(x, t)

∂x2
+ f(x, t), (3)

where 0 < x < L, t > 0,

Pα,α1,··· ,αn(Dt)u(x, t) = Dα
t +

n∑
i=1

aiD
αi
t , (4)

0 ≤ αn < . . . < αh1+1 ≤ 1 < αh1 < · · · < αhm−1+1 ≤ r − 1 < αhm−1 < · · · < α1 <
α ≤ m , and ai, i = 1, . . . , n, n ∈ N . Dαi

t is a Caputo fractional derivative of order
αi with respect to t.
In this paper, we will discuss and derive the analytical solution of (3) with nonhomo-
geneous Dirichlet boundary conditions using the method of separation of variables,
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respectively. The initial conditions are

u(x, 0) = ϕ0(x),
∂iu(x, 0)

∂ti
= ϕi(x), i = 1, · · · ,m− 1. (5)

where 0 < x < L.
Definition 1. (See [7]) A real or complex-valued function f(x), x > 0, is said to be
in the space Cα, α ∈ R, if there exists a real number p > α such that

f(x) = xpf1(x), (6)

for f1(x) ∈ C[0,∞].
Definition 2. (See [17]) A function f(x), x > 0, is said to be in the space Cm

α ,m ∈
N0 = N ∪ {0}, if and only if fm ∈ Cα.
Definition 3. (See [17]) A multivariate Mittag-Leffler function (n dimensional
cases) is defined as

E(a1,...,an),b(z1, . . . , zn)

≡
∞∑
k=0

∑
l1 + · · · + ln = k
l1 ≥ 0, . . . , ln ≥ 0

k!

l1!× · · · × ln!

∏n
i=1 z

li
i

Γ(b+
∑n

i=1 aili)
(7)

in which b > 0, ai > 0, |zi| <∞, i = 1, . . . , n.
Lemma 1. Let µ > µ1 > · · · > µn ≥ 0,mi−1 < µi ≤ mi,mi ∈ N0 = N ∪{0}, λi ∈
R, i = 1, . . . , n. The initial value problem{

(Dµy)(x)−
∑n

i=1 λi(D
µiy)(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, . . . ,m− 1, m− 1 < µ ≤ m,
(8)

where the function g(x) is assumed to lie in C−1, if µ ∈ N , in C1
−1, if µ /∈ N , and

the unknown function y(x) is to be determined in the space Cm
−1, has the solution

y(x) = yg(x) +
m−1∑
k=0

ckuk(x), x ≥ 0, (9)

where

yg(x) =

∫ x

0

tµ−1E(.),µ(t)g(x− t)dt, (10)

and

uk(x) =
xk

k!
+

n∑
i=lk+1

λix
k+µ−µiE(.),k+1+µ−µi

(x),

k = 0, . . . ,m− 1, (11)

fulfills the initial conditions u
(l)
k (0) = δkl, k, l = 0, . . . ,m− 1. The function

E(.),β(x) = Eµ−µ1,...,µ−µn,β(λ1x
µ−µ1 , · · · , λnxµ−µn). (12)

The natural numbers lk, k = 0, . . . ,m− 1, are determined from the condition{
mlk ≥ k + 1,
mlk+1 ≤ k.

(13)

In the case mi ≤ k, i = 1, . . . , n, we set lk := 0, and if mi ≥ k+1, i = 1, . . . , n, then
lk := n.
Proof. (See [17, 12]).
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Definition 4. (see [11]) Suppose the Laplacian (−△) has a complete set of or-
thonormal eigenfunction φn corresponding to eigenvalues λ2n on a bounded region
D, i.e.,(−△)φn = λ2nφn on a bounded region D; B(φ) = 0 on ∂D, where B(φ) is
one of the standard three homogeneous boundary conditions. Let

F = {f =
∞∑

n=1

cnφn, cn = ⟨f, φn⟩,
∞∑

n=1

|cn|2|λ|βn <∞, }, (14)

then for any f ∈ F , (−△) is defined by

(−△)f =
∞∑

n=1

cnλ
2
nφn. (15)

Lemma 2. ( See [4, 11]) Suppose the one-dimensional Laplacian (−△) has a
complete set of orthonormal eigenfunctions φn1 corresponding to eigenvalues λ2n1
on a boundary region Ω = [0, L], if (−△)φn1 = λ2nφn1 on Dirichlet boundary
conditions,i.e.,

−△φ = λ2φ,

φ(0) = 0,

φ(L) = 0.

The eigenvalues are λ2n1 = n2π2

L2 for n = 1, 2, · · · and the corresponding eigenfunc-
tions are nonzero constant multiples of φn1 = sin(nπxL )

3. A modified multi-term time power law wave equation with
nonhomogeneous Dirichlet boundary conditions

Firstly, we consider the modified multi-term time power law wave equation (3)
with the initial condition (5) and the Dirichlet boundary condition:{

u(0, t) = µ1(t), t ≥ 0,
u(L, t) = µ2(t), t ≥ 0,

(16)

where µ1(t), µ2(t) are nonzero smooth functions with order-one continuous deriva-
tives. In order to solve the problem with nonhomogeneous boundary conditions,
we firstly transform the nonhomogeneous condition into a homogeneous boundary
condition. Let

u(x, t) =W (x, t) + V (x, t), (17)

where

V (x, t) =
µ2(t)− µ1(t)

L
x+ µ1(t) (18)

satisfies the boundary conditions{
V (0, t) = µ1(t),
V (L, t) = µ2(t),

(19)

and the function W1(x, t) is the solution of the problem:
P (Dt)W (x, t) + k(−△)W (x, t) = f1(x, t),

W0(x, 0) = φ0(x),
∂iW (x,0)

∂ti = φi(x),
W (0, t) = 0,
W (L, t) = 0,

(20)
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with 
f1(x, t) = −P (Dt)V (x, t) + f(x, t),

φ0(x) = ϕ0(x) +
µ1(0)−µ2(0)

L x− µ1(0),

φi(x) = ψi(x) +
∂iµ1(0)

∂ti
− ∂iµ2(0)

∂ti

L x− ∂iµ1(0)
∂ti ,

(21)

where 0 ≤ x ≤ L, t ≥ 0, i = 1, 2, · · · ,m− 1. Using Definition 4 , we set

W (x, t) =

∞∑
n=1

cn1(t) sin
nπx

L
, (22)

where φn1 are eigenfunctions that given in Lemma 2 corresponding to eigenvalues
λ2n1. We expand f1(x, t) in a Fourier series in the interval [0, L] by the eigenfunctions
sinλn1x, namely

f1(x, t) =

∞∑
n=1

fn1(t) sinλn1x, (23)

where

fn1(t) = b−1
n

∫ L

0

f1(ξ, t) sinλn1ξdξ, (24)

bn :=

∫ L

0

φ2
n1(x)dx =

∫ L

0

sin2 λn1xdx. (25)

Using the initial condition{ ∑∞
n=1 cn1(0) sinλn1x = ϕ1(x),∑∞

n=1
∂icn1(0)

∂ti sinλn1x = φi(x), i = 1, 2, · · · ,m− 1.
(26)

We assume that ϕ1(x), ψ1(x), ω1(x) are continuous functions with one-order deriv-
ative. Multiplying (26) by sinλn1x, and integrating from 0 to L respect x, we
obtain {

cn1(0) = 2
L

∫ L

0
ϕ1(ξ) sin

nπx
L dξ,

∂icn1(0)
∂ti = 2

L

∫ L

0
φi(ξ) sin

nπx
L dξ, i = 1, 2, · · · ,m− 1,

(27)

where bn is given in (25).
Based on Definition 4 and substituting (22) and (24) into (20) gives the following
equation:

P (Dt)cn1(t) + kλ2n1cn1(t) = fn1(t), (28)

where λn1 are given in Lemma 2. According to Lemma 1, we have

cn1(t) =

∫ t

0

GD
α (τ)τα−1fn1(t− τ)dτ + cn1(0)u0(t)

+
m−1∑
i=1

∂icn1(0)

∂ti
ui(t), (29)

in which

GD
η (t) = E(ν1,··· ,νn,α),η(−a1t

ν1 , · · · ,−antνn ,−kλ2n1tα), νi = α−αi, i = 1, 2, · · · , n,

u0(t) = 1− kλ2n1t
αGD

1+α(t), (30)
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us(t) =
ts

s!
−

n∑
i=hs+1

ait
s+γiGD

s+1+γi

−kλ2n1ts+αGD
s+1+α(t), (31)

in which s = 1, 2, · · · ,m− 1, and ∂icn1(0)
∂ti are given in (27).

Therefore we obtain the fundamental solution of the modified multi-term time
power law wave equation with Dirichlet boundary condition as

u(x, t) =W (x, t) + V (x, t)

=
∞∑

n=1

cn1(t) sin
nπx

L
+
µ2(t)− µ1(t)

L
x+ µ1(t), (32)

where cn1 is given in (29), in which cn1(0) and
∂icn1(0)

∂ti are given in (27).

4. Special cases

In this section, we give some special cases using the results in Section 3.
Case 1. We consider a modified power law wave equation:

1

c20

∂2p

∂t2
+

2α0

c0 cos(πy/2)

∂y+1p

∂ty+1
+

α2
0

cos2(πy2 )

∂2yp

∂t2y
= ∇2p, (33)

where the fractional derivatives are defined by the Caputo fractional derivatives
and whose orders belong to the interval [2, 3) (if 1 ≤ y < 3

2 ). The initial conditions
are given by (5) with m = 3 and boundary conditions are given by (16).
Firstly, we consider the interval [2, 3) ( if 1 ≤ y < 3

2 ).
We rewrite (33) as the following form:

∂2yp

∂t2y
+

2 cos(πy2 )

c0α0

∂y+1p

∂ty+1
+

cos2(πy2 )

c20α
2
0

∂2p

∂t2
=

cos2(πy2 )

α2
0

∇2p. (34)

Let a1 =
2 cos(πy

2 )

c0α0
, a2 =

cos2(πy
2 )

c20α
2
0
, k =

cos2(πy
2 )

α2
0

, then Eq. (34) becomes

∂2yp

∂t2y
+ a1

∂y+1p

∂ty+1
+ a2

∂2p

∂t2
= k∇2p. (35)

Comparing Eq. (35) with Eq. (3) (let a3 = · · · = an = 0, α = 2y, α1 = y + 1,
α2 = 2, f(x, t) = 0, u(x, t) ≡ p(x, t)), we obtain the analytical solution of (35) with
initial conditions (5) and Dirichlet boundary conditions (16) as

u(x, t) =W (x, t) + V (x, t)

=

∞∑
n=1

c
(1)
n1 (t) sinµnx+

µ2(t)− µ2(t)

L
x+ µ1(t), (36)

where

c
(1)
n1 (t) =

∫ t

0

GD1
2y (τ)τ2y−1f

(1)
n1 (t− τ)dτ + cn1(0)u0(t)

+c′n1(0)u1(t) + c′′n1(0)u2(t), (37)

GD1
η (t) = E(y−1,2y−2,2y),η(−a1ty−1,−a2t2y−2,−kλ2n1t2y), (38)
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f
(1)
n1 (t− τ) = b−1

n

∫ L

0

f
(1)
1 (ξ, t− τ) sinλn1ξdξ, (39)

f
(1)
1 (x, t) = −∂

2yV (x, t)

∂t2y
− a1

∂y+1V (x, t)

∂ty+1
− a2

∂2V (x, t)

∂t2
, (40)

u0(t) = 1− kλ2n1t
2yGD1

1+2y(t), (41)

u1(t) = t− kλ2n1t
1+2yGD1

2+2y(t), (42)

u2(t) =
t2

2!
− a2t

2yGD1
2y+1 − kλ2n1t

2+2yGD1
3+2y(t). (43)

Here b−1
n , V (x, t) are given in (25) and(18), cn1(0), c

′
n1(0) =

∂cn1(0)
∂t and c′′n1(0) =

∂2cn1(0)
∂t2 are given in (27).

Case 2. Similarly, we obtain the fundamental solution of the modified power law
wave equation (33) in the interval [2, 4) ( if 3

2 ≤ y < 2). The initial conditions are
given by (5) with m = 4 and boundary conditions are given by (16).

u(x, t) = W (x, t) + V (x, t)

=

∞∑
n=1

c
(2)
n1 (t) sinµnx+

µ2(t)− µ1(t)

L
x+ µ1(t), (44)

where

c
(2)
n1 (t) =

∫ t

0

GD2
2y (τ)τ2y−1f

(2)
n1 (t− τ)dτ + cn1(0)u0(t)

+c′n1(0)u1(t) + c′′n1(0)u2(t) + c′′′n1(0)u3(t), (45)

GD2
η (t) = E(y−1,2y−2,2y),η(−a1ty−1,−a2t2y−2,−kλ2n1t2y), (46)

u0(t) = 1− kλ2n1t
2yGD2

1+2y(t), (47)

u1(t) = t− kλ2n1t
1+2yGD2

2+2y(t), (48)

u2(t) =
t2

2!
− a2t

2yGD2
2y+1 − kλ2n1t

2+2yGD2
3+2y(t), (49)

u3(t) =
t3

3!
− a2t

2y+1GD2
2y+1 − kλ2n1t

3+2yGD2
4+2y(t). (50)

Here f
(2)
n1 (t − τ) is same as f

(1)
n1 (t − τ), cn1(0), c

′
n1(0) =

∂cn1(0)
∂t , c′′n1(0) =

∂2cn1(0)
∂t2

and c′′′n1(0) =
∂3cn1(0)

∂t3 are given in (27).
Case 3. We consider the following modified Szabo wave equation:

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos(πy/2)

∂y+1p

∂ty+1
= 0, (51)

whose orders belong to the interval (2, 3] ( if 1 < y ≤ 2). The initial conditions are
given by (5) with m = 3 and boundary conditions are given by (16).
Similarly, we rewrite this equation as

∂y+1p

∂ty+1
+ a

∂2p

∂t2
= k∇2p, (52)

where a =
cos(πy

2 )

2α0
, k =

c0 cos(πy
2 )

2α0
.

Comparing (51) with Eq. (3) (let a2 = · · · = an = 0, α = y+1, α1 = 2, f(x, t) = 0,
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u(x, t) ≡ p(x, t) ), we obtain the fundamental solution of (51) with initial conditions
(5) with m = 3 and Dirichlet boundary conditions (16) as

u(x, t) =W1(x, t) + V1(x, t)

=

∞∑
n=1

c
(3)
n1 (t) sin

nπx

L
+
µ2(t)− µ1(t)

L
x+ µ1(t), (53)

where

c
(3)
n1 (t) =

∫ t

0

GD3
y+1(τ)τ

yf
(3)
n1 (t− τ)dτ + cn1(0)u0(t)

+c′n1(0)u1(t) + c′′n1(0)u2(t), (54)

GD3
η (t) = E(y−1,y+1),η(−aty−1,−kλ2n1ty+1), (55)

f
(3)
n1 (t− τ) = b−1

n

∫ L

0

f
(3)
1 (ξ, t− τ) sinλn1ξdξ, (56)

f
(3)
1 (x, t) = −∂

y+1V (x, t)

∂ty+1
− a

∂2V (x, t)

∂t2
, (57)

u0(t) = 1− kλ2n1t
y+1GD3

2+y(t), (58)

u1(t) = t− kλ2n1t
2+yGD3

3+y(t), (59)

u2(t) =
t2

2!
− kλ2n1t

3+yGD3
4+y(t). (60)

Here b−1
n , V (x, t) are given in (25) and(18), cn1(0), c

′
n1(0) =

∂cn1(0)
∂t and c′′n1(0) =

∂2cn1(0)
∂t2 are given in (27).

Case 4. The time-fractional telegraph equation:

D2α
t u(x, t) + aDα

t u(x, t) = k
∂2u(x, t)

∂x2
+ f(x, t), (61)

0 < x < L, t > 0,
1

2
< α ≤ 1,

u(x, 0) = ϕ0(x),
∂u(x, 0)

∂t
= ϕ1(x), (62)

u(0, t) = µ1(t), u(L, t) = µ2(t), (63)

where 1/2 < α < 1. From Eq. (32), the analytical solution of time-fractional
telegraph equation (61), (62) and (63) can be written as the following form:

u(x, t) =
∞∑

n=1

c
(4)
n1 (t) sin

nπx

L
+
µ2(t)− µ1(t)

L
x+ µ1(t), (64)



64 H. JIANG, F. LIU, M. M. MEERSCHAERT, R. J. MCGOUGH, Q. LIU EJMAA-2013/1

where

c
(4)
n1 (t) =

∫ t

0

GD4
2α (τ)τ2α−1f

(4)
n1 (t− τ)dτ + cn1(0)u0(t) + c′n1(0)u1(t),(65)

GD4
η (t) = E(α,α),η(−atα,−kλ2n1t2α), (66)

f
(4)
n1 (t− τ) = b−1

n

∫ L

0

f
(4)
1 (ξ, t− τ) sinλn1ξdξ, (67)

f
(4)
1 (x, t) = −(D2α

t + aDα
t )V (x, t) + f(x, t), (68)

u0(t) = 1− kλ2n1t
2αGD4

1+2α(t), (69)

u1(t) = t− at2+αGD4
2+α(t)− kλ2n1t

1+2αGD4
2+2α(t). (70)

Here b−1
n , V (x, t) are given in (25) and(18), cn1(0), c

′
n1(0) =

∂cn1(0)
∂t and c′′n1(0) =

∂2cn1(0)
∂t2 are given in (27).

5. Numerical example

In this part, we give an numerical example to illustrate validity of our solu-
tion techniques. We consider Case 4 in the above section and take the following
conditions and parameters. The initial conditions in (62) are taken as

ϕ0(x) = 0, ϕ1(x) = 0. (71)

The boundary conditions in (63) are taken as

µ1(t) = t5, µ2(t) = et5. (72)

We take the other parameters as a = 1, k = 1, α = 0.8 in Eq. (57). And it
is easy to testify the exact solution is u(x, t) = ext5. The exact solutions and
analytic solutions are plotted in Fig. 1, which shows the present method is in good
agreement with the exact solution.

6. Conclusions

In this paper, we have proposed some new solution techniques to derive funda-
mental solutions to multi-term modified power law wave equations with nonhomo-
geneous Dirichlet boundary conditions in a finite domain. The multi- term time
fractional derivatives are defined in the Caputo sense, whose orders belong to the
intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. These techniques are
based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a
method of separating variables and fractional derivative techniques. By using these
techniques, fundamental solutions of the modified power law wave equations and
a modified Szabo wave equation are also derived. These methods and techniques
can also be extended to other kinds of the multi-term time-space fractional models
including fractional Laplacian.
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