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GENERAL SOLUTIONS OF SPACE FRACTIONAL FISHER’S

NONLINEAR DIFFUSION EQUATION

YANQIN LIU

Abstract. In this paper, we develop a framework to obtain exact solutions
to Fisher’s nonlinear diffusion equation by using the modified Adomian’s de-
composition method. Some examples are provided to verify the effectiveness

of the method. The new modification introduces a promising tool for many
linear and nonlinear models.

1. Introduction

In recent past, the Fractional calculus has been extensively investigated due to
their broad applications in mathematics, physics and engineering[1, 2, 3], such as
anomalous transport in disordered systems, some percolations in porous media, and
the diffusion of biological populations. But these nonlinear fractional differential
equations are difficult to get their exact solutions[4, 5, 6]. An effective method for
solving such equations is needed. The Adomian decomposition method[7]for solving
differential and integral equations, linear or nonlinear, has been the subject of
extensive analytical and numerical studies. The method, well addressed in[8, 9, 10],
provide the solutions in the form of a power series with easily computed terms.
The method has many advantages over the classical technique mainly, it provides
an efficient numerical solution with high accuracy and minimal calculations. And
in this paper, we make a simple modification of the initial conditions, so that the
decomposition method is easy to calculate.

Biological population problem are widely investigated in many papers[11, 12].
[13] considered the spatial diffusion of biological populations and obtain its corre-
sponding numerical solution using variational iteration method. [14] considered the
explicit solutions of travelling waves with a front of Fisher equation. [15] obtained
an exact solution describing self-similar growth of the initially inhabited domain
for a special case. [16] develop a framework to obtain exact solutions to Fisher’s
equation and to a nonlinear diffusion equation of the Fisher type by employing
Adomian’s decomposition method.

We extend the modified Adomian’s decomposition method to time-fractional
Fisher’s equation, a representative Fisher’s equation is ut = uxx+u(1−u) was first
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introduced by Fisher as a model for the propagation of a mutant gene[17], where
u(x, t) denotes the population density and u(1−u) represents the population supply
due to births and deaths. In this paper, we propose a generalized space-fractional
Fisher’s biological population diffusion equation as follows

∂αu

∂tα
=

∂2u

∂x2
+ F (u), u(x, 0) = ϕ(x) (1)

where t > 0, x ∈ R, F (u) is a continuous nonlinear function which satisfies the
conditionsF (0) = F (1) = 0, F ′(0) > 0 > F ′(1). The derivatives in Eq.(1) is the
Caputo derivative.

This paper is devoted to study the Fisher’s equation, the general Fisher’s equa-
tion, and the nonlinear diffusion equation of the Fisher type. Our work here stems
mainly from Adomian’s decomposition method, that has been widely used in ap-
plied sciences, which is capable of handing a wider class of diffusion problems.
Numerical solutions of Fisher’s biological population shall be presented to demon-
strate the effectiveness of the algorithm.

2. Fractional Calculus

There are several approaches to define the fractional calculus, e.g. Riemann-
Liouville, Gruünwald-Letnikow, Caputo, and Generalized Functions approach. Rie
mann-Liouville fractional derivative is mostly used by mathematicians but this ap-
proach is not suitable for real world physical problems since it requires the definition
of fractional order initial conditions, which have no physically meaningful explana-
tion yet, Caputo introduced an alternative definition, which has the advantage of
defining integer order initial conditions for fractional order differential equations.

Definition 1. The Riemann-Liouville fractional integral operator Jα(α ≥ 0) of
a function f(t), is defined as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (α ≥ 0) (2)

where Γ(·) is the well-known gamma function, and some properties of the operator
Jα are as follows

JαJβf(t) = Jα+βf(t), (α ≥ 0, β ≥ 0) (3)

Jαtγ =
Γ(1 + γ)

Γ(1 + γ + α)
tα+γ , (γ ≥ −1) (4)

Definition 2. The Caputo fractional derivative Dα of a function f(t) is defined
as

0D
α
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(t)dτ

(t− τ)α+1−n
, (n− 1 < Re(α) ≤ n, n ∈ N) (5)

the following are two basic properties of the Caputo fractional derivative

0D
α
t t

β =
Γ(1 + β)

Γ(1 + β − α)
tβ−α, (6)

(JαDα)f(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, (7)

we have chosen to the Caputo fractional derivative because it allows traditional
initial and boundary conditions to be included in the formulation of the problem.
And some other properties of fractional derivative can be found in [1, 2].
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3. Description of the method

The Adomian’sdecomposition method which provides an analytical approximate
solution is applied to various nonlinear problems[9, 10, 11]. In an operator form,
Eq.(1) can be written as

Lu =
∂βu

∂xβ
+ F (u), (8)

where the differential operator L is given by L = ∂
∂t , so that the inverse operator

L−1 exists and defined by L−1(·) =
∫ t

0
(·)dt, operating with L−1 on (8) and using

the initial condition gives

u(x, t) = ϕ(x) + L−1(
∂βu

∂xβ
+ F (u)), (9)

The Adomian’sdecomposition method decomposes the solution u(x, t) by an infinite
series of components

u(x, t) =

∞∑
n=0

un(x, t), (10)

and the nonlinear term F (u) by an infinite series of polynomials

F (u) =
∞∑

n=0

An, (11)

where the component un of the solution u(x, t) will be determined recurrently. An

is the so-called Adomian’spolynomials. substituting (10) and (11) into (9) yields

∞∑
n=0

un(x, t) = ϕ(x) + L−1(
∂β

∂xβ

∞∑
n=0

un(x, t) +
∞∑

n=0

An), (12)

Adomian’s decomposition method. The standard Adomian decomposition method
begins by setting the zeroth component u0(x, t) = ϕ(x), in addition, Adomian’s
methodology allows us to introduce the recursive relation

u0(x, t) = ϕ(x), (13)

uk+1(x, t) = L−1(
∂β

∂xβ
uk(x, t) +Ak), k ≥ 0 (14)

Modified Adomian’s decomposition method. In the new modification, we suggest
that ϕ(x) be expressed in a series of infinite components.

u(x, 0) = ϕ(x) =
∞∑

n=0

un(x, 0), (15)

moreover, we suggest a new recursive relationship expressed in the form

u0 = u0(x, 0), (16)

uk+1 = uk+1(x, 0) + L−1(
∂β

∂xβ
uk(x, t) +Ak), k ≥ 0 (17)

To determine the components un(x, t), it is useful to list the first few Ado-
mian decomposition polynomials. Followin[8], Adomian polynomials can be de-

rived by A0 = F (u0), A1 = u1F
′(u0), A2 = u2F

′(u0) +
u2
1

2! F
′′(u0), A3 = u3F

′(u0) +
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u1u2F
′′(u0) +

u3
1

3! F
′′′(u0). With the Adomian’s polynomials, and using the recur-

sive relation (17) the components un(x, t) of the series solution of u(x, t) follow
immediately.

4. Space fractional equation

In order to assess the advantages and the accuracy of the modified Adomian’s
decompositon method presented in this paper for nonlinear fractional fisher’s equa-
tion, we have applied it to the following several problems.

Case 1: In this case, we will examine the Fisher’s equation

∂u

∂t
=

∂βu

∂xβ
+ 6u(1− u), (18)

subject to the initial condition

u(x, 0) =
1

(1 + ex)2
, (19)

According to the modified Adomian’s decomposition method, we suggest u(x, 0) be
expressed in the Taylor series

1

(1 + ex)2
=

1

4
− x

4
+

x2

16
+

x3

48
− x4

96
+ · · · , (20)

and we know that 1
4 − x

4 + x2

16 + x3

48 − x4

96 is the best polynomial approximation of
1

(1+ex)2 in the interval [0, 1]. Operating with L−1 on both sides of (19) gives

u(x, t) =
1

(1 + ex)2
+ L−1(

∂βu

∂xβ
+ 6u− 6u2) (21)

substituting (10),(11) and (20) into (21),we find

∞∑
n=0

un(x, t) =

∞∑
n=0

un(x, 0) + L−1(
∂β

∂xβ

∞∑
n=0

un(x, t) + 6(

∞∑
n=0

un(x, t))− 6

∞∑
n=0

An),

(22)
Following the analysis discussed above, we set the recursive relation

u0 = 1/4, uk+1(x, t) = uk+1(x, 0) + L−1(
∂β

∂xβ
uk(x, t) + 6uk(x, t)− 6Ak), (23)

where Ak are the Adomian’s polynomials for the nonlinear term u2. The first few
components of un(x, t)

uo =
1

4
, (24)

u1 = −x

4
+

9t

8
, (25)

u2 =
x2

16
− x1−β

4Γ(2− β)
t− 3x

4
t+

27

16
t2, (26)

u3 =
x3

48
+ c1(x)t+ c2(x)t

2 − 27

32
t3, (27)

u4 = −x4

96
+ c3(x)t+ c4(x)t

2 + c5(x)t
3 − 405

64
t4, (28)
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where

c1(x) = −3x2

16
+

x2−β

8Γ(3− β)
, c2(x) =

9x

16
− 3x1−β

4Γ(2− β)
+

x1−2β

8Γ(2− 2β)
,

c3(x) =
x3

4
+

x3−β

8Γ(4− β)
, c4(x) = −117x2

64
+

x2−2β

16Γ(3− 2β)
− 3x2−β

8Γ(2− β)
,

c4(x) =
45x

8
− x1−3β

24Γ(2− 3β)
− 3x1−2β

8Γ(2− 2β)
+

9x1−β

16Γ(2− β)
,

the solution in a series form is given by

u(x, t) =
1

4
− x

4
+

9t

8
+

x2

16
− x1−β

4Γ(2− β)
t− 3x

4
t+

27

16
t2 + . . . . . . (29)

which is in full agreement with the result in[16].
Case 2: we will consider the generalized Fisher’s equation

∂u

∂t
=

∂βu

∂xβ
+ u(1− u6), (30)

subject to the initial condition

u(x, 0) =
1

(1 + e(3/2)x)1/3
, (31)

u(x, 0) be expressed in the Taylor series

1

(1 + e(3/2)x)1/3
=

1
3
√
2
− x

4 3
√
2
− x2

16 3
√
2
+

x3

48 3
√
2
+ · · · , (32)

and we know that 1
3√2

− x
4 3√2

− x2

16 3√2
+ x3

48 3√2
is the best polynomial approximation

of 1
(1+e(3/2)x)1/3

in the interval [0, 1]. Operating with L−1 on both sides of (29) gives

u(x, t) =
1

(1 + e(3/2)x)1/3
+ L−1(

∂βu

∂xβ
+ u− u7) (33)

substituting (10),(11) and (31) into (32),we find
∞∑

n=0

un(x, t) =
∞∑

n=0

un(x, 0) + L−1(
∂β

∂xβ

∞∑
n=0

un(x, t) +
∞∑

n=0

un(x, t)−
∞∑

n=0

An), (34)

Following the analysis discussed above, we set the recursive relation

u0 = 1/
3
√
2, uk+1(x, t) = uk+1(x, 0) + L−1(

∂β

∂xβ
uk(x, t) + uk(x, t)−Ak), (35)

where Ak are the Adomian’s polynomials for the nonlinear term u7. The first few
components of un(x, t)

uo =
1
3
√
2
, (36)

u1 = − x

4 3
√
2
+

3

4 3
√
2
t, (37)

u2 = − x2

16 3
√
2
+ (− x1−β

4 3
√
2Γ(2− β)

+
3x

16 3
√
2
)t− 9

32 3
√
2
t2, (38)

u3 =
x3

48 3
√
2
−(

9x2

32 3
√
2
+

x2−β

8 3
√
2Γ(3− β)

)t+(
117x

128 3
√
2
− x1−2β

8 3
√
2Γ(2− 2β)

+
3x1−β

16 3
√
2Γ(2− β)

)t2− 117

128 3
√
2
t3,

(39)
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Then the approximate solution in a series form is

u(x, t) = 1/
3
√
2+− x

4 3
√
2
+

3

4 3
√
2
t− x2

16 3
√
2
+(− x1−β

4 3
√
2Γ(2− β)

+
3x

16 3
√
2
)t− 9

32 3
√
2
t2+· · ·

(40)
Case 3: we will consider the nonlinear diffusion equation of the Fisher type

∂αu

∂tα
=

∂2u

∂x2
+ u(1− u)(u− a), 0 < a < 1 (41)

subject to the initial condition

u(x, 0) =
1

1 + e−(1/
√
2)x

, (42)

u(x, 0) be expressed in the Taylor series

u(x, 0) =
1

2
+

x

4
√
2
− x2

96
√√

2
+ · · · , (43)

1
2 +

x
4
√
2
− x2

96
√√

2
is the best polynomial approximation of 1

1+e−(1/
√

2)x
in the interval

[0, 1]. Operating with L−1 on both sides of (41) gives

u(x, t) =
1

1 + e−(1/
√
2)x

+ L−1(
∂βu

∂xβ
− au+ u2 + au2 − u3) (44)

substituting (10),(11) and (43) into (44),we find

∞∑
n=0

un(x, t) =
∞∑

n=0

un(x, 0)+L−1(
∂β

∂xβ

∞∑
n=0

un(x, t)+a
∞∑

n=0

un(x, t)−(1+a)
∞∑

n=0

An−
∞∑

n=0

Bn),

(45)
Following the analysis discussed above, we set the recursive relation

u0 = 1/2, uk+1(x, t) = uk+1(x, 0) +L−1(
∂β

∂xβ
uk(x, t)− auk(x, t) + (1+ a)Ak −Bk),

(46)
where Ak, Bk are the Adomian’s polynomials for the nonlinear term u2, u3 respec-
tively. The first few components of un(x, t)

uo =
1

2
, (47)

u1 =
x

4
√
2
+ (

1

8
− a

4
)t, (48)

u2 = − x2

96
√
2
+ (

x

16
√
2
+

x1−ββ

4
√
2Γ(2− ββ)

)t+ (
1

64
− a

32
)t2, (49)

u3 = d1(x)t+ d2(x)t
2 + d3(x)t

3, (50)

d1(x) = −x2

64
− x2

384
√
2
+

ax2

32
− x2−β

48
√
2Γ(3− β)

t,

d2(x) = (− x

128
√
2
+

ax

16
√
2
− a2x

16
√
2
+

x1−2β

8
√
2Γ(2− 2β)

+
x1−β

16
√
2Γ(2− β)

)t2,

d3(x) = (− 1

768
+

5a

384
− a2

32
+

a3

48
)t3



JFCA-2011/1 GENERAL SOLUTIONS OF SPACE FRACTIONAL EQUATION 7

Table 1. numerical values and exact solutions when β = 2, a =
0.1 for Eq.(51)

t x numerical value by ADM exact solution absolute error
0.02 0.25 0.5456 0.5460 0.0004

0.50 0.5886 0.5894 0.0008
0.75 0.6306 0.6314 0.0008
1.0 0.6717 0.6715 0.0002

0.06 0.25 0.5495 0.5500 0.0005
0.50 0.5928 0.5932 0.0004
0.75 0.6351 0.6351 0.0000
1.0 0.6763 0.6750 0.0013

0.2 0.25 0.5633 0.5638 0.0005
0.50 0.6077 0.6067 0.0010
0.75 0.6509 0.6480 0.0029
1.0 0.6928 0.6872 0.0056

0.4 0.25 0.5838 0.5834 0.0004
0.50 0.6299 0.6256 0.0043
0.75 0.6703 0.6660 0.0043
1.0 0.7071 0.7041 0.0030

Table 2. numerical values and exact solutions when β = 2, t =
0.06 for Eq.(51)

a x numerical value by ADM exact solution absolute error
0.3 0.25 0.5465 0.5470 0.0005

0.50 0.5898 0.5903 0.0005
0.75 0.6323 0.6323 0.0000
1.0 0.6737 0.6724 0.0013

0.5 0.25 0.5435 0.5440 0.0005
0.50 0.5869 0.5874 0.0005
0.75 0.6294 0.6295 0.0001
1.0 0.6710 0.6697 0.0013

0.8 0.25 0.5390 0.5396 0.0006
0.50 0.5825 0.5831 0.0006
0.75 0.6252 0.6253 0.0001
1.0 0.6671 0.6657 0.0014

Then the approximate solution in a series form is

u(x, t) =
1

2
+

x

4
√
2
+(

1

8
− a

4
)t− x2

96
√
2
+(

x

16
√
2
+

x1−ββ

4
√
2Γ(2− ββ)

)t+(
1

64
− a

32
)t2+ · · ·

(51)

Table 1 shows the approximate solutions for Eq.(51) by using the modified Ado-
mian’s decomposition method and the exact solution[16] when β = 2, a = 0.1,
and the values of β = 2 is the only case for which we know the exact solution

u(x, t) = 1/(1 + e−ζ/
√
2), where ζ = x+ ct and c =

√
2(1/2− a). It is to be noted

that only the third-order of the modified Adomian’s decomposition solution were
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used in evaluating the approximate solutions for Table 1, and it is evident that
the method used in this paper has high accuracy. Table 2 shows the approximate
solutions for Eq.(51) using the modified Adomian decomposition method and the
exact solutions[16] when β = 2, t = 0.4.

5. Conclusion

In this paper, analytical solutions for the space fractional Fisher’s nonlinear dif-
fusion equation have been obtained, and the modified Adomian’s decomposition
method was successfully used to these solutions.The reliability of this method and
reduction in computations give this method a wider applicability. The correspond-
ing solutions are obtained according to the recurrence relation using Mathematica.
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