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IMPULSIVE PARTIAL HYPERBOLIC FRACTIONAL ORDER
DIFFERENTIAL EQUATIONS IN BANACH SPACES

M. BENCHOHRA, D. SEBA

Abstract. In this paper, we prove an existence result for partial hyperbolic
differential equations of fractional order with fixed time impulses. Our analysis
is based on the technique of measures of noncompactness and Mönch’s fixed
point theorem.

1. Introduction

Fractional order models are found to be more adequate than integer order models
in some real world problems. In fact, fractional derivatives provide an excellent tool
for the description of memory and hereditary properties of various materials and
processes. The mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer
rheology, etc. involves derivatives of fractional order. In consequence, the subject
of fractional differential equations is gaining much importance and attention. For
details and examples, see the monographs of Kilbas [16], Lakshmikantham et al.
[18], Podlubny [21], Samko [22], the papers of Abbas and Benchohra [1, 2], Agarwal
et al. [3, 4], Ahmad and Sivasundaram [6], Benchohra et al. [10, 11, 12], Diethelm
[14], Kilbas and Marzan [15], N’Guérékata [20], Shi and Zhang [23], Vityuk and
Golushkov [25], Zhang [27], Zhou et al. [28] and the references therein.

Impulsive differential equations are a basic tool to study evolution processes
that are subjected to abrupt changes in their state. For instance, many biological,
physical, and engineering applications exhibit impulsive effects, see [9, 17, 26]. It
should be noted that recent progress in the development of the qualitative theory
of impulsive differential equations has been stimulated primarily by a number of
interesting applied problems, see [6, 13] and references therein.

In this paper, we study a nonlinear impulsive initial value problem for differential
equation of fractional order with fixed time impulses given by

(cDr
0u)(t, y) = f(t, y, u(t, y)), if (t, y) ∈ J ; t 6= tk, k = 1, . . . , m, (1)

u(t+k , y) = u(t−k , y) + Ik(u(t−k , y)), if y ∈ [0, b]; k = 1, . . . ,m, (2)
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u(t, 0) = ϕ(t), u(0, y) = ψ(y), t ∈ [0, a], y ∈ [0, b], (3)
where J = [0, a] × [0, b], a, b > 0, cDr

0 is the Caputo fractional derivative of order
r = (r1, r2) ∈ (0, 1] × (0, 1], 0 = t0 < t1 < · · · < tm < tm+1 = a, f : J × E → E,
Ik : E → E, k = 0, 1, . . . ,m are given functions, ϕ : [0, a] → E and ψ : [0, b] → E
are given absolutely continuous functions with ϕ(0) = ψ(0) and E is a Banach
space with norm ‖.‖.

Next we consider the following nonlocal initial value problem

(cDr
0u)(t, y) = f(t, y, u(t, y)), if (t, y) ∈ J ; t 6= tk, k = 1, . . . , m, (4)

u(t+k , y) = u(t−k , y) + Ik(u(t−k , y)), if y ∈ [0, b]; k = 1, . . . , m, (5)

u(t, 0) + Q(u) = ϕ(t), u(0, y) + K(u) = ψ(y), t ∈ [0, a], y ∈ [0, b], (6)
where f, ϕ, ψ, Ik; k = 1, ...m, are as in problem (1)-(3) and Q,K : PC(J,E) → E
are continuous functions. PC(J,E) is a Banach space to be specified later.

In this work we will use Mönch’s fixed point theorem combined with the tech-
nique of measures of noncompactness to prove existence of solutions for the problem
(1)–(3) in Banach spaces. The paper is organized as follows. In Section 2, we give
some preliminaries and establish several lemmas. The main theorem is formulated
and proved in Section 3. As an extension to nonlocal problems, we present a similar
result for the problem (4)-(6). Then, in Section 4, an example will presented to
illustrate the main results.

As far as we know, no papers exist in the literature for the problem (1)–(3)
on Banach spaces. The present results extend to the Banach space setting those
considered for scalar of systems of differential equations [1, 2]. We extend also the
result of [12] when the impulses are absent.

2. Preliminaries

For further purpose, we give in this section some auxiliary results which will
be needed in the sequel. By C(J,E) we denote the Banach space of continuous
functions u : J → E, with the usual supremum norm

‖u‖∞ = sup{‖u(t, y)‖, (t, y) ∈ J}.
Let also L1(J,E) be the Banach space of measurable functions u : J → E which
are Bochner integrables, equipped with the norm

‖u(t, y)‖L1 =
∫ a

0

∫ b

0

‖u(t, y)‖dtdy.

L∞(J,R) be the Banach space of measurable bounded functions u : J → R equipped
with the norm

‖u(t, y)‖L∞ = inf{C > 0 : |u(t, y)| ≤ C for a.e. (t, y) ∈ J}.

PC(J,E) =
{
u : J → E : u ∈ C((tk, tk+1]× [0, b], E); k = 1, . . . , m, and there

exist u(t−k , y) and u(t+k , y); k = 1, . . . ,m, such that u(t−k , y) = u(tk, y)
}
.

This set is a Banach space with the norm

‖u‖PC = sup
(t,y)∈J

‖u(t, y)‖.

Set J ′ := J\{(t1, y), . . . , (tm, y), y ∈ [0, b]}.
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For an arbitrary set V of functions v : J → E let us denote by

V (t, y) = {v(t, y), v ∈ V }, (t, y) ∈ J

and
V (J) = {v(t, y) : v ∈ V, (t, y) ∈ J}.

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = [a1, a] × [0, b]; r1, r2 > 0 and r = (r1, r2).
For f ∈ L1(Jz, E), we define the left-sided mixed Riemann-Liouville integral of
order r by

(Ir
z+f)(t, y) =

1
Γ(r1)Γ(r2)

∫ t

a1

∫ y

0

(t− s)r1−1(y − x)r2−1f(s, x)dsdx,

where Γ(.) is the Euler gamma function.
Denote by D2

ty := ∂2

∂t∂y the mixed second order partial derivative.

Definition 2.1. For a function h ∈ L1(J), such that D2
tyh is Lebesque integrable

function on J the Caputo fractional-order derivative of order r, is defined by

(cDr
z+h)(t, y) =

(
I1−r
z+ D2

tyh
)
(t, y).

Definition 2.2. ([7, 8]) Let E be a Banach space and let ΩE be the family of
bounded subsets of E. The Kuratowski measure of noncompactness is the map
α : ΩE → [0,∞) defined for B ∈ ΩE by

α(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ε}.

Properties: The Kuratowski measure of noncompactness satisfies the following (for
more details see [7, 8]).

(a) α(B) = 0 ⇔ B is compact (B is relatively compact).
(b) α(B) = α(B).
(c) A ⊂ B ⇒ α(A) ≤ α(B).
(d) α(A + B) ≤ α(A) + α(B)
(e) α(cB) = |c|α(B); c ∈ R.
(f) α(convB) = α(B), where convB is the convex hull of the set B.

Definition 2.3. A map f : J × E → E is said to be Carathéodory if
(i) (t, y) 7−→ f(t, y, u) is measurable for each u ∈ E;
(ii) u 7−→ f(t, y, u) is continuous for almost all (t, y) ∈ J.

Now, we state two known results which are needed to prove the existence of at
least one solution of (1)–(3).

Theorem 2.4. ([5, 19]) Let D be a bounded, closed and convex subset of a Banach
space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.5. ([24]) Let D be a bounded, closed and convex subset of the Banach
space C(J,E), G a continuous function on J×J and f a function from J×E → E
which satisfies the Carathéodory conditions and there exists p ∈ L1(J,R+) such that
for each (s, t) ∈ J and each bounded set B ⊂ E we have

lim
h→0+

α(f(J(s,t),(h,k) ×B)) ≤ p(s, t)α(B); here J(s,t),(h,k) = [s− h, s]× [t− k, t]∩ J.
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If V is an equicontinuous subset of D, then

α
({ ∫

J

G((s, t), (x, y))f((s, t), u(s, t))dsdt : u ∈ V
})

≤
∫

J

‖G((s, t), (x, y))‖p(s, t)α(V (s, t))dsdt.

3. Main Results

First of all, we define what we mean by a solution of the initial value problem
(1)–(3).

Definition 3.1. A function u ∈ PC(J,E) is a solution of (1)–(3) if u satisfies the
equation (cDru)(t, y) = f(t, y, u(t, y)) on J ′, and conditions (2)-(3) are satisfied.

Let h(t, y) ∈ C((tk, tk+1]× [0, b], E), zk = (tk, 0), and

µk(t, y) = u(t, 0) + u(t+k , y)− u(t+k , 0), k = 0, . . . , m.

For the existence of solutions for the problem (1)–(3), we need the following lem-
mas whose proofs can be found in [2] and we give them for the sake of completeness.

Lemma 3.2. A function u ∈ C((tk, tk+1]× [0, b], E), k = 0, . . . , m is a solution of
the differential equation

(cDr
zk

u)(t, y) = h(t, y); (t, y) ∈ (tk, tk+1]× [0, b], (7)

if and only if u(t, y) satisfies

u(t, y) = µk(t, y) + (Ir
zk

h)(t, y); (t, y) ∈ (tk, tk+1]× [0, b]. (8)

Proof. Let u(t, y) be a solution of (7). Then, from the definition of (cDr
z+

k

u)(x, y),
we have

I1−r

z+
k

(D2
tyu)(t, y) = h(t, y).

It yield
Ir
z+

k

(I1−r
zk

D2
tyu)(t, y) = (Ir

z+
k

h)(t, y),

then
I1
z+

k

D2
tyu(t, y) = (Ir

z+
k

h)(t, y).

Since
I1
z+

k

(D2
tyu)(t, y) = u(t, y)− u(t, 0)− u(t+k , y) + u(t+k , 0),

we have
u(t, y) = µk(t, y) + (Ir

z+
k

h)(t, y).

Now let u(t, y) satisfies (8). It is clear that u(t, y) satisfies

(cDr
0u)(t, y) = h(t, y), on (tk, tk+1]× [0, b].

In all what follows set

µ(t, y) = µ0(t, y), (t, y) ∈ J.
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Lemma 3.3. Let 0 < r1, r2 ≤ 1 and let h : J → E be continuous. A function u is
a solution of the fractional integral equation

u(t, y) =





µ(t, y) + 1
Γ(r1)Γ(r2)

∫ t
0

∫ y
0 (t− s)r1−1(y − x)r2−1h(s, x)dsdx if (t, y) ∈ [0, t1]× [0, b],

µ(t, y) +
∑k

i=1

(
Ii(u(t−i , y))− Ii(u(t−i , 0))

)
if (t, y) ∈ (tk, tk+1]× [0, b],

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ ti
ti−1

∫ y
0 (ti − s)r1−1(y − x)r2−1h(s, x)dsdx k = 1, . . . , m,

+ 1
Γ(r1)Γ(r2)

∫ t
tk

∫ y
0 (t− s)r1−1(y − x)r2−1h(s, x)dsdx

(9)

if and only if u is a solution of the fractional initial value problem

cDru(t, y) = h(t, y), (t, y) ∈ J ′, (10)

u(t+k , y) = u(t−k , y) + Ik(u(t−k , y)), k = 1, . . . , m. (11)

Proof. Assume that u satisfies (10)-(11). If (t, y) ∈ [0, t1]× [0, b] then

cDru(t, y) = h(t, y).

Thus

u(t, y) = µ(t, y) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx.

If (t, y) ∈ (t1, t2]× [0, b] then Lemma 3.2 implies

u(t, y) = µ1(t, y) +
1

Γ(r1)Γ(r2)

∫ t

t1

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= ϕ(t) + u(t+1 , y)− u(t+1 , 0)

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= ϕ(t) + u(t−1 , y)− u(t−1 , 0) + I1(u(t−1 , y))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= ϕ(t) + u(t1, y)− u(t1, 0) + I1(u(t−1 , y))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= µ(t, y) + I1(u(t−1 , y))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ y

0

(t1 − s)r1−1(y − x)r2−1h(s, x)dsdx

+
1

Γ(r1)Γ(r2)

∫ t

t1

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx.
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If (t, y) ∈ (t2, t3]× [0, b] then again from Lemma 3.2 we get

u(t, y) = µ2(t, y) +
1

Γ(r1)Γ(r2)

∫ t

t2

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= ϕ(t) + u(t+2 , y)− u(t+2 , 0)

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= ϕ(t) + u(t−2 , y)− u(t−2 , 0) + I2(u(t−2 , y))− I2(u(t−2 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= ϕ(t) + u(t2, y)− u(t2, 0) + I2(u(t−2 , y))− I2(u(t−2 , 0))

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx

= µ(t, y) + I2(u(t−2 , y))− I2(u(t−2 , 0)) + I1(u(t−1 , y))− I1(u(t−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ y

0

(t1 − s)r1−1(y − x)r2−1h(s, x)dsdx

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ y

0

(t2 − s)r1−1(y − x)r2−1h(s, x)dsdx

+
1

Γ(r1)Γ(r2)

∫ t

t2

∫ y

0

(t− s)r1−1(y − x)r2−1h(s, x)dsdx.

If (t, y) ∈ (tk, tk+1]× [0, b] then as in the previous we get (9).
Conversely, assume that u satisfies the impulsive fractional integral equation (9).

If (t, y) ∈ [0, t1]× [0, b] and using the fact that cDr is the left inverse of Ir we get
cDru(t, y) = h(t, y), for each (t, y) ∈ [0, t1]× [0, b].

If (t, y) ∈ [tk, tk+1)× [0, b], k = 1, . . . , m and using the fact that cDrC = 0, where
C is a constant, we get

cDru(t, y) = h(t, y), for each (t, y) ∈ [tk, tk+1)× [0, b].

Also, we can easily show that

u(t+k , y) = u(t−k , y) + Ik(u(t−k , y)), y ∈ [0, b], k = 1, . . . , m.

For the forthcoming analysis, we need the following assumptions:
(H1) f : J × E → E satisfies the Carathéodory conditions.
(H2) There exists p ∈ L∞(J,R+), such that,

‖f(t, y, u)‖ ≤ p(t, y)‖u‖, for a.e. (t, y) ∈ J and each u ∈ E;

(H3) There exists c > 0 such that

‖Ik(u)‖ ≤ c‖u‖ for each u ∈ E.

(H4) For each bounded set B ⊂ E we have

α(Ik(B)) ≤ cα(B), k = 1, . . . , m.

(H5) For each (t, y) ∈ J and each bounded set B ⊂ E we have

lim
(h,k)→(0+,0+)

α(f(J(t,y),(h,k) ×B)) ≤ p(t, y)α(B).
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Here
J(t,y),(h,k) = [t− h, t]× [y − k, y] ∩ J.

Let
p∗ = ‖p‖L∞ .

Theorem 3.4. Assume that assumptions (H1)− (H5) hold. If

(m + 1)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+ 2mc < 1, (12)

then the problem (1)–(3) has at least one solution.

Proof. Consider the operator N : PC(J,E) −→ PC(J,E) defined by

N(u)(t, y) = µ(t, y) +
∑

0<tk<t

(Ik(u(t−k , y))− Ik(u(t−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<tk<t

∫ tk

tk−1

∫ y

0

(tk − s)r1−1(y − x)r2−1f(s, x, u(s, x))dsdx

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ y

0

(t− s)r1−1(y − x)r2−1f(s, x, u(s, x))dsdx.

Clearly, the fixed points of the operator N are solution of the problem (1)–(3). Let

r0 ≥ ‖µ‖
1− 2mc− (m+1)p∗ar1br2

Γ(r1+1)Γ(r2+1)

(13)

and consider the set

Dr0 = {u ∈ PC(J,E) : ‖u‖∞ ≤ r0}.
Clearly, the subset Dr0 is closed, bounded and convex. We shall show that N
satisfies the assumptions of Theorem 2.4. The proof will be given in three steps.

Step 1: N is continuous.

Let {un} be a sequence such that un → u in PC(J,E), then for each (t, y) ∈ J

‖N(un)(t, y)−N(u)(t, y)‖

≤
m∑

k=1

(‖Ik(un(t−k , y))− Ik(u(t−k , y))‖+ ‖Ik(un(t−k , 0))− Ik(u(t−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y

0

(tk − s)r1−1(y − x)r2−1‖f(s, x, un(s, x))− f(s, x, u(s, x))‖dsdx

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ y

0

(t− s)r1−1(y − x)r2−1‖f(s, x, un(s, x))− f(s, x, u(s, x))‖dsdx.

Since Ik, k = 1, . . . , m are continuous and f is of Carathéodory type, then by the
Lebesgue dominated convergence theorem we have

‖N(un)−N(u)‖∞ → 0 as n →∞.

Step 2: N maps Dr0 into itself.
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For each u ∈ Dr0 , by (H2) and (12) we have for each (t, y) ∈ J

‖N(u)(t, y)‖ ≤ ‖µ(t, y)‖+
m∑

k=1

(‖Ik(u(t−k , y))‖+ ‖Ik(u(t−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y

0

(tk − s)r1−1(y − x)r2−1‖f(s, x, u(s, x))‖dsdx

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ y

0

(t− s)r1−1(y − x)r2−1‖f(s, x, u(s, x))‖dsdx

≤ ‖µ‖+ r0

( (m + 1)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+ 2mc

)

≤ r0.

Step 3: N(Dr0) is bounded and equicontinuous.

By Step2, it is obvious that N(Dr0) ⊂ PC(J,E) is bounded. For the equiconti-
nuity of N(Dr0), let (τ1, y1), (τ2, y2) ∈ [0, a] × [0, b], τ1 < τ2 and y1 < y2, and let
u ∈ Dr0 . Then

‖N(u)(τ2, y2)−N(u)(τ1, y1)‖

≤ ‖µ(τ1, y1)− µ(τ2, y2)‖+
m∑

k=1

(‖Ik(u(t−k , y1))− Ik(u(t−k , y2))‖)

+
1

Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y1

0
(tk − s)r1−1[(y2 − x)r2−1 − (y1 − x)r2−1]× f(s, x, u(s, x))dsdx

+
1

Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y2

y1

(tk − s)r1−1(y2 − x)r2−1‖f(s, x, u(s, x))‖dsdx

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0
[(τ2 − s)r1−1(y2 − x)r2−1 − (τ1 − s)r1−1(y1 − x)r2−1]× f(s, x, u(s, x))dsdx

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − x)r2−1‖f(s, x, u(s, x))dsdx‖

≤ ‖µ(τ1, y1)− µ(τ2, y2)‖+
m∑

k=1

(‖Ik(u(t−k , y1))− Ik(u(t−k , y2))‖)

+
p∗r0

Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y1

0
(tk − s)r1−1[(y2 − x)r2−1 − (y1 − x)r2−1]dsdx

+
p∗r0

Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y2

y1

(tk − s)r1−1(y2 − x)r2−1dsdx

+
p∗r0

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0
[(τ2 − s)r1−1(y2 − x)r2−1 − (τ1 − s)r1−1(y1 − x)r2−1]dsdx

+
p∗r0

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − x)r2−1dsdx.

As τ1 −→ τ2 and y1 −→ y2, the right-hand side of the above inequality tends to
zero.

Now let V be a subset of Dr0 such that V ⊂ conv(N(V ) ∪ {0}).
V is bounded and equicontinuous and therefore the function v → v(t, y) = α(V (t, y))
is continuous on J . Since functions φ and ψ are continuous on J , the set
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{φ(t) + ψ(y)− φ(0), (t, y) ∈ J} ⊂ E is compact. Using (H4), (H5), Lemma 2.5
and the properties of the measure α we have for each (t, y) ∈ J

v(t, y) ≤ α(N(V )(t, y) ∪ {0})
≤ α(N(V )(t, y))

≤ 1
Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y

0

(tk − s)r1−1(y − x)r2−1p(s, x)α(V (s, x))dsdx

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ y

0

(t− s)r1−1(y − x)r2−1p(s, x)α(V (s, x))dsdx

+
m∑

k=1

2cα(V (tk, y))

≤ 1
Γ(r1)Γ(r2)

m∑

k=1

∫ tk

tk−1

∫ y

0

(tk − s)r1−1(y − x)r2−1p(s, x)v(s, x)dsdx

+
1

Γ(r1)Γ(r2)

∫ t

tk

∫ y

0

(t− s)r1−1(y − x)r2−1p(s, x)v(s, x)dsdx

+
m∑

k=1

2cv(tk, y)

≤ ‖v‖∞
( (m + 1)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+ 2mc

)
.

This means that

‖v‖∞
(
1−

[ (m + 1)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
+ 2mc

])
≤ 0.

By (12) it follows that ‖v‖∞ = 0, that is v(t, y) = 0 for each (t, y) ∈ J , and then
V (t, y) is relatively compact in PC(J,E). In view of the Ascoli-Arzelà theorem, V
is relatively compact in Dr0 . Applying now Theorem 2.4 we conclude that N has
a fixed point which is a solution of the problem (1)-(3). ¤

Now we present (without proof) an existence result for the nonlocal problem
(4)-(6).

Definition 3.5. A function u ∈ PC(J,E) is a solution of (4)-(6) if u satisfies
(cDr

0u)(t, y) = f(t, y, u(t, y)) on J ′ and conditions (5)− (6) are satisfied.

Theorem 3.6. Further to (H1)-(H5), we assume the following conditions
(H4) There exists k̃ > 0 such that

‖Q(u)‖ ≤ k̃‖u‖PC , for each u ∈ PC(J,E)

(H5) There exists k∗ > 0 such that

‖K(u)‖ ≤ k∗‖u‖PC , for each u ∈ PC(J,E)

(H6)
α(Q(B)) ≤ k̃α(B), for any bounded set B ⊂ PC(J,E)

(H7)

α(K(B)) ≤ k∗α(B), for any bounded set B ⊂ PC(J,E)
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hold. If

k̃ + k∗ + 2mc +
(m + 1)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1,

then there exists a solution for problem (4)-(6) on J .

4. An Example

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following impulsive partial hyperbolic differential equations of
the form

(cDr
0un)(t, y) =

1
8et+y+3

|un(t, y)|
(1 + |un(t, y)|) , if (t, y) ∈ J = [0, 1]× [0, 1], t 6= 1

3
, (14)

un(
1
3

+

, y) = u(
1
3

−
, y) +

1
6et+y+4

|un( 1
3

−
, y)|

(15 + |un( 1
3

−
, y)|)

, if y ∈ [0, 1], (15)

un(t, 0) = t, un(0, y) = y2, t ∈ [0, 1], y ∈ [0, 1], n = 1, 2, . . . . (16)
Let

E = l1 = {u = (u1, u2, . . . , un, . . .) :
∞∑

n=1

|un| < ∞}

with the norm

‖u‖E =
∞∑

n=1

|un|.

Set
u = (u1, u2, . . . , un, . . .) and f = (f1, f2, . . . , fn, . . .).

fn(t, y, un) =
1

8et+y+3

|un(t, y)|
(1 + |un(t, y)|) , (t, y) ∈ [0, 1]× [0, 1].

and

Ik(un(t−k , y)) =
1

6et+y+4

|un(tk−, y)|
(15 + |un(tk−, y)|) , y ∈ [0, 1].

For each un and (t, y) ∈ [0, 1]× [0, 1] we have

|fn(t, y, un)| ≤ 1
8et+y+3

|un|. (17)

and
|Ik(un)| ≤ 1

6e4
|un|.

Hence conditions (H1) and (H2) are satisfied with p(t, y) = 1
8et+y+3 and c = 1

6e4 .
By (17), for any bounded set B ⊂ l1, we have

α(f(t, y, B)) ≤ 1
8et+y+3

α(B), for each (t, y) ∈ [0, 1]× [0, 1].

Hence (H3) is satisfied. We shall show that condition (12) holds with a = b = 1,
m = 1 and p∗ = 1

8e3 . Indeed,

2mc +
(m + 1)p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
=

1
3e4

+
1

4e3Γ(r1 + 1)Γ(r2 + 1)
< 1,

which is satisfied for each (r1, r2) ∈ (0, 1]×(0, 1]. Consequently Theorem 3.4 implies
that problem (14)-(16) has a solution defined on [0, 1]× [0, 1].



JFCA-2011/1 IMPULSIVE HYPERBOLIC DIFFERENTIAL EQUATIONS 11

Acknowledgement. The authors are grateful to the referee for carefully read-
ing the paper.

References

[1] S. Abbas and M. Benchohra, Partial hyperbolic differential equations with finite delay in-
volving the Caputo fractional derivative, Commun. Math. Anal. 7 (2) (2009), 62-72.

[2] S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hy-
perbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010),
406–413.

[3] R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations
and inclusions involving Riemann-Liouville fractional derivative. Adv. Difference Equ. 2009,
Art. ID 981-728, 47 pp.

[4] R.P Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value
problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109
(3) (2010), 973-1033.

[5] R.P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge
Tracts in Mathematics, 141. Cambridge University Press, Cambridge, 2001.

[6] B. Ahmad and S. Sivasundaram, Existence of solutions for impulsive integral boundary value
problems of fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010) 134–141.

[7] R.R. Akhmerov, M.I. Kamenskii, A.S. Patapov, A.E. Rodkina and B.N. Sadovskii, Measures
of Noncompactness and Condensing Operators. Translated from the 1986 Russian original by
A. Iacob. Operator Theory: Advances and Applications, 55. Birkhauser Verlag, Basel, 1992.

[8] J. Banas̀ and K. Goebel, Measures of Noncompactness in Banach Spaces, In Lecture Notes
in Pure and Applied Mathematics, Volume 60, Marcel Dekker, New York, 1980.

[9] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions,
vol. 2 of Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation,
New York, NY, USA, 2006.

[10] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for functional
differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340-1350.

[11] M. Benchohra, J. Henderson and D. Seba, Measure of noncompactness and fractional differ-
ential equations in Banach spaces, Commun. Appl. Anal. 12 (2008), no. 4, 419428.

[12] M. Benchohra, J. Nieto and D. Seba, Measure of noncompactness and hyperbolic partial
fractional differential equations in Banach spaces, Panam. Math. J. 30 (2010), 27–38.

[13] M. Benchohra and D. Seba, Impulsive fractional differential equations in Banach spaces,
Electron. J. Qual. Theory Differ. Equ. 2009, Special Edition I, No. 8, 14 pp. Spec. Ed. I,
2009 No. 8, 1-14.

[14] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equa-
tions used in the modeling of viscoplasticity, in ”Scientifice Computing in Chemical Engineer-
ing II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” (F.
Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217-224, Springer- Verlag, Heidelberg,
1999.

[15] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional
derivative in the space of continuously differentiable functions, Differential Equations 41
(2005), 84-89.

[16] A. A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional
Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Am-
sterdam, 2006.

[17] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential
Equations, World Scientific, Teaneck, NJ, 1989.

[18] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems,
Cambridge Academic Publishers, Cambridge, 2009.

[19] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second
order in Banach spaces. Nonlinear Anal. 4 (5) (1980), 985–999.
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