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A NEW WAVELET OPERATIONAL METHOD USING BLOCK

PULSE AND HAAR FUNCTIONS FOR NUMERICAL SOLUTION

OF A FRACTIONAL PARTIAL DIFFERENTIAL EQUATION

S. SAHA RAY

Abstract. The fractional calculus has many applications in applied science
and engineering. The solution of the differential equation containing fractional

derivative is much involved. An effective and easy-to-use method for solving

such equations is needed. However not only the analytical solutions exist for a
limited number of cases, but also the numerical methods are very complicated

and difficult. In this paper, a wavelet operational method has been applied
based on the operational matrices of the orthogonal functions. By using the

operational matrix of integration, a linear fractional partial differential equa-

tion has been solved numerically. In the present paper, the Haar wavelet has
been used and then from matrix equation, we obtain the algebraic equations

suitable for computer programming. The simplicity, clarity and powerfulness

of the method has been cited through an illustration.

1. Introduction

Fractional calculus has been used to model physical and engineering processes
that have been found to be best described by fractional differential equations. For
that reason it is indeed required a reliable and efficient technique for the solution of
fractional differential equations. Podlubny [1] used the Laplace Transform method
to solve the fractional differential equations numerically with the Riemann–Liouville
(RL) derivatives definition, as well as the fractional partial differential equations
with constant coefficients. Podlubny [1] suggested a generalization of the defini-
tion of Green’s function to solve the problems of the fractional order systems and
controllers. Recently, the analytical solution of fractional differential equation has
been obtained through Adomian decomposition method by Saha Ray and his co-
researchers [1-5]. Even not only its analytical solutions exist only for limited cases,
but also, the numerical methods are difficult to solve. In this connection, it is
worthwhile to mention that the recent papers on numerical solutions of fractional
differential equations are available in open literature from the notable works of Di-
ethelm et al. [6–9], Liu et al [10-15] and Meerschaert et al [16-18]. The discritization
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methods that they have adopted are complicated and time consuming. In recent
studies, many articles have been devoted to the development of algebraic methods
for the analysis, identification, and optimization of systems. The aim of these stud-
ies has been to obtain effective algorithms that are suitable for the digital computer.
Their major effort has been concentrated on the methods of the orthogonal poly-
nomial and functions. Typical examples are the applications of Walsh functions
[19], block pulse functions [20], Laguerre polynomials [21], Legendre polynomials
[22], Chebyshev polynomials [23], Fourier series [24] and Haar wavelets functions
[25]. Kronecker operational matrices have been developed by Kilicman for some
applications of fractional calculus [26]. A new analytic method has been proposed
based on a piecewise orthogonal functions, namely, Block pulse, Walsh and Haar
wavelets by Bouafoura et al. [27]. Recently, fractional Integral equations have been
solved by Haar Wavelet Method by the learned author Lepik [28].

In this paper a new numerical method based on the operational matrices of the
orthogonal functions has been applied for the solution of the fractional differential
equation. In this method, the Haar wavelet and the Block-Pulse operational ma-
trices of general order has been used to obtain the algebraic equation suitable for
computer programming for the solution of fractional differential equation. In this
paper a fractional partial differential equation has been solved to demonstrate the
simplicity, clarity and effectiveness of the present method. The main characteristic
of the operational method is to convert a differential equation into an algebraic one.
It not only simplifies the problem but also speeds up the computation. To start
with the integral property of the basic orthonormal matrix, Φ(t), the approxima-
tion is as follows The main characteristic of the operational method is to convert a
differential equation into an algebraic one. It not only simplifies the problem but
also speeds up the computation. To start with the integral property of the basic
orthonormal matrix, Φ(t), the approximation is as follows∫ t

0

∫ t

0

...

∫ t

0 k times

Φ(τ)(dτ)k ∼= Qk
ΦΦ(t), k ∈ N (1)

where Φ(t) = [Φ0(t),Φ1(t), ...,Φm−1(t)]T in which the elements Φ0(t),Φ1(t), ...,
Φm−1(t) are the discrete representation of the basis functions which are orthogo-
nal on the interval [0,1) and QΦis the operational matrix for integration of Φ(t).
In view of the simple structure of the operational matrix of integration QΦ, the
computation of the powers of QΦis very easy. This elegant operational property is
useful for the simplification of problems.

Using the operational matrix of an orthogonal function to perform integration for
solving, identifying and optimizing a linear dynamic system has several advantages:
(1) the method is computer oriented, thus solving higher order differential equation
becomes a matter of dimension increasing; (2) the solution is a multi-resolution
type; (3) the solution is convergent, even the size of increment is very large.

2. Operational Matrices of Haar Wavelets

The operational matrix of an orthogonal matrix Φ(t), QΦ can be expressed by

QΦ = Φ.QB .Φ
−1 (2)
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where QB is the operational matrix of the block pulse function.

QBm
=

1

m


1
2 1 ... 1
0 ... ... ...
... 0 1

2 1
0 ... 0 1

2


m×m

(3)

is called the operational matrix for integration of the block pulse function.

If the transform matrix Φ is unitary, i.e. Φ−1 = ΦT , then eq.(2) can be rewritten
as

QΦ = Φ.QB .Φ
T (4)

In this connection, it is to be mentioned that recently a new method to derive the
operational matrices of integration and differentiation for all orthogonal functions
in a unified framework has been proposed by Wu et al[29].

The Haar functions are an orthogonal family of switched rectangular waveforms
where amplitudes can differ from one function to another. The orthogonal set of
Haar functions are defined in the interval [0, 1) by

h0(t) =
1√
m

hi(t) =
1√
m


2

j
2 , k−1

2j ≤ t <
k− 1

2

2j

−2
j
2 ,

k− 1
2

2j ≤ t < k
2j

0, otherwise

(5)

where i = 0, 1, 2,m − 1, m = 2M and M is a positive integer. j and k represent
the integer decomposition of the index i, i.e. i = 2j+k−1, j ≥ 0 and 1 ≤ k < 2j+1.

This set of functions is complete, since for everyf ∈ L2([0, 1)), the sequence{hi(t)}
is complete if

∫
hif = 0 implies f = 0 almost everywhere. The first curve of Fig. 1

is that h0(t) = 1√
m

during the whole interval[0, 1). It is called the scaling function.

The second curve h1(t) is the fundamental square wave, or the mother wavelet which
also spans the whole interval [0, 1). All the other subsequent curves are generated
from h1(t) with two operations: translation and dilation. h2(t) is obtained from
h1(t) with dilation, i.e. h1(t) is compressed from the whole interval [0, 1) to the half
interval [0, 1/2] to generate h2(t). h3(t) is the same as h2(t) but shifted(translated)
to the right by 1

2 .

Any function f(t) ∈ L2([0, 1)) can be expanded into Haar wavelets by

y(t) = c0h0(t) + c1h1(t) + c2h2(t) + ... (6)

where cj =
∫ 1

0
y(t)hj(t)dt.

If y(t) is approximated as piecewise constant during each subinterval, eq.(6) will

be terminated at finite terms, i.e. y(t) =
∑m−1
i=0 cihi(t) or in the matrix form
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Fig. 1 Haar Wavelet functions with m=4

YT = CT.H (7)

where Y is the discrete form of the continuous function, y(t) and C is called the
coefficient vector of Y which can calculated from CT = YT .H−1 . Y and C are
both column vectors, and H is the Haar wavelet matrix of dimension m = 2M , M
is a positive integer and is defined by
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H = [hT
0 , h

T
1 , ..., h

T
m−1 ]T

i.e.

H =


hT
0

hT
1

...
hT
m−1

 =


h0,0 h0,1 ... h0,m−1

h1,0 h1,1 ... h1,m−1

....
hm−1,0 hm−1,1 ... hm−1,m−1

 (8)

where hT
0 , h

T
1 , ..., h

T
m−1 are the discrete form of the Haar wavelet bases; the discrete

values are taken from the continuous curves h0(t), h1(t), ..., hm−1(t),respectively.

Similarly, a two-dimensional function y(x, t) ∈ L2([0, 1], [0, 1])can be expanded
into Haar Wavelets by

y(x, t) =

m−1∑
i=0

m−1∑
j=0

cijhi(x)hj(t) (9)

where cij =
∫ 1

0
y(x, t)hi(x)dx

∫ 1

0
y(x, t)hj(t)dt. Eq.(9) can be written into the dis-

crete form(in matrix form) by

Y (x, t) = HT (x).C.H(t) (10)

where C =


c0,0 c0,1 ... c0,m−1

c1,0 c1,1 ... c1,m−1

....
cm−1,0 cm−1,1 ... cm−1,m−1

is the coefficient matrix of Y (x, t).

The generalized operational matrices of Haar Wavelets can be derived from the
following equation [30, 31]

QαH = H.QαB .H
T (11)

where QαB is the generalized operational matrix of the Block Pulse function for inte-
gration with the order α(α ∈ R) and QαH is the operational matrix with fractional
order α.

3. The Wavelet Operational Method

The integration of order α(α ∈ R) of Y (x, t) = HT (x).C.H(t) with respect to
variable t can be expressed as

Jαt Y = Jαt (HT (x).C.H(t)) = HT (x).C.Jαt H(t)

= HT (x).C.QαHH(t) = HT .C.QαHH (12)

Similarly, the integration of order β(β ∈ R) of Y (x, t) = HT (x).C.H(t) with respect
to variable x is given by

Jβx Y = Jβx (HT (x).C.H(t)) = Jβx (HT (x)).C.H(t) = (JβxH(x))T .C.H(t)

= (QβHH(x))T .C.H(t) = HT (x).(QβH)T .C.H(t) = HT .(QβH)T .C.H (13)
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In general, with the help of eq.(12) and (13) the double integration to the function
Y (x, t) of order α(α ∈ R) with respect to variable t and β(β ∈ R) with respect to
variable x is given by

Jαt J
β
x Y = HT .(QβH)T .C.QαH .H (14)

Eqs.(12)-(14) are used for numerical solution of fractional partial differential equa-
tion by Haar wavelet operational method [30,31].

4. Illustration

We use the Haar Wavelet operational method to solve the following diffusion equa-
tion

CD
1/2
t y(x, t) +

∂2y(x, t)

∂x2
= 0, x, t ≥ 0 (15)

with the initial conditions

y(x, 0) = x2, y(0, t) = −4

√
t

π
and

yx(0, t) = 0 (16)

Here, in eq.(15) CD
1/2
t stands for Caputo’s fractional derivative of order α[1].

Applying J
1/2
t to both sides of eq.(15) , we obtain

y(x, t)− y(x, 0) + J
1/2
t

(
∂2y(x, t)

∂x2

)
= 0

y(x, t)− 2
∫ x

0

∫ x
0
dxdx+ J

1/2
t

(
∂2y(x,t)
∂x2

)
= 0, since

y(x, 0) = x2 = 2

∫ x

0

∫ x

0

dxdx (17)

Integrating eq.(17) with respect to variable x with the initial conditions, we obtain∫ x

0

∫ x

0

y(x, t)dxdx− 2

∫ x

0

∫ x

0

∫ x

0

∫ x

0

1.dxdxdxdx

+J
1/2
t (y(x, t)− y(0, t)− xyx(0, t)) = 0∫ x

0

∫ x

0

y(x, t)dxdx− 2

∫ x

0

∫ x

0

∫ x

0

∫ x

0

1.dxdxdxdx+ J
1/2
t (y(x, t)) + 2t = 0,

since

y(0, t) = −4

√
t

π
and

yx(0, t) = 0

∫ x

0

∫ x

0

y(x, t)dxdx− 2

∫ x

0

∫ x

0

∫ x

0

∫ x

0

1.dxdxdxdx+ J
1/2
t y(x, t) + 2

∫ t

0

1.dt = 0

(18)
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Using formulae Eqs.(12)-(14) alongwith Haar Wavelet operational matrices, the
matrix form of eq. (18) can be written as

HT .
(
Q2
H

)T
.C.H +HT .C.Q

1/2
H .H = 2HT .

(
Q4
H

)T
.E.H − 2HT .E.QH .H (19)

where E is given by E = H.


1 1 ... 1
1 1 ... 1
.....
1 1 ... 1

 .HT . By multiplying HT to the right

side and H to the left side of each term in eq.(19), yields(
Q2
H

)T
.C + C.Q

1/2
H = 2

(
Q4
H

)T
.E − 2E.QH (20)

which is a matrix equation can be solved by suitable Mathematical Software pack-
ages to obtain the coefficient matrix C. In present analysis, Mathematical Software
MATHEMATICA 7 has been used to obtain solution matrix for C.
Then the discrete form of the function y(x, t) is given by

Y (x, t) = HT (x).C.H(t) (21)

Y16×16 =

The plots of Y64×64(x, t) is shown in Figs. 2.

Figs. 2(b) shows the comparison of exact solution y(x, t) and the approximate
solution Y16×16(x, t) at t = 0. In these figures the black curve indicates the approx-
imate solution Y16×16(x, t) and the dashed curve indicates the exact solution y(x, t)
at t = 0 respectively.

The exact solution of eq.(15) with initial conditions eq.(16) obtained by Adomian
Decomposition method is

y(x, t) = x2 − 4

√
t

π
(22)

It is shown in Fig. 3.

Figs. 1-3 have been drawn by the mathematical software MATHEMATICA 7.
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(a)

(b)

Figure 1. (a) The numerical solution of eq. (15) with the initial
conditions eq.(16) in the case of m = 64, (b) The comparison of
exact solution y(x, t) and the approximate solution Y64×64(x, t) at
t = 0

5. Error Analysis

In the present analysis a table has been created citing the Absolute error in approx-
imating Y64×64(x, t) which is the numerical solution of eq. (15) alongwith initial
condition eq.(16) obtained by the Wavelet operational method. Table 1 shows these
results are in good agreement with each other.
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(c)

Figure 2. The exact solution y(x, t) of eq. (15) with the initial
conditions eq.(16)

Absolute Error=∣∣y(x, t) − Y64×64(x, t)
∣∣ t = 0 t =

0.125
t = 0.25 t = 0.375 t = 0.5 t = 0.625 t = 0.75 t = 0.875

x = 0 0.166096 0.0245879 0.0174578 0.0142642 0.0123531 0.0110462 0.0100802 0.00932872

x = 0.125 0.16616 0.0226419 0.0155048 0.0123114 0.0104002 0.00909327 0.00812726 0.0073758

x = 0.25 0.169487 .0206978 0.013552 0.0103588 0.00844774 0.00714077 0.00617472 0.00542324

x = 0.375 0.17521 0.018735 0.0115993 0.00840665 0.00649563 0.00518864 0.00422255 0.00347102

x = 0.5 0.182073 0.0167442 0.00964615 0.00645465 0.00454383 0.00323685 0.00227072 0.00151914

x = 0.625 0.188631 0.014742 0.00769231 0.00450268 0.00259226 0.00128535 0.000319203 0.000432435

x = 0.75 0.193488 0.012766 0.00573718 0.00255053 0.000640816 0.000665913 0.00163204 0.00238372

x = 0.875 0.195531 0.0108463 0.00378008 0.000597953 0.00131063 0.00261702 0.00358307 0.00433475

Table1 Absolute error in approximating Y64×64(x, t)in comparison to exact solution
y(x, t)
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6. Conclusion

In this paper, a fractional partial differntial equation has been solved by a wavelet
operational method. It is based on the operational matrices of orthogonal functions.
Advantages of this wavelet operational method include (1) it is much simpler than
the conventional numerical method for fractional differential Equctions; (2) the
computation is computer oriented; and (3) the step size used could be large and
the result obtained is quite satisfactory.
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