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MAXIMAL AND MINIMAL POSITIVE SOLUTIONS FOR A

NONLOCAL BOUNDARY VALUE PROBLEM OF A

FRACTIONAL-ORDER DIFFERENTIAL EQUATION

A. M. A. EL-SAYED AND E. O. BIN-TAHER

Abstract. In this paper we study the existence of positive solution for the

fractional order differential equation Dβu(t) + f(t, u(t)) = 0, t ∈ (0, 1) , β ∈ (1, 2),
with the nonlocal conditions Iγ u(t)|t=0 = 0, γ ∈ (0, 1], u(1) = k u(η), k >
0, η ∈ (a, b) ⊂ (0, 1) where f is L1−Carathèodory. The existence of the
maximal and minimal solutions are also studied.

1. Introduction

The three-point and nonlocal boundary value problems was studied by many
authors ( see for example [1-7], [9-10], [13] and [15] and references therein).
In [3], the author studied the existence of at least one positive solution for the
three-point boundary-value problem Dβu(t) + f(t, u(t)) = 0 , β ∈ (1, 2), t ∈ (0, 1),

u(0) = 0, u(1) = k u(η), 0 < η < 1, 0 < k ηβ−1 < 1.

where
(a) f : [0, 1]× [0, ∞) is nonnegative and continuous and either

(b) 0 ≤ limu→+∞ max
t∈[0, 1]

f(t, u)

u
< (1−kηβ−1)Γ(β+1), and f(t, 0) ̸≡ 0, t ∈ (0, 1)

or

(c) limu→0+ min
t∈[0, 1]

f(t, u)

u
> λ1, limu→+∞ max

t∈[0, 1]

f(t, u)

u
< λ1.

In this work we omit the conditions (b) and (c), relax condition (a) and study,
when f is L1−Carathèodory, the existence of at least one positive solution for the
nonlocal boundary value problem of fractional-order differential equation

Dβu(t) + f(t, u(t)) = 0, β ∈ (1, 2), t ∈ (0, 1) (1)

Iγ u(t)|t=0 = 0, γ ∈ (0, 1], u(1) = k u(η), η ∈ (0, 1). (2)
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The maximal and minimal solutions of the problem (1)-(2) is studied when the
function f is nondecreasing in the second argument.

2. preliminaries

Let C(I) denotes the class of continuous functions and L1(I) denotes the class
of Lebesgue integrable functions on the interval I = [a, b], where 0 ≤ a < b < ∞
and let Γ(.) denotes the gamma function.
Definition 2.1 The fractional-order integral of the function f ∈ L1[a, b] of order
β > 0 is defined by (see [12])

Iβa f(t) =

∫ t

a

(t − s)β − 1

Γ(β)
f(s) ds,

Definition 2.2 The Riemann-Liouville fractional-order derivative of f of order
β ∈ (0, 1) is defined as (see [11] and [12])

Dβ
a f(t) =

d

dt

∫ t

a

(t − s)− β

Γ(1 − β)
f(s) ds.

Definition 2.3 The function f : [0, 1]×R → R is called L1−Caratheodory if
(i) t → f(t, x) is measurable for each x ∈ R,
(ii) x → f(t, x) is continuous for almost all t ∈ [0, 1],
(iii) there exists m ∈ L1[0, 1] such that |f | ≤ m.

3. Existence of solution

Lemma 3.1 The solution of the problem (1)-(2) can be represent by the integral
equation

u(t) =
A tβ−1

Γ(β)

{∫ 1

0

(1− s)β−1 f(s, u(s)) ds− k

∫ η

0

(η − s)β−1 f(s, u(s)) ds

}
−

∫ t

0

(t− s)β−1

Γ(β)
f(s, u(s)) ds. (3)

where A = (1− kηβ−1)−1.
proof. See [5].

Now we can write ( see [3] lemma 2.4 ) equation (3) in the formula

u(t) =

∫ 1

0

G(t, s) f(t, u(s)) ds. (4)

where

G(t, s) =



−(1−kηβ−1)(t−s)β−1+ tβ−1(1−s)β−1−k tβ−1(η−s)β−1

(1−kηβ−1)Γ(β)
, 0 ≤ s ≤ t ≤ 1, s ≤ η,

tβ−1(1−s)β−1−(1−kηβ−1)(t−s)β−1

(1−kηβ−1)Γ(β)
, 0 ≤ η ≤ s ≤ t ≤ 1,

tβ−1(1−s)β−1−k tβ−1(η−s)β−1

(1−kηβ−1)Γ(β)
, 0 ≤ t ≤ s ≤ η < 1,

tβ−1(1−s)β−1

(1−kηβ−1)Γ(β)
, 0 ≤ t ≤ s ≤ 1, η ≤ s.

Lemma 3.2 The function G(t, s) satisfies G(t, s) > 0, for t, s ∈ (0, 1).
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Proof. See [3] lemma 2.4.
Definition 3.1 The function u is called a solution of the fractional-order func-
tional integral equation (3), if u ∈ C[0, 1] and satisfies (3).

For the existence of the solution we have the following theorem.
Theorem 3.1 Assume that the the function f is L1−Carathèodory. Then the
nonlocal boundary value problem (1)-(2) has at least one positive continuous solu-
tion u ∈ C[0, 1].
Proof. Define a subset Q+

r ⊂ C[0, 1] by

Q+
r = {u(t) > 0, for each t ∈ [0, 1], ∥u∥ ≤ r}, where r =

(1 + A + k A)||m||L1

Γ(β) .

The set Q+
r is nonempty, closed and convex.

Let T : Q+
r → Q+

r be an operator defined by

Tu(t) = A tβ−1

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds−k A tβ−1

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

−
∫ t

0

(t− s)β−1

Γ(β)
f(s, u(s)) ds.

For u ∈ Q+
r , it is clear that T is continuous operator, i.e let {un(t)} be a

sequence in Q+
r converges to u(t), un(t) → u(t), ∀t ∈ [0, 1], then

lim
n→∞

Tun(t) = A tβ−1 lim
n→∞

∫ 1

0

(1− s)β−1

Γ(β)
f(s, un(s)) ds

−k A tβ−1 lim
n→∞

∫ η

0

(η − s)β−1

Γ(β)
f(s, un(s)) ds − lim

n→∞

∫ t

0

(t− s)β−1

Γ(β)
f(s, un(s)) ds

by assumptions (i) - (ii) and the Lebesgue dominated convergence Theorem we
deduce that

lim
n→∞

(Tun)(t) = (Tu)(t).

Then T is continuous. Now, let u ∈ Q+
r , then

(Tu)(t) ≤ A tβ−1

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds+k A tβ−1

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

+

∫ t

0

(t− s)β−1

Γ(β)
f(s, u(s)) ds

≤ A

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds+ k A

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds

+

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds

≤ (1 + A + k A)

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds

≤ (1 + A + k A)

Γ(β)

∫ 1

0

(1− s)β−1 m(s) ds

≤ (1 + A + k A)

Γ(β)

∫ 1

0

m(s) ds
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≤ (1 + A + k A)||m||L1

Γ(β)
= r

Then {Tu(t)} is uniformly bounded in Q+
r .

In what follows we show that T is a completely continuous operator.
For t1, t2 ∈ (0, 1), t1 < t2 such that |t2 − t1| < δ we have

|Tu(t2)− Tu(t1)| = |A tβ−1
2

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds− kAtβ−1

2

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s))ds

−
∫ t2

0

(t2 − s)β−1

Γ(β)
f(s, u(s))ds

− Atβ−1
1

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s))ds+ kAtβ−1

1

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s))ds

+

∫ t1

0

(t1 − s)β−1

Γ(β)
f(s, u(s)) ds|

≤ |
∫ t2

0

(t2 − s)β−1

Γ(β)
f(s, u(s))) ds−

∫ t1

0

(t1 − s)β−1

Γ(β)
f(s, u(s))) ds |

+ A |tβ−1
2 − tβ1 |

∫ 1

0

(1− s)β−1

Γ(β)
|f(s, u(s))| ds

+ kA |tβ−1
2 − tβ−1

1 |
∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s))ds

≤ |
∫ t1

0

(
(t2 − s)β−1

Γ(β)
− (t1 − s)β−1

Γ(β)

)
f(s, u(s))) ds

+

∫ t2

t1

(t2 − s)β−1

Γ(β)
f(s, u(s))) ds |

+ A |tβ−1
2 − tβ−1

1 |
∫ 1

0

(1− s)β−1

Γ(β)
|f(s, u(s))| ds

+ kA |tβ−1
2 − tβ−1

1 |
∫ η

0

(η − s)β−1

Γ(β)
|f(s, u(s))|ds

≤ 1

Γ(β)

∫ t1

0

(
(t2 − s)β−1 − (t1 − s)β−1

)
m(s) ds

+
1

Γ(β)

∫ t2

t1

(t2 − s)β−1m(s) ds

+
A

Γ(β)
|tβ−1
2 − tβ−1

1 |
∫ 1

0

(1− s)β−1m(s) ds

+
kA

Γ(β)
|tβ−1
2 − tβ−1

1 |
∫ η

0

(η − s)β−1m(s)ds.
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Hence the class of functions {Tu(t)} is equi-continuous. By Arzela-Ascolis The-
orem {Tu(t)} is relatively compact. Since all conditions of Schauder Theorem are
hold, then T has a fixed point in Q+

r .
Therefor the integral equation (3) has at least one positive continuous solution
u ∈ C(0, 1) .
Now,

lim
t→0

u(t) = A lim
t→0

tβ−1

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s))ds−kA lim

t→0
tβ−1

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s))ds

− lim
t→0

∫ t

0

(t− s)β−1

Γ(β)
f(s, u(s))) ds = u(0) = 0,

and

lim
t→1

u(t) = A lim
t→1

tβ−1

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s))ds−kA lim

t→1
tβ−1

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s))ds

− lim
t→1

∫ t

0

(t− s)β−1

Γ(β)
f(s, u(s))) ds = u(1).

Then the integral equation (3) has at least one positive continuous solution u ∈
C[0, 1] .
To complete the proof operating on both sides of equation (3) by I2−β , we get

I2−βu(t) =
A t

Γ(β)

{∫ 1

0

(1− s)β−1 f(s, u(s)) ds− k

∫ η

0

(η − s)β−1 f(s, u(s)) ds

}
− I2 f(t, u(t))

Differentiating the above relation twice we obtain the differential equation (1).
Operating on both sides of equation (3) by Iγ , we obtain

Iγu(t) = A tγ+β−1

∫ 1

0

(1− s)β−1

Γ(γ + β)
f(s, u(s)) ds−k A tβ−1

∫ η

0

(η − s)β−1

Γ(γ + β)
f(s, u(s)) ds

−
∫ t

0

(t− s)γ+β−1

Γ(γ + β)
f(s, u(s)) ds

and let t = 0, we get

Iγ u(t)|t=0 = 0
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Let t = 1 in equation (3) , we get

u(1) = A

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds− k A

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

−
∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds.

= (A− 1)

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds− k A

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

= (
1

1− kηβ−1
− 1)

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds− k A

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

= (
kηβ−1

1− kηβ−1
)

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds− k A

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

= k{Aηβ−1

∫ 1

0

(1− s)β−1

Γ(β)
f(s, u(s)) ds− k Aηβ−1

∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds

−
∫ η

0

(η − s)β−1

Γ(β)
f(s, u(s)) ds} = k u(η).

The proof is complete.

4. Maximal and minimal solutions

Here we study the existence of the maximal and minimal solutions of the fractional-
order integral equation (3).

Definition 4.1 Let n be a solution of the integral equation (3) in [0, 1], then
n is said to be a maximal solution of (3) if, for every solution u of (3) existing on
[0, 1], the inequality u(t) ≤ n(t), t ∈ [0, 1], holds.
A minimal solution may be define similarly by reversing the last inequality.
From Theorem 3.1 we get that the integral equation (3) has a positive solution
u ∈ C[0, 1].

Based on this criterion we can prove the following theorem.
Theorem 4.1 let f be a monotonic nondecreasing function in u. If the assumptions
of Theorem 3.1 are satisfied , then there exist maximal and minimal solutions of
the integral equation (3) on [0, 1].
Proof. Consider the fractional-order integral equation

uϵ(t) = ϵ +

∫ 1

0

G(t, s) f(s, u(s)) ds, ϵ > 0. (5)

In the view of Theorem 3.1, it is clear that equation (5) has at least one positive
solution u(t) ∈ C[0, 1]. Now, let ϵ1 and ϵ2 be such that 0 < ϵ2 < ϵ1 ≤ ϵ. Then, we
have uϵ2(0) < uϵ1(0) ( from (3)-(5), we have uϵ2(0) = ϵ2 < ϵ1 = uϵ1(0)). We
can prove

uϵ2(t) < uϵ1(t) for all t ∈ [0, 1]. (6)

To prove conclusion (6), we assume that it is false, then there exist a t1 such that

uϵ2(t1) = uϵ1(t1) and uϵ2(t) < uϵ1(t) for all t ∈ [0, t1).
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Since f is monotonic nondecreasing in u, it follows that f(t, uϵ2(t)) ≤ f(t, uϵ1(t))
and consequently, using equation (5), we obtain

uϵ2(t1) = ϵ2 +

∫ 1

0

G(t1, s) f(s, uϵ2(s)) ds

< ϵ1 +

∫ 1

0

G(t1, s) f(s, uϵ1(s)) ds

= uϵ1(t1).

Which contradict the fact that uϵ2(t1) = uϵ1(t1). Hence the inequality (6) is true.
From the hypothesis, it follows as in the proof of Theorem 3.1 that the family of
functions {uϵ} is relatively compact on [0, 1], hence, we can extract a uniformly
convergent subsequence {uϵp}, that is, there exists a decreasing sequence {ϵp} such
that ϵp → 0 as p → ∞ and limp→∞ uϵp(t) exists uniformly in t ∈ [0, 1], we denote
this limiting value by n(t).
Obviously, the uniform continuity of f and the equation

uϵp(t) = ϵp +

∫ 1

0

G(t, s) f(s, uϵp(s)) ds, t ∈ [0, 1],

yields n is a solution of equation (3). Finally, we show that the solution n is the
maximal solution of equation (3). To achieve this goal, let u be any solution of (3)
existing on the interval [0, 1]. Then

u(t) < ϵ +

∫ 1

0

G(t, s) f(s, u(s)) ds = uϵ(t), t ∈ [0, 1].

Since the maximal solution is unique (see [8] and [14]), it is clear that uϵ(t) tends
to n(t) uniformly in t ∈ [0, 1] as ϵ → 0. Which proves the existence of maximal
solution to the integral equation (3). A similar argument holds for the minimal
solution.
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