MAXIMAL AND MINIMAL POSITIVE SOLUTIONS FOR A NONLOCAL BOUNDARY VALUE PROBLEM OF A FRACTIONAL-ORDER DIFFERENTIAL EQUATION

A. M. A. EL-SAYED AND E. O. BIN-TAHER

Abstract

In this paper we study the existence of positive solution for the fractional order differential equation $D^{\beta} u(t)+f(t, u(t))=0, t \in(0,1), \beta \in(1,2)$, with the nonlocal conditions $\left.I^{\gamma} u(t)\right|_{t=0}=0, \gamma \in(0,1], u(1)=k u(\eta), k>$ $0, \eta \in(a, b) \subset(0,1)$ where f is L^{1}-Carathèodory. The existence of the maximal and minimal solutions are also studied.

1. Introduction

The three-point and nonlocal boundary value problems was studied by many authors (see for example [1-7], [9-10], [13] and [15] and references therein).
In [3], the author studied the existence of at least one positive solution for the three-point boundary-value problem

$$
\left\{\begin{array}{c}
D^{\beta} u(t)+f(t, u(t))=0, \beta \in(1,2), t \in(0,1) \\
u(0)=0, u(1)=k u(\eta), 0<\eta<1,0<k \eta^{\beta-1}<1
\end{array}\right.
$$

where
(a) $f:[0,1] \times[0, \infty)$ is nonnegative and continuous and either
(b) $0 \leq \varlimsup_{u \rightarrow+\infty} \max _{t \in[0,1]} \frac{f(t, u)}{u}<\left(1-k \eta^{\beta-1}\right) \Gamma(\beta+1)$, and $f(t, 0) \not \equiv 0, t \in(0,1)$ or

$$
\text { (c) } \underline{\lim }_{u \rightarrow 0^{+}} \min _{t \in[0,1]} \frac{f(t, u)}{u}>\lambda_{1}, \varlimsup_{\lim }^{u \rightarrow+\infty} \max _{t \in[0,1]} \frac{f(t, u)}{u}<\lambda_{1} .
$$

In this work we omit the conditions (b) and (c), relax condition (a) and study, when f is L_{1}-Carathèodory, the existence of at least one positive solution for the nonlocal boundary value problem of fractional-order differential equation

$$
\begin{align*}
D^{\beta} u(t)+f(t, u(t))=0, & \beta \in(1,2), t \in(0,1) \tag{1}\\
\left.I^{\gamma} u(t)\right|_{t=0}=0, \gamma \in(0,1], & u(1)=k u(\eta), \eta \in(0,1) \tag{2}
\end{align*}
$$

[^0]The maximal and minimal solutions of the problem (1)-(2) is studied when the function f is nondecreasing in the second argument.

2. PRELIMINARIES

Let $C(I)$ denotes the class of continuous functions and $L^{1}(I)$ denotes the class of Lebesgue integrable functions on the interval $I=[a, b]$, where $0 \leq a<b<\infty$ and let $\Gamma($.$) denotes the gamma function.$
Definition 2.1 The fractional-order integral of the function $f \in L_{1}[a, b]$ of order $\beta>0$ is defined by (see [12])

$$
I_{a}^{\beta} f(t)=\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) d s
$$

Definition 2.2 The Riemann-Liouville fractional-order derivative of f of order $\beta \in(0,1)$ is defined as (see [11] and [12])

$$
D_{a}^{\beta} f(t)=\frac{d}{d t} \int_{a}^{t} \frac{(t-s)^{-\beta}}{\Gamma(1-\beta)} f(s) d s
$$

Definition 2.3 The function $f:[0,1] \times R \rightarrow R$ is called L^{1}-Caratheodory if (i) $t \rightarrow f(t, x)$ is measurable for each $x \in R$,
(ii) $x \rightarrow f(t, x)$ is continuous for almost all $t \in[0,1]$,
(iii) there exists $m \in L^{1}[0,1]$ such that $|f| \leq m$.

3. Existence of solution

Lemma 3.1 The solution of the problem (1)-(2) can be represent by the integral equation

$$
\begin{gather*}
u(t)=\frac{A t^{\beta-1}}{\Gamma(\beta)}\left\{\int_{0}^{1}(1-s)^{\beta-1} f(s, u(s)) d s-k \int_{0}^{\eta}(\eta-s)^{\beta-1} f(s, u(s)) d s\right\} \\
-\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \tag{3}
\end{gather*}
$$

where $A=\left(1-k \eta^{\beta-1}\right)^{-1}$.
proof. See [5].
Now we can write (see [3] lemma 2.4) equation (3) in the formula

$$
\begin{equation*}
u(t)=\int_{0}^{1} G(t, s) f(t, u(s)) d s \tag{4}
\end{equation*}
$$

where
$G(t, s)=\left\{\begin{array}{c}\frac{-\left(1-k \eta^{\beta-1}\right)(t-s)^{\beta-1}+t^{\beta-1}(1-s)^{\beta-1}-k t^{\beta-1}(\eta-s)^{\beta-1}}{\left(1-k \eta^{\beta-1}\right) \Gamma(\beta)}, 0 \leq s \leq t \leq 1, s \leq \eta, \\ \frac{t^{\beta-1}(1-s)^{\beta-1}-\left(1-k \eta^{\beta-1}\right)(t-s)^{\beta-1}}{\left(1-k \eta^{\beta-1}\right) \Gamma(\beta)}, 0 \leq \eta \leq s \leq t \leq 1, \\ \frac{t^{\beta-1}(1-s)^{\beta-1}-k t^{\beta-1}(\eta-s)^{\beta-1}}{\left(1-k \eta^{\beta-1}\right) \Gamma(\beta)}, 0 \leq t \leq s \leq \eta<1, \\ \frac{t^{\beta-1}(1-s)^{\beta-1}}{\left(1-k \eta^{\beta-1}\right) \Gamma(\beta)}, 0 \leq t \leq s \leq 1, \eta \leq s .\end{array}\right.$
Lemma 3.2 The function $G(t, s)$ satisfies $G(t, s)>0$, for $t, s \in(0,1)$.

Proof. See [3] lemma 2.4.
Definition 3.1 The function u is called a solution of the fractional-order functional integral equation (3), if $u \in C[0,1]$ and satisfies (3).

For the existence of the solution we have the following theorem.
Theorem 3.1 Assume that the the function f is L_{1}-Carathèodory. Then the nonlocal boundary value problem (1)-(2) has at least one positive continuous solution $u \in C[0,1]$.
Proof. Define a subset $Q_{r}^{+} \subset C[0,1]$ by
$Q_{r}^{+}=\{u(t)>0$, for each $t \in[0,1],\|u\| \leq r\}$, where $r=\frac{(1+A+k A)\|m\|_{L_{1}}}{\Gamma(\beta)}$. The set Q_{r}^{+}is nonempty, closed and convex.

Let $T: Q_{r}^{+} \rightarrow Q_{r}^{+}$be an operator defined by

$$
\begin{gathered}
T u(t)=A t^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A t^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
-\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s
\end{gathered}
$$

For $u \in Q_{r}^{+}$, it is clear that T is continuous operator, i.e let $\left\{u_{n}(t)\right\}$ be a sequence in Q_{r}^{+}converges to $u(t), u_{n}(t) \rightarrow u(t), \forall t \in[0,1]$, then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} T u_{n}(t)=A t^{\beta-1} \lim _{n \rightarrow \infty} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f\left(s, u_{n}(s)\right) d s \\
-k A t^{\beta-1} \lim _{n \rightarrow \infty} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f\left(s, u_{n}(s)\right) d s-\lim _{n \rightarrow \infty} \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f\left(s, u_{n}(s)\right) d s
\end{gathered}
$$

by assumptions (i) - (ii) and the Lebesgue dominated convergence Theorem we deduce that

$$
\lim _{n \rightarrow \infty}\left(T u_{n}\right)(t)=(T u)(t)
$$

Then T is continuous. Now, let $u \in Q_{r}^{+}$, then

$$
\begin{gathered}
(T u)(t) \leq A t^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s+k A t^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
\quad+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
\leq A \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s+k A \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
\quad+\int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
\leq(1+A+k A) \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
\leq \frac{(1+A+k A)}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1} m(s) d s \\
\leq \frac{(1+A+k A)}{\Gamma(\beta)} \int_{0}^{1} m(s) d s
\end{gathered}
$$

$$
\leq \frac{(1+A+k A)\|m\|_{L_{1}}}{\Gamma(\beta)}=r
$$

Then $\{T u(t)\}$ is uniformly bounded in Q_{r}^{+}.
In what follows we show that T is a completely continuous operator.
For $t_{1}, t_{2} \in(0,1), t_{1}<t_{2}$ such that $\left|t_{2}-t_{1}\right|<\delta$ we have

$$
\begin{aligned}
& \left|T u\left(t_{2}\right)-T u\left(t_{1}\right)\right|=\left\lvert\, A t_{2}^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A t_{2}^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s\right. \\
& -\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& -A t_{1}^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s+k A t_{1}^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& +\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& \left.\left.\leq \left\lvert\, \int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\beta-1}}{\Gamma(\beta)} f(s, u(s))\right.\right) d s-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\beta-1}}{\Gamma(\beta)} f(s, u(s))\right) d s \mid \\
& +A\left|t_{2}^{\beta-1}-t_{1}^{\beta}\right| \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)}|f(s, u(s))| d s \\
& +\quad k A\left|t_{2}^{\beta-1}-t_{1}^{\beta-1}\right| \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& \left.\leq \left\lvert\, \int_{0}^{t_{1}}\left(\frac{\left(t_{2}-s\right)^{\beta-1}}{\Gamma(\beta)}-\frac{\left(t_{1}-s\right)^{\beta-1}}{\Gamma(\beta)}\right) f(s, u(s))\right.\right) d s \\
& \left.+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{\beta-1}}{\Gamma(\beta)} f(s, u(s))\right) d s \mid \\
& +A\left|t_{2}^{\beta-1}-t_{1}^{\beta-1}\right| \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)}|f(s, u(s))| d s \\
& +\quad k A\left|t_{2}^{\beta-1}-t_{1}^{\beta-1}\right| \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)}|f(s, u(s))| d s \\
& \leq \frac{1}{\Gamma(\beta)} \int_{0}^{t_{1}}\left(\left(t_{2}-s\right)^{\beta-1}-\left(t_{1}-s\right)^{\beta-1}\right) m(s) d s \\
& +\frac{1}{\Gamma(\beta)} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\beta-1} m(s) d s \\
& +\frac{A}{\Gamma(\beta)}\left|t_{2}^{\beta-1}-t_{1}^{\beta-1}\right| \int_{0}^{1}(1-s)^{\beta-1} m(s) d s \\
& +\frac{k A}{\Gamma(\beta)}\left|t_{2}^{\beta-1}-t_{1}^{\beta-1}\right| \int_{0}^{\eta}(\eta-s)^{\beta-1} m(s) d s .
\end{aligned}
$$

Hence the class of functions $\{T u(t)\}$ is equi-continuous. By Arzela-Ascolis Theorem $\{T u(t)\}$ is relatively compact. Since all conditions of Schauder Theorem are hold, then T has a fixed point in Q_{r}^{+}.
Therefor the integral equation (3) has at least one positive continuous solution $u \in C(0,1)$.
Now,
$\lim _{t \rightarrow 0} u(t)=A \lim _{t \rightarrow 0} t^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \lim _{t \rightarrow 0} t^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s$

$$
\left.-\lim _{t \rightarrow 0} \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s))\right) d s=u(0)=0
$$

and
$\lim _{t \rightarrow 1} u(t)=A \lim _{t \rightarrow 1} t^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \lim _{t \rightarrow 1} t^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s$

$$
\left.-\lim _{t \rightarrow 1} \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s))\right) d s=u(1)
$$

Then the integral equation (3) has at least one positive continuous solution $u \in$ $C[0,1]$.
To complete the proof operating on both sides of equation (3) by $I^{2-\beta}$, we get
$I^{2-\beta} u(t)=\frac{A t}{\Gamma(\beta)}\left\{\int_{0}^{1}(1-s)^{\beta-1} f(s, u(s)) d s-k \int_{0}^{\eta}(\eta-s)^{\beta-1} f(s, u(s)) d s\right\}-I^{2} f(t, u(t))$

Differentiating the above relation twice we obtain the differential equation (1).
Operating on both sides of equation (3) by I^{γ}, we obtain

$$
\begin{gathered}
I^{\gamma} u(t)=A t^{\gamma+\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\gamma+\beta)} f(s, u(s)) d s-k A t^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\gamma+\beta)} f(s, u(s)) d s \\
-\int_{0}^{t} \frac{(t-s)^{\gamma+\beta-1}}{\Gamma(\gamma+\beta)} f(s, u(s)) d s
\end{gathered}
$$

and let $t=0$, we get

$$
\left.I^{\gamma} u(t)\right|_{t=0}=0
$$

Let $t=1$ in equation (3), we get

$$
\begin{aligned}
u(1) & =A \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& -\int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s . \\
& =(A-1) \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& =\left(\frac{1}{1-k \eta^{\beta-1}}-1\right) \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& =\left(\frac{k \eta^{\beta-1}}{1-k \eta^{\beta-1}}\right) \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s \\
& =k\left\{A \eta^{\beta-1} \int_{0}^{1} \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s-k A \eta^{\beta-1} \int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s\right. \\
& \left.-\int_{0}^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} f(s, u(s)) d s\right\}=k u(\eta) .
\end{aligned}
$$

The proof is complete.

4. Maximal and minimal solutions

Here we study the existence of the maximal and minimal solutions of the fractionalorder integral equation (3).

Definition 4.1 Let n be a solution of the integral equation (3) in $[0,1]$, then n is said to be a maximal solution of (3) if, for every solution u of (3) existing on $[0,1]$, the inequality $u(t) \leq n(t), t \in[0,1]$, holds.
A minimal solution may be define similarly by reversing the last inequality.
From Theorem 3.1 we get that the integral equation (3) has a positive solution $u \in C[0,1]$.

Based on this criterion we can prove the following theorem.
Theorem 4.1 let f be a monotonic nondecreasing function in u. If the assumptions of Theorem 3.1 are satisfied, then there exist maximal and minimal solutions of the integral equation (3) on $[0,1]$.
Proof. Consider the fractional-order integral equation

$$
\begin{equation*}
u_{\epsilon}(t)=\epsilon+\int_{0}^{1} G(t, s) f(s, u(s)) d s, \epsilon>0 \tag{5}
\end{equation*}
$$

In the view of Theorem 3.1, it is clear that equation (5) has at least one positive solution $u(t) \in C[0,1]$. Now, let ϵ_{1} and ϵ_{2} be such that $0<\epsilon_{2}<\epsilon_{1} \leq \epsilon$. Then, we have $u_{\epsilon_{2}}(0)<u_{\epsilon_{1}}(0)$ (from (3)-(5), we have $u_{\epsilon_{2}}(0)=\epsilon_{2}<\epsilon_{1}=u_{\epsilon_{1}}(0)$). We can prove

$$
\begin{equation*}
u_{\epsilon_{2}}(t)<u_{\epsilon_{1}}(t) \text { for all } t \in[0,1] . \tag{6}
\end{equation*}
$$

To prove conclusion (6), we assume that it is false, then there exist a t_{1} such that

$$
u_{\epsilon_{2}}\left(t_{1}\right)=u_{\epsilon_{1}}\left(t_{1}\right) \text { and } u_{\epsilon_{2}}(t)<u_{\epsilon_{1}}(t) \text { for all } t \in\left[0, t_{1}\right)
$$

Since f is monotonic nondecreasing in u, it follows that $f\left(t, u_{\epsilon_{2}}(t)\right) \leq f\left(t, u_{\epsilon_{1}}(t)\right)$ and consequently, using equation (5), we obtain

$$
\begin{aligned}
u_{\epsilon_{2}}\left(t_{1}\right) & =\epsilon_{2}+\int_{0}^{1} G\left(t_{1}, s\right) f\left(s, u_{\epsilon_{2}}(s)\right) d s \\
& <\epsilon_{1}+\int_{0}^{1} G\left(t_{1}, s\right) f\left(s, u_{\epsilon_{1}}(s)\right) d s \\
& =u_{\epsilon_{1}}\left(t_{1}\right) .
\end{aligned}
$$

Which contradict the fact that $u_{\epsilon_{2}}\left(t_{1}\right)=u_{\epsilon_{1}}\left(t_{1}\right)$. Hence the inequality (6) is true. From the hypothesis, it follows as in the proof of Theorem 3.1 that the family of functions $\left\{u_{\epsilon}\right\}$ is relatively compact on $[0,1]$, hence, we can extract a uniformly convergent subsequence $\left\{u_{\epsilon p}\right\}$, that is, there exists a decreasing sequence $\left\{\epsilon_{p}\right\}$ such that $\epsilon_{p} \rightarrow 0$ as $p \rightarrow \infty$ and $\lim _{p \rightarrow \infty} u_{\epsilon p}(t)$ exists uniformly in $t \in[0,1]$, we denote this limiting value by $n(t)$.
Obviously, the uniform continuity of f and the equation

$$
u_{\epsilon_{p}}(t)=\epsilon_{p}+\int_{0}^{1} G(t, s) f\left(s, u_{\epsilon_{p}}(s)\right) d s, t \in[0,1]
$$

yields n is a solution of equation (3). Finally, we show that the solution n is the maximal solution of equation (3). To achieve this goal, let u be any solution of (3) existing on the interval $[0,1]$. Then

$$
u(t)<\epsilon+\int_{0}^{1} G(t, s) f(s, u(s)) d s=u_{\epsilon}(t), t \in[0,1]
$$

Since the maximal solution is unique (see [8] and [14]), it is clear that $u_{\epsilon}(t)$ tends to $n(t)$ uniformly in $t \in[0,1]$ as $\epsilon \rightarrow 0$. Which proves the existence of maximal solution to the integral equation (3). A similar argument holds for the minimal solution.

References

[1] Ahmad, B. and Sivasundaram, S. Theory of fractional differential equations with three-point boundary conditions, Communications in Applied Analysis 12 (2008), No. 4, 479484.
[2] Ahmad, B. , Ntouyas, S. K. and Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Advances in Difference Equations 12 (2008), no. 4, 479484.
[3] Bai, Z. On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Analysis 72 (2010) 916-924.
[4] Benchohra,M. and Ntouyas, S. K. Multi-point boundary value problems for lower semicontinuous differential Inclusions, Mathematical Notes, Miskolc, Vol. 3., No. 2., (2002), pp. 9199.
[5] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. Nonlocal boundary value problem of a fractional-order functinal differential equation, Inter. J. of Non. Sci. Vol.7(2009) No. 4 pp. 436-442.
[6] Han, X. Positive solutions for a three-point boundary value problem at resonance, J. Math. Anal. Appl. 336 (2007) 556568.
[7] He, X. and Ge, W. Triple Solutions for Second-Order Three-Point Boundary Value Problems, J. Math. Anal. Appl. 268, 256265 (2002).
[8] Lakshmikantham, V. and Leela, S. Differential and Integral Inequalities, Vol. 1, Academic press, New York-London (1969).
[9] Liu, B. and Liu, L., Wu, Y. Positive solutions for singular second order three-point boundary value problems, Nonlinear Analysis 66 (2007) 27562766.
[10] MA, R. Positive solutions of a nonlinear three-point boundary value problem, EJDE, No. 34 (1999).).
[11] Podlubny, I. and EL-Sayed, A. M. A. On two definitions of fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).
[12] Podlubny, I. Fractional Differential Equations, Acad. press, San Diego-New York-London (1999).
[13] Raffoul, Y. N. Positive solutions of three-point nonlinear second order boundary value problem, EJQTDE, No. 15 (2002).
[14] Rao, M. R. Ordinary Differential Equations, East-West press (1980).
[15] Sun, Y. P. Nontrivial solution for a three-point boundary-value problem, EJDE, No. 111 (2004).

Acknowledgement. The authors wishes to thank Prof. Sotiris Ntouyas for his comments and help.

Ahmed M. A. El-Sayed
Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail address: amasayed5@yahoo.com, amasayed@hotmail.com
Ebtesam O. Bin-Taher
faculty of Science, Hadhramout University of Sci. and Tech., Hadhramout, Yemen
E-mail address: ebtsamsam@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 34K37; 34B18; 26A33.
 Key words and phrases. Fractional differential equation, positive solution, Green's function, maximal and minimal solutions.

 Submitted Mar. 3, 2011. Published Aug. 10, 2011.

