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EXISTENCE OF POSITIVE CONTINUOUS SOLUTION OF A

QUADRATIC INTEGRAL EQUATION OF FRACTIONAL

ORDERS

A. M. A. EL-SAYED, M. SH. MOHAMED, F. F. S. MOHAMED

Abstract. We are concerned here with the existence of at least one positive
continuous solution of the quadratic integral equation of fractional orders

x(t) = a(t) + Iαf(t, x(t)) · Iβg(t, x(t)), α, β ∈ (0, 1].

The maximal and minimal solutions are also proved. Some applications are
given.

1. Introduction

Quadratic integral equations (QIEs) are often applicable in the theory of radia-
tive transfer, kinetic theory of gases, in the theory of neutron transport and in the
traffic theory. The quadratic integral equations can be very often encountered in
many applications.
The quadratic integral equations have been studied in several papers and mono-
graphs (see for examples [1]-[8] and [10]-[18]).

The quadratic integral equation

x(t) = a(t) +

∫ t

0

f(s, x(s)) ds ·
∫ t

0

g(s, x(s)) ds, t ∈ [0, T ] (1)

has been studied in [12]. The authors proved that it has at least one continuous
solution, also they proved the existence of the maximal and minimal solutions.

Let α, β ∈ (0, 1]. Here we are concerned with the quadratic integral equation
of fractional orders

x(t) = a(t) + Iαf(t, x(t)) · Iβg(t, x(t)), t ∈ [0, T ]. (2)

We prove the existence of positive continuous solution of (2).
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The proof of the main result will be based on the following fixed-point theorem.
Theorem 1.1 Tychonov fixed-point Theorem [9]
Suppose B is a complete, locally convex linear space and S is a closed convex
subset of B. Let the mapping T : B → B be continuous and T (S) ⊂ S. If the
closure of T (S) is compact, then T has a fixed point in S.

Let I = [0, T ], L1 = L1[0, T ] be the space of all Lebesgue integrable functions on
I.

Now, the definition of the fractional-order integral operator is given by.
Definition 1.1 Let β be a positive real number, the fractional-order integral of
order β of the function f is defined on the interval [a, b] by (see [19] and [20])

Iβa f(t) =

∫ t

a

(t− s)β−1

Γ(β)
f(s) ds,

and when a = 0, we have Iβf(t) = Iβ0 f(t).

For further properties of fractional-order integral operator see [19]-[20] for example.

2. Main results

Consider the quadratic integral equation (2), under the following assumptions

(i) a(t) : I = [0, T ] → R+ is continuous;
(ii) f, g : I × R+ → R+ satisfy Carathèodory condition (i.e. measurable

in t for all x ∈ R+ and continuous in x for almost all t ∈ [0, T ] )
and there exist two functions m1, m2 ∈ L1 such that

f(t, x) ≤ m1(t), g(t, x) ≤ m2(t) ∀ (t, x) ∈ I ×R+.

Now, we have the following theorem.
Theorem 2.1 Let the assumptions (i) and (ii) are satisfied, then the quadratic
integral equation (2) has at least one positive solution x ∈ C(I).
Proof. Let C = C(I) be the space of all continuous functions on [0, T ]. It can
be verified that C(I) is a complete locally convex linear space [9].
Define subset S of C(I) by

S = { x ∈ C : 0 < x(t) ≤ r }, t ∈ I.

Let γi < Max {α, β}, i = 1, 2. Then we can write

x(t) = a(t) + Iα−γ1Iγ1 f(t, x(t)) · Iβ−γ2Iγ2 g(t, x(t))

and
| x(t) | ≤ a(t) + Iα−γ1 | Iγ1 f(t, x(t))| · Iβ−γ2 | Iγ2 g(t, x(t)) |.

Let Mi = max {Iγimi(t) : t ∈ [0, T ], γi < α }, i = 1, 2 .

Then from assumptions (i) and (ii) we can get

| x(t) | ≤ a(t) + Iα−γ1 | Iγ1 m1(t)| · Iβ−γ2 | Iγ2 m2(t) |

≤ K +M1

∫ t

0

(t− s)α−γ1−1

Γ(α− γ1)
ds ·M2

∫ t

0

(t− s)β−γ2−1

Γ(β − γ2)
ds

≤ K +
M1T

α−γ1

Γ(α− γ1 + 1)
· M2T

β−γ2

Γ(β − γ2 + 1)
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where K = sup
t∈I

a(t) .

From the last estimate we deduce that r = K + M1T
α−γ1

Γ(α−γ1+1) ·
M2T

β−γ2

Γ(β−γ2+1) . It is clear

that the set S is closed and convex.
Define the operator H : S → C(I) by

Hx(t) = a(t) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds ·

∫ t

0

(t− s)β−1

Γ(β)
g(s, x(s)) ds. (3)

Assumption (ii) implies that H is a continuous operator in x. We shall prove
that HS ⊂ S.
For every x ∈ S we have

| Hx(t) | ≤ | a(t) |+ Iα−γ1 | Iγ1 f(t, x(t))| · Iβ−γ2 | Iγ2 g(t, x(t)) |,

and

| Hx(t) | ≤ K +
M1T

α−γ1

Γ(α− γ1 + 1)
· M2T

β−γ2

Γ(β − γ2 + 1)
.

Then, Hx ∈ S and hence HS ⊂ S.

Now for t1 and t2 ∈ [0, T ] (without loss of generality assume that t1 < t2 ),
we have

Hx(t2)−Hx(t1) = a(t2)− a(t1)

+

∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, x(s)) ds ·

∫ t2

0

(t2 − s)β−1

Γ(β)
g(s, x(s)) ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, x(s)) ds ·

∫ t1

0

(t1 − s)β−1

Γ(β)
g(s, x(s)) ds

= a(t2)− a(t1)

+

(∫ t1

0

(t2 − s)α−1

Γ(α)
f(s, x(s))ds+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, x(s))ds

)
·

(∫ t1

0

(t2 − s)β−1

Γ(β)
g(s, x(s)) ds +

∫ t2

t1

(t2 − s)β−1

Γ(β)
g(s, x(s)) ds

)
−

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, x(s)) ds ·

∫ t1

0

(t1 − s)β−1

Γ(β)
g(s, x(s)) ds

≤ a(t2)− a(t1) +

∫ t1

0

(t2 − s)α−1

Γ(α)
f(s, x(s)) ds ·

∫ t2

t1

(t2 − s)β−1

Γ(β)
g(s, x(s)) ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, x(s)) ds ·

∫ t1

0

(t2 − s)β−1

Γ(β)
g(s, x(s)) ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, x(s)) ds ·

∫ t2

t1

(t2 − s)β−1

Γ(β)
g(s, x(s)) ds.

Therefore

|Hx(t2)−Hx(t1) | ≤ | a(t2)−a(t1) |+
∫ t1

0

(t2 − s)α−1

Γ(α)
m1(s)ds·

∫ t2

t1

(t2 − s)β−1

Γ(β)
m2(s)ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
m1(s)ds ·

∫ t1

0

(t2 − s)β−1

Γ(β)
m2(s)ds
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+

∫ t2

t1

(t2 − s)α−1

Γ(α)
m1(s)ds ·

∫ t2

t1

(t2 − s)β−1

Γ(β)
m2(s)ds

≤ | a(t2)− a(t1) |+M1 ·M2

[
Tα−γ1 − (t2 − t1)

α−γ1

Γ(α− γ1 + 1)

] [
(t2 − t1)

β−γ2

Γ(β − γ2 + 1)

]
+M1 ·M2

[
(t2 − t1)

α−γ1

Γ(α− γ1 + 1)

] [
T β−γ2 − (t2 − t1)

β−γ2

Γ(β − γ2 + 1)

]
+M1 ·M2

[
(t2 − t1)

α−γ1

Γ(α− γ1 + 1)

] [
(t2 − t1)

β−γ2

Γ(β − γ2 + 1)

]
.

Hence
| t2 − t1 | < δ =⇒ | xn(t2)− xn(t1) | < ε(δ).

This means that the functions of HS are equi-continuous on [0, T ].

Then by the Arzela-Ascoli Theorem [9] the closure of HS is compact .
Since all conditions of the Tychonov Fixed-point Theorem hold, then H has a
fixed point in S. Consequently, the quadratic integral equation (2) has a positive
continuous solution in S.

Letting β, α, γ1 and γ2 → 1, then we have the following corollary ( which is the
same results obtained in [12]).
Corollary 2.1 Let the assumptions (i) and (ii) be satisfied, then the quadratic
integral (1) has at least one continuous solution.

When f = g and α = β we have the following corollary
Corollary 2.2 Let the assumptions (i) and (ii) be satisfied. Then he quadratic
integral equation

x(t) = (Iαf(t, x(t)))2 (4)

has at least one positive continuous solution.

3. Maximal and minimal solutions

Definition 3.1 Let q(t) be a solution of the quadratic integral equation (2).
Then q(t) is said to be a maximal solution of (2) if every solution of it satisfies the
inequality

x(t) < q(t) t ∈ I. (5)

A minimal solution s(t) can be defined by similar way by reversing the above
inequality.
Lemma 3.1 Let f(t, x), g(t, x) ∈ L1 and u(t), v(t) be two continuous functions
on [0, T ] satisfying

u(t) ≤ a(t) + Iαf(t, u(t)) · Iβg(t, u(t))
v(t) ≥ a(t) + Iαf(t, v(t)) · Iβg(t, v(t))

and one of them is strict. If f, g are monotonic nondecreasing in x, then

u(t) < v(t), t > 0 (6)

Proof. Let the conclusion (6) be false, then there exists t1 such that

u(t1) = v(t1), t1 > 0
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and

u(t) < v(t), 0 < t < t1

From the monotonicity of f, g in x, we get

u(t1) ≤ a(t1) + Iαf(t1, u(t1)) · Iβg(t1, u(t1))

= a(t1) +

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, u(s))ds ·

∫ t1

0

(t1 − s)β−1

Γ(β)
g(s, u(s))ds

< a(t1) +

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, v(s))ds ·

∫ t1

0

(t1 − s)β−1

Γ(β)
g(s, v(s))ds < v(t1)

which contradicts the fact that u(t1) = v(t1), then u(t) < v(t).

Now, for the existence of the maximal and minimal solutions we have the fol-
lowing theorem.
Theorem 3.1 Let f(t, x) and g(t, x) satisfy the assumptions (i) and (ii), suppose
that f(t, x) and g(t, x) are monotonic nondecreasing in x for each t ∈ I, then
there exist maximal and minimal solutions for the quadratic integral equation (2).
Proof. Firstly, we prove the existence of the maximal solution of (2). Let ϵ > 0
and consider the quadratic integral equation

xϵ(t) = a(t) + Iαfϵ(t, xϵ(t)) · Iβgϵ(t, xϵ(t)) (7)

where

fϵ(t, xϵ(t)) = f(t, xϵ(t)) + ϵ;

gϵ(t, xϵ(t)) = g(t, xϵ(t)) + ϵ.

Clearly, the functions fϵ(t, xϵ(t)), gϵ(t, xϵ(t)) satisfy Carathèodory condition and

| fϵ(t, xϵ(t)) | ≤ m1(t) + ϵ

| gϵ(t, xϵ(t)) | ≤ m2(t) + ϵ

and

Iγ1m1(t) + Iγ1ϵ ≤ M1 ∀ γ1 < α

Iγ2m2(t) + Iγ2ϵ ≤ M2 ∀ γ2 < β.

Therefore (7) has a continuous solution xϵ(t). Let ϵ1 and ϵ2 be such that 0 < ϵ2 <
ϵ1 < ϵ. Then

xϵ2(t) = a(t) + Iαfϵ2(t, xϵ2(t)) · Iβgϵ2(t, xϵ2(t))

= a(t) + (Iαf(t, xϵ2(t)) + Iαϵ2) · (Iβg(t, xϵ2(t)) + Iβϵ2) (8)

xϵ1(t) = a(t) + Iαfϵ1(t, xϵ1(t)) · Iβgϵ1(t, xϵ1(t))

= a(t) + (Iαf(t, xϵ1(t)) + Iαϵ1) · (Iβg(t, xϵ1(t)) + Iβϵ1) (9)

xϵ1(t) > a(t) + (Iαf(t, xϵ1(t)) + Iαϵ2) · (Iβg(t, xϵ1(t)) + Iβϵ2)

Applying the above Lemma on (8) and (9), we have xϵ2(t) < xϵ1(t) for t ∈ [0, T ]
as shown before, the family of functions xϵ(t) is equi-continuous and uniformly
bounded.

Hence, by Arzela-Ascoli Theorem, there exists a decreasing sequence {ϵn} such
that ϵn → 0 an n → ∞, and lim

n→∞
xϵn(t) exists uniformly in [0, T ] and denote this

limit by q(t).
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From the continuity of the functions fϵ(t, xϵ) and gϵ(t, xϵ) in the second argument,
we get

fϵn(t, xϵn(t)) → f(t, x(t)) as n → ∞
gϵn(t, xϵn(t)) → g(t, x(t)) as n → ∞

and
q(t) = lim

n→∞
xϵn(t) = a(t) + Iαf(t, q(t)) · Iβg(t, q(t))

yields q(t) is a solution of (7). Finally, we shall show that q(t) is the maximal
solution of (7).
To do this, let x(t) be any solution of (7), then

xϵ(t) = a(t) + (Iαf(t, xϵ(t)) + Iαϵ) · (Iβg(t, xϵ(t)) + Iβϵ)

> a(t) + Iαf(t, xϵ(t)) · Iβg(t, xϵ(t))

and
x(t) = a(t) + Iαf(t, x(t)) · Iβg(t, x(t)).

Applying the above Lemma, then we have xϵ(t) > x(t) for t ∈ [0, T ]. From the
uniqueness of the maximal solution, it is clear that xϵ(t) tends to q(t) uniformly in
t ∈ [0, T ] as ϵ → 0. By a similar way as done above, we set

fϵ(t, xϵ(t)) = f(t, xϵ(t))− ϵ

gϵ(t, xϵ(t)) = g(t, xϵ(t))− ϵ

and prove the existence of minimal solution.

4. Fractional order differential equation

Fractional differential equations arise in many engineering and scientific dis-
ciplines as the mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer
rheology, etc. involves derivatives of fractional order.
Fractional differential equations also serve as an excellent tool for the description of
hereditary properties of various materials and processes. In consequence, the sub-
ject of fractional differential equations is gaining much importance and attention.

For the fractional-order differential equation

∗D
α
√
x(t) = f(t, x(t)), t > 0 (10)

with the initial condition
I1−α

√
x(t)|t=0 = 0 (11)

we can prove the following corollaries.
Corollary 4.1 The initial value problem (10) and (11) is equivalent to the qua-
dratic integral equation

x(t) = (Iαf(t, x(t)))2 (12)

Corollary 4.2 The initial value problem (10) and (11) has at least one solution
x ∈ C(I).

Corollary 4.2 If f(t, x) is monotonic nondecreasing in x for each t ∈ [0, T ],
then there exist maximal solution and minimal solutions of the problem (10) and
(11).
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