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A RELIABLE TREATMENT OF HOMOTOPY PERTURBATION
METHOD FOR THE SINE-GORDON EQUATION OF

ARBITRARY (FRACTIONAL) ORDER

A. ELSAID, D. HAMMAD

Abstract. In this paper, the reliable treatment of homotopy perturbation
method (HPM) [19] is applied to obtain the solution of the sine-Gordon partial
di¤erential equation of arbitrary (fractional) order. The advantage of this
algorithm is its ability to provide the analytical or approximate solutions to
nonlinear equations with the capability to overcome the di¢ culty that arises
in calculating complicated integrals. The numerical results are presented to
show the e¢ ciency of this method.

1. Introduction

The sine-Gordon equation which �rst appeared in the study of the di¤erential
geometry of surfaces with Gaussian curvature K = �1 found wide applications
in the propagation of �uxons in Josephson junctions between two superconductors
[1], the motion of a rigid pendulum attached to a stretched wire [2], solid state
physics, nonlinear optics, stability of �uid motions, dislocations in crystals [2] and
other scienti�c �elds. Due to its wide applications and important mathematical
properties, a great deal of e¤ort has been devoted to studying the di¤erent solutions
and physical phenomena related to this equation [3]-[11].
In 1998, J. H. He proposed the homotopy perturbation method (HPM) for ad-

dressing nonlinear problems in [13] and [14]. This method has been the subject of
extensive studies, and applied to di¤erent linear and nonlinear problems in [14]-
[20]. The advantage of this method is solving nonlinear equations without invoking
unrealistic assumptions, discretization or linearization. The HPM has the advan-
tage of dealing directly with the problem without transformations, linearization,
discretizations or any unrealistic assumption. The method yields a rapidly conver-
gent series solution, and usually a few iterations lead to accurate approximation of
the exact solution [18] and [21].
Recently, Momani and Odibat suggested a reliable algorithm for the HPM for

dealing with nonlinear terms [19]. The advantage of this algorithm is its ability to
provide the analytical or approximate solutions to nonlinear equations and overcome
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the di¢ culty that arising in calculating complicated integrals. Our aim here, is to
apply the reliable treatment of HPM to obtain the solution of the initial value
problem of the sine-Gordon equation of fractional order

D�
t u(x; t) = auxx(x; t) + b sin (�u (x; t)) ; x 2 R; t > 0; � 2 (1; 2] ; (1)

subjected to the initial conditions

u(k)(x; 0) = gk(x); x 2 R; k = 0; 1: (2)

The article begins by presenting some basic de�nitions of fractional derivatives in
section two. The HPM and the reliable treatment of HPM are introduced in section
three. In section four, some case studies of the nonlinear sine-Gordon equations of
arbitrary (fractional) orders are presented to illustrate the validity of this approach
and to show the e¤ects of fractional order parameters involved on solution accuracy
and behavior.

2. Basic definitions

De�nition 1. A real function f(t), t > 0, is said to be in the space C�, � 2 R, if
there exists a real number p > �, such that f(t) = tpf1(t), where f1(t) 2 C(0;1),
and it is said to be in the space Cm� if f (m) 2 C�; m 2 N:

De�nition 2. The Riemann-Liouville fractional integral operator of order � � 0
of a function f(t) 2 C�; � � �1 is de�ned as [22]8>><>>: J�f(t) = 1

�(�)

tZ
0

(t� �)��1f(�)d� ; � > 0; t > 0;

J0f(t) = f(t):

(3)

The operator J� satisfy the following properties. For f 2 C�, � � �1; �; � � 0
and  > �1:

1: J�J�f(t) = J�+�f(t);
2: J�J�f(t) = J�J�f(t);

3: J�t = �(+1)
�(+�+1) t

�+ :

De�nition 3. The fractional derivative in Caputo sense of f(t) 2 Cm�1; m 2 N;
t > 0 is de�ned as

CD�
t f(t) =

�
Jm�� dm

dtm f(t); m� 1 < � < m;
dm

dtm f(t); � = m:
(4)

The operator CD� satisfy the following properties. For f 2 Cm� , � � �1, ; � � 0:

1: CD�
t [J

�f(t)] = f(t);

2: J� [ CD�
t f(t)] = f(t)�

m�1X
k=0

f (k)(0) t
k

k! ; t > 0;

3: CD�
t t
 = �(+1)

�(��+1) t
�� :
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3. The homotopy perturbation method (HPM)

Consider the following equation

A (u (x; t))� f(r) = 0; r 2 
; (5)

with boundary conditions

B(u; @u=@n) = 0; r 2 �; (6)

where A is a general di¤erential operator, u(x; t) is the unknown function and x and
t denote spatial and temporal independent variables, respectively. B is a boundary
operator, f(r) is a known analytic function, and � is the boundary of the domain

: The operator A can be generally divided into linear and nonlinear parts, say L
and N . Therefore (5) can be written as

L (u) +N(u)� f(r) = 0: (7)

In [12], He constructed a homotopy v(r; p) : 
� [0; 1]! R which satis�es

H(v; p) = (1� p) [L(v)� L(u0)] + p [L(v) +N(v)� f(r)] = 0; r 2 
; (8)

or

H(v; p) = L(v)� L(u0) + pL(u0) + p[N(v)� f(r)] = 0; r 2 
; (9)

where p 2 [0; 1] is an embedding parameter, u0 is an initial guess of u(x; t) which
satis�es the boundary conditions. Obviously, from (8) and (9) one has

H(v; 0) = L(v)� L(u0); (10)

H(v; 1) = L (u) +N(u)� f(r) = 0: (11)

Changing p from zero to unity is just that change of v(r; p) from u0(r) to u (r) :
Expanding v(r; p) in Taylor series with respect to p, one has

v = v0 + pv1 + p
2v2 + � � � . (12)

Setting p = 1; results in the approximate solution of (5)

u = lim
p!1

v = v0 + v1 + v2 + ::: . (13)

The reliable treatment of the classical HPM suggested by Momani and Odibat [19]
is presented for nonlinear function N(u) which is assumed to be an analytic function
and has the following Taylor series expansion

N(u) =
1X
i=0

aiu
i: (14)

According to [19], the following homotopy is constructed for problem (1)

D�
t u = pauxx + b

1X
i=0

piaiu
i; p 2 [0; 1] . (15)

The basic assumption is that the solution of (15) we can be written as a power
series in p:
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u = u0 + pu1 + p
2u2 + :::: (16)

Substituting (16) into (15) and equating the terms with identical powers of p, we
obtain a series of linear equations in u0; u1; u2; ::: which can be solved by symbolic
computation software such as Mathematica. Finally, we approximate the solution
u(x; t) =

P1
n=0 un(x; t) by the truncated series

�n(x; t) =
n�1X
i=1

ui(x; t): (17)

4. Numerical implementation

In this section, we present some numerical examples to validate the solution
scheme. All the results are calculated using the symbolic software Mathematica.

Example 1. Consider the fractional-order nonlinear sine�Gordon equation�
D�
t u(x; t) = auxx(x; t) + b sin (�u (x; t)) ; x 2 R; t > 0; � 2 (1; 2] ;
u(x; 0) = g1 (x) ; ut(x; 0) = g2 (x) :

(18)

We approximate sin (�u) by two terms of its Taylor series, sin (�u) ' u� u3

3! .
According to the homotopy (15), we obtain the following set of linear partial

di¤erential equations of fractional-order

p0 : D�
t u0 = 0; u(x; 0) = g1 (x) ; ut(x; 0) = g2 (x) ;

p1 : D�
t u1 = aD

�
xu0 + b�u0; u1(x; 0) = 0; u2t(x; 0) = 0;

p2 : D�
t u2 = aD

�
xu1 + b�u1; u2(x; 0) = 0; u2t(x; 0) = 0; (19)

p3 : D�
t u3 = aD

�
xu2 + b�u2 �

b�3

3!
u30; u3(x; 0) = 0; u3t(x; 0) = 0;

...

Solving (19) for u0; u1; u2; � � � ; the �rst few components of the homotopy pertur-
bation solution for (18) are derived as follows

u0(x; t) = g1 (x)+tg2 (x) ;

u1(x; t) =
t�

� (�+ 1)

�
b�g1 (x) + ag

(2)
1 (x)

�
+

t�+1

� (�+ 2)

�
b�g2 (x) + ag

(2)
1 (x)

�
;

u2(x; t) =
t2�

� (2�+ 1)

�
b�
�
b�g1 (x) + ag

(2)
1 (x)

�
+ a

�
b�g

(2)
1 (x) + ag

(4)
1 (x)

��
+

t2�+1

� (2�+ 2)

��
b�g

(2)
2 (x) + ag

(4)
2 (x)

�
+ b�

�
b�g2 (x) + ag

(2)
2 (x)

��
;
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u3(x; t) =
t�

� (�+ 1)

�
�1
6
b�3g31 (x)

�
� t�+1

� (�+ 2)

�
1

2
b�3g21 (x) g2 (x)

�
�

t�+2

� (�+ 3)

�
b�3g1 (x) g

2
2 (x)

�
� t�+3

� (�+ 4)

�
b�3g32 (x)

�
;

t3�

� (3�+ 1)

�
b3�3g1 (x) + 3ab

2�2g
(2)
1 (x) + 3a2b�g

(4)
1 (x) + a3g

(6)
1 (x)

�
+

t3�+1

� (3�+ 2)

�
b3�3g2 (x) + 3ab

2�2g
(2)
2 (x) + 3a2b�g

(4)
2 (x) + a3g

(6)
2 (x)

�
;

...

and the solution is thus obtained as

u(x; t) = u0(x; t) + u1(x; t) + u2(x; t) + ::::

For numerical comparison purpose, we consider (18) with tow di¤erent initial con-
ditions indicated in the following table with �xed values of a = 1; b = �1 and
� = 1:

� 2 (1; 2]
Case g1 (x) g2 (x)
1 0 4 sech (x)
2 � + � cos (�x) 0

Case 1

Substituting the initial conditions, we obtain

u0(x; t) = 4t sech (x) ;

u1(x; t) = t�+1
4 sech (x)

� (�+ 2)

�
tanh2 (x)�

2

sech (x)� 1
�
;

u2(x; t) = t2�+1
4 sech (x)

� (2�+ 2)
(5

4

sech (x) +
�
�1 + tanh2 (x)

�2
�2

2

sech (x)
�
�1 + 9 tanh2 (x)

�
);

Where the exact solution is given by u (x; t) = 4 arctan (sech (x) t) [24]
Figure (1) gives the comparison between the HPM 3rd-order approximate solu-

tion of problem (18) in case1 with � = 1:99; 1:95; 1:90 and 1:85 and the solution
of corresponding problem of integer order, denoted by u2; given in [24] at t = 0:5:

Case 2
Substituting the initial conditions, we obtain
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Figure 1. u(x; 0:5) of case1 for 3rd-order HPM approximation as
parameterized by �:

u0(x; t) = � + � cos (�x) ;

u1(x; t) =
t�

� (�+ 1)

�
�� + �

�
�1� �2

�
cos (�x)

�
u2(x; t) =

t2�

� (2�+ 1)

�
� + �

�
�1� �2

�2
cos (�x)

�
;

u3(x; t) =
t3�
�
�� + �

�
�1� �2

�3
cos (�x)

�
� (3�+ 1)

+
t� (�� + � cos (�x))3

� (�+ 1)
;

...

For numerical comparison purpose, we substitute � = 0:05 and � = 1p
2
as chosen

in [21]. Figure (2) gives the HPM 3rd-order approximate solution of problem (18)
in case2 with � = 1:99; 1:95; 1:90 and 1:85 at t = 0:5 whereas Figure (3) gives the
HPM 3rd-order approximate solution with � = 1:99 which coincides with the �gure
given in [21] for the corresponding integer order problem.

5. Conclusion

The reliable treatment HPM is applied to obtain the solution of the sine-Gordon
partial di¤erential equation of arbitrary (fractional) order. The main advantage of
this algorithm is the capability to overcome the di¢ culty that arising in calculating
complicated integrals. The graphs illustrate the continuation of the solution of
fractional-order sine-Gordon equation to the solution of the corresponding second-
order problem when the fractional order parameters approach their integer limits.
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Figure 2. u(x; 0:5) of case2 for 3rd-order HPM approximation as
parameterized by �:

Figure 3. Solution of case2 for 3rd-order HPM approximation at
� = 1:99:
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