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CRANK-NICOLSON FINITE DIFFERENCE METHOD FOR

SOLVING TIME-FRACTIONAL DIFFUSION EQUATION

N. H. SWEILAM, M. M. KHADER, A. M. S. MAHDY

Abstract. In this paper, we develop the Crank-Nicolson finite difference

method (C-N-FDM) to solve the linear time-fractional diffusion equation, for-
mulated with Caputo’s fractional derivative. Special attention is given to study

the stability of the proposed method which is introduced by means of a recently

proposed procedure akin to the standard Von-Neumann stable analysis. Some
numerical examples are presented and the behavior of the solution is examined

to verify stability of the proposed method. It is found that the C-N-FDM is
applicable, simple and efficient for such problems.

1. Introduction

The fractional-differential equations play a pivotal role in the modeling of number
of physical phenomenon ([1]-[6], [18]). The applications of such equations include,
damping laws, fluid mechanics, viscoelasticity, biology, physics, engineering and
modeling of earth quakes, see ([8]-[11] and the references therein). Time fractional
diffusion equations are used when attempting to describe transport processes with
long memory where the rate of diffusion is inconsistent with the classical Brownian
motion model. Several techniques ([3], [8], [19]-[21]) have been employed to find
appropriate solutions of these equations as per their physical nature. Most of the
used schemes so far encounter some inbuilt deficiencies and moreover are not com-
patible with the true physical nature of these problems. Numerical results reveal
the complete reliability of the proposed algorithms [4]. Consequently, considerable
attention has been given to the solutions of fractional ordinary/partial differential
equations of physical interest. Most fractional differential equations do not have
exact solutions, so approximation and numerical techniques ([7], [13]-[17]) must be
used.

In the following we present some basic definitions for fractional derivatives which
are used in this paper.

Definition 1 The Caputo fractional derivative Dα
t u(x, t), of order α with respect
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to time is defined as [12]:

Dα
t u(x, t) :=

∂αu(x, t)

∂tα
=

{
1

Γ(m−α)

∫ t
0
(t− s)m−α+1 ∂

mu(x,s)
∂sm ds, m− 1 < α < m,

∂mu(x,t)
∂tm , α = m ∈ N,

(1)
where Γ(.) is the Gamma function.

For more details on the fractional derivatives and its properties see ([11], [12]).
Our aim in this paper is to study the C-N-FDM for solving time-fractional dif-

fusion equation of the form:

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
, 0 < α ≤ 1, (2)

on a finite domain 0 < x < 1, 0 ≤ t ≤ T and the parameter α refers to the fractional
order of time derivative.
We also assume an initial condition:

u(x, 0) = f(x), 0 < x < 1, (3)

and the following Dirichlet boundary conditions:

u(0, t) = u(1, t) = 0. (4)

Note that when α = 1, Eq.(2) is the classical heat equation of the following form:

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
.

The plan of the paper is as follows: In section 2, an approximate formula of
the fractional derivative and the numerical procedure for solving time fractional
diffusion equation (2) by means of the Crank-Nicolson finite difference method are
given. In section 3, the stability analysis and the truncation error of the C-N-FDM
scheme are introduced. In section 4, we compare exact analytical solutions with
numerical ones and check the reliability of the analytical stability. Some conclusion
is given in section 5.

2. Discretization for fractional diffusion equation

In this section, we use the first-order approximation method for the computation
of Caputo’s fractional derivative which is given by the expression [3]:

Dα
t u

n
i
∼= σα,k

n∑
j=1

ω
(α)
j (un−j+1

i − un−ji ), (5)

where

σα,k =
1

Γ(1− α)(1− α)kα
and ω

(α)
j = j1−α − (j − 1)1−α. (6)

The formula (5) is derived in [3] for some positive integers N and M , the grid sizes
in space and time for the finite difference algorithm are defined by h = 1

N and

k = T
M , respectively. The grid points in the space interval [0,1] are the numbers

xi = ih, i = 0, 1, 2, ..., N and the grid points in the time interval [0,T] are labeled
tn = nk, n = 0, 1, 2, ....
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Remark 1 The quadrature formula (5) does not provide the values of the time
fractional derivative at t = 0 which are not required by the implicit finite difference
and the Crank-Nicolson method schemes that follows.

Now, Crank-Nicolson method with the discrete formula (5) is used to estimate
the time α-order fractional derivative to solve numerically, the fractional diffusion
equation (2). Using (5) the restriction of the exact solution to the grid points
centered at (xi, tn) = (ih, nk), in Eq.(2), satisfies for i = 1, 2, ..., N − 1 :

σα,k

n∑
j=1

ω
(α)
j (un−j+1

i − un−ji ) +O(k) =

1

2h2
{uni−1 − 2uni + uni+1 + un−1

i−1 − 2un−1
i + un−1

i+1 }+O(h2),

σα,k

n∑
j=1

ω
(α)
j (un−j+1

i −un−ji ) =
1

2h2
{uni−1−2uni +uni+1+un−1

i−1 −2un−1
i +un−1

i+1 }+T (x, t),

(7)
where T (x, t) is the truncation term. Thus, according to Eq.(7) the numerical
method is consistent, first order correct in time and second order correct in space.
The resulting finite difference equations are defined by:

σα,k

n∑
j=1

ω
(α)
j (un−j+1

i − un−ji ) =
1

2h2
{uni−1 − 2uni + uni+1 + un−1

i−1 − 2un−1
i + un−1

i+1 }

or

σα,kω
(α)
1 (uni −un−1

i ) = −σα,k
n∑
j=2

ω
(α)
j (un−j+1

i −un−ji )+
1

2h2
{uni−1−2uni +uni+1+un−1

i−1

−2un−1
i + un−1

i+1 }.

Setting γ = 1
2h2 , recalling from (6) that ω

(α)
1 = 1, and reordering, we finally get for

n = 1,

−γu1
i−1+(σα,k+2γ)u1

i−γu1
i+1 = (σα,k−2γ)u0

i +γ(u0
i+1+u0

i−1), i = 1, 2, ..., N−1,

for n ≥ 2, i = 1, 2, ..., N − 1 we have:

−γuni−1 + (σα,k + 2γ)uni − γuni+1 =

(σα,k − 2γ)un−1
i + γ(un−1

i+1 + un−1
i−1 )− σα,k

n∑
j=2

ω
(α)
j (un−j+1

i − un−ji ),
(8)

with boundary conditions: un0 = unN = 0, n = 1, 2, ..., and initial temperature
distribution: u0

i = fi = f(xi), i = 1, 2, ..., N − 1.
Eq.(8) requires, at each time step, to solve a tridiagonal system of linear equations
where the right-hand side utilizes all the history of the computed solution up to
that time.

Here we will show that the stability of the fractional numerical schemes can be
analyzed very easily and efficiently with a method close to the well-known Von Neu-
mann (or Fourier) method of non-fractional partial differential equations ([15], [20]).
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3. Stability analysis and the truncation error

Theorem 1 The fractional Crank-Nicolson discretization, applied to the time-
fractional diffusion equation (2) and defined by (8) is unconditionally stable for
0 < α < 1.
Proof. To study the stability of the method, we look for a solution of the form
unj = ζne

iωjh, i =
√
−1, ω real. Hence (8) becomes:

−γζneiω(j−1)h + (σα,k + 2γ)ζne
iωjh − γζneiω(j+1)h = (σα,k − 2γ)ζn−1e

iωjh

+ γ(ζn−1e
iω(j+1)h + ζn−1e

iω(j−1)h)− σα,k
n∑
j=2

ω
(α)
j (ζn−j+1e

iωjh − ζn−jeiωjh).

Simplifying and grouping like terms:

(1+
2γ

σα,k
(1−cos(ωh)))ζn = (1− 2γ

σα,k
)ζn−1+

2γζn−1

σα,k
cos(ωh)−

n∑
j=2

ω
(α)
j (ζn−j+1−ζn−j),

this can be reduced to:

ζn =
(1− 2γ

σα,k
)ζn−1 + 2γζn−1

σα,k
cos(ωh)−

∑n
j=2 ω

(α)
j (ζn−j+1 − ζn−j)

(1 + 2γ
σα,k

(1− cos(ωh)))
. (9)

We observe that from Eq.(9), since (1 + 2γ
σα,k

(1− cos(ωh))) ≥ 1 for all α, n, ω, h and

k, it follows that:

ζ1 ≤ ζ0(1− 2γ

σα,k
(1− cos(ωh))), (10)

and

ζn ≤ ζn−1(1− 2γ

σα,k
(1− cos(ωh)))−

n∑
j=2

ω
(α)
j (ζn−j+1 − ζn−j). (11)

Thus, for n = 2, the last inequality implies:

ζ2 ≤ ζ1(1− 2γ

σα,k
(1− cos(ωh))) + ω

(α)
2 (ζ0 − ζ1).

Repeating the process until ζj ≤ ζj−1, j = 1, 2, ..., n− 1, we finally have:

ζn ≤ ζn−1(1− 2γ

σα,k
(1− cos(ωh)))−

n∑
j=2

ω
(α)
j (ζn−j+1 − ζn−j) ≤ ζn−j ,

since each term in the summation is negative. This shows that the inequalities (10)
and (11) imply ζn ≤ ζn−1 ≤ ζn−2 ≤ ... ≤ ζ1 ≤ ζ0.
Thus, ζn = |unj | ≤ ζ0 = |u0

j | = |fj |, which entails ‖unj ‖l2 ≤ ‖fj‖l2 and we have
stability.
Remark 2 For α = 1, the numerical scheme is reduced to the well-known con-
vergent fully C-N algorithm for the heat equation [13]. Also, the proof of stability
(and hence convergence) can be extended to other types of boundary conditions
and more general time fractional diffusion equations in one and higher space di-
mensions.
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The truncation error T (x, t) of the fractional (C-N-FDM) difference scheme is:

T (x, t) = σα,k

n∑
j=1

ω
(α)
j (un−j+1

i − un−ji )− 1

2h2
(uni−1 − 2uni + uni+1 + un−1

i−1 − 2un−1
i + un−1

i+1 )

= σα,k

n∑
j=1

ω
(α)
j

[
(uni + (k − 1)

∂u

∂t
+

(k − 1)2

2

∂2u

∂t2
+ ...)− (uni − k

∂u

∂t
+
k2

2

∂2u

∂t2
+ ...)

]

+O(k)− 1

2h2

[
(uni + h

∂u

∂x
+
h2

2

∂2u

∂x2
+ ...)− 2uni + (uni + h

∂u

∂x
+
h2

2

∂2u

∂x2
+ ...)

]
− 1

2h2

[
(un−1
i + h

∂u

∂x
+
h2

2

∂2u

∂x2
+ ...)− 2un−1

i + (un−1
i − h∂u

∂x
+
h2

2

∂2u

∂x2
+ ...)

]
= O(k) +O(h2).

4. Comparison with numerical results

In this section, we implement the introduced formula (8), to solve numerically
two models of time fractional differential equation (2), with different values of α.
Example 1: In this example, we solve numerically the time-fractional diffusion
equation (2), with the following initial condition:

u(x, 0) = sin(πx), 0 < x < 1, (12)

and with boundary conditions:

u(0, t) = u(1, t) = 0, t ≥ 0. (13)

The exact solution of Eq.(2) is easily found by the method of separation of variables
at α = 1 as follows:

u(x, t) = e−π
2tsin(πx). (14)

The obtained numerical results by using our proposed method are shown in Table
1. This table shows the magnitude of the maximum error at time t = 1 between
the exact solution and the numerical solution at different values of ∆t = k and
∆x = h.

Table 1: Maximum error for the numerical solution using (C-N-FDM) at t = 1.

∆x ∆t Maximum error

0.001 2−3 0.7816 e-05

0.001 2−4 0.2454 e-05

0.002 2−5 0.1969 e-06

0.002 2−6 0.1645 e-06

0.002 2−7 0.1566 e-07

Also, Figures 1 and 2 show the obtained numerical solutions using C-N-FDM with
α = 1, at t = 0.5 and t = 2 respectively. From the obtained numerical results, we
can conclude that the numerical solutions are in excellent agreement with the exact
solution.
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Figure 1: Comparison between the numerical solution and exact solution with α = 1, at

t = 0.5, ∆x = 0.01 and ∆t = 1/2000.

Figure 2: Comparison between the numerical solution and exact solution with α = 1, at

t = 2, ∆x = 0.01 and ∆t = 1/500.

Example 2: In this example, we solve numerically the time-fractional diffusion
equation (2), with the following initial condition: u(x, 0) = x(1 − x) and with
boundary conditions: u(0, t) = u(1, t) = 0.
The obtained numerical results are shown in figures 3 and 4. Figure 3 illustrates
the behavior of numerical solutions at t = 0.5 with α = 0.5, 0.75 and 1 respec-
tively. Also, figure 4 illustrates the behavior of numerical solution at t = 2 with
α = 0.25, 0.5, 0.75 and 1.0 respectively. We observe that the different profile be-
haviors as functions of α for short times, lower fractional-order solutions diffuse
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”faster”, figure 3, but as time increases the subdiffusion phenomena (slow asymp-
totic diffusion) become apparent.

5. Conclusion

In this paper, we have discussed a numerical method for the time-fractional
diffusion equation on a finite slab when the partial time fractional derivative is
interpreted in the sense of Caputo. The stability and the consistent of the method
are proved that the method is unconditionally stable. Some test examples are given
and the results obtained by the method are compared with the exact solutions. The
comparison certifies that C-N-FDM gives good results. Summarizing these results,
we can say that the finite difference method in its general form gives a reasonable
calculations, easy to use and can be applied for the fractional differential equations
in general form. All results obtained by using Matlab. Furthermore, the method
can be trivially extended to dimensional problems, which is not such an easy task
when C-N methods are considered.

Figure 3: The behavior of numerical solution at α = 0.5, 0.75, 1 at t = 0.5, ∆x = 0.025

and ∆t = 1/256.
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Figure 4: The behavior of numerical solution at α = 0.25, 0.5, 0.75, 1 at t = 2,

∆x = 0.025 and ∆t = 1/256.
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