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STUDY ON MULTI-ORDER FRACTIONAL FOKKER-PLANCK

EQUATION BY VARIATIONAL ITERATION METHOD

YANQIN LIU

Abstract. The aim of the present paper is to investigate the application of
the variational iteration method for solving the multi-fractional linear and

nonlinear Fokker-Planck equation and some similar equations. Some exam-
ples including fractional forward Kolmogorov equation, fractional backward
Kolmogorov equation and fractional anisotropic Fokker-Planck equation are

provided to verify the effectiveness of the method.

1. Introduction

In the last past decades, the fractional differential equations appear more and
more frequently in different research areas and engineering applications[1, 2, 3],
such as anomalous transport in disordered systems, some percolations in porous
media, and the diffusion of biological populations. But these nonlinear fractional
differential equation are difficult to get their exact solutions[4, 5, 6]. An effective
method for solving such equations is needed. The variational iteration method first
introduced by He[7, 8]for solving linear or nonlinear partial differential equations.
The method, well addressed(see [9]-[14]), has been employed to solve a large va-
riety of linear and nonlinear problems with approximations converging rapidly to
accurate solutions. The method has many advantages over the classical technique
mainly, it provides an efficient numerical solution with high accuracy and mini-
mal calculations. The Fokker-Planck equation arises in various fields in natural
science, including solid-state physics, quantum optics, chemical physics, theoretical
biology and circuit theory. The Fokker-Planck equation was first used by Fokker
and Planck[15] to investigate the Brownian motion of particles, and was later rig-
orously derived by Kolmogorov. If a small particle of mass m is immersed in
a fluid, the equation of motion for the distribution function w(x, t) is given by
∂w(x, t)/∂t = γ∂w/∂v+ γKT/m∂2w/∂v2, where vis the velocity for the Brownian
motion of a small particle, γ is the fraction constant, K is Boltzmann’s constant and
T is the temperature of the fluid. This is the simplest types of Fokker-Planck equa-
tion. In this paper, we extend the variational iteration method to multi-fractional
Fokker-Planck equation, the time-space fractional forward Kolmogorov equation
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can be expressed as follows

∂αu(x, t)

∂tα
= [−∂βA(x, t)

∂xβ
+

∂2βB(x, t)

∂x2β
]u(x, t), (1)

with the initial condition

u(x, 0) = φ(x), x ∈ R (2)

where u(x, t)is an unkown function, A(x, t) and B(x, t) are called diffusion and
drift coefficients. There also exists another type of this equation which is called
time-space fractional backward Kolmogorov equation as

∂αu(x, t)

∂tα
= [−A(x, t)

∂β

∂xβ
+B(x, t)

∂2β

∂x2β
]u(x, t), (3)

A generalization of Eq.(1) to variables of, x1, x2, · · · , xN , yields to time-space
fractional anisotropic Fokker-Planck equation:

∂αu(x, t)

∂tα
= [−

N∑
i=1

∂βiAi(x, t)

∂xβi

i

+
N∑

i,j=1

∂2rBi,j(x, t)

∂xr
i ∂x

r
j

]u(x, t), (4)

where time fractional derivatives and space fractional derivatives are described in
Caputo sense, when the fractional parameter are all equal to one, the fractional
equation reduces to the classical equations. Tatari et al.[16] obtained an exact
solution of Fokker-Planck equation using the Adomian decomposition method..
Yildirim[17] introduced the solutions of the Fokker-Planck equation by the ho-
motopy perturbation method. Odibat et al[18] studied the numerical solution of
fractional forward Kolmogorov equation by variational iteration method and Ado-
mian decomposition method.

This paper is devoted to study the fractional forward Kolmogorov equation,
fractional backward Kolmogorov equation and fractional anisotropic Fokker-Planck
equation. Our work here stems mainly from variational iteration method, that has
been widely used in applied sciences, which is capable of handing a wider class of
diffusion problems. Numerical solutions of multi-fractional Fokker-Planck equations
shall be presented to demonstrate the effectiveness of the algorithm.

2. Fractional Calculus

There are several approaches to define the fractional calculus, e.g. Riemann-
Liouville, Gruünwald-Letnikow, Caputo, and Generalized Functions approach. Rie
mann-Liouville fractional derivative is mostly used by mathematicians but this ap-
proach is not suitable for real world physical problems since it requires the definition
of fractional order initial conditions, which have no physically meaningful explana-
tion yet, Caputo introduced an alternative definition, which has the advantage of
defining integer order initial conditions for fractional order differential equations.

Definition 1. The Riemann-Liouville fractional integral operator Jα(α ≥ 0) of
a function f(t), is defined as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (α ≥ 0) (5)

where Γ(·) is the well-known gamma function, and some properties of the operator
Jα are as follows

JαJβf(t) = Jα+βf(t), (α ≥ 0, β ≥ 0) (6)



JFCA-2012/2 STUDY ON MULTI-ORDER FRACTIONAL FOKKER-PLANCK 3

Jαtγ =
Γ(1 + γ)

Γ(1 + γ + α)
tα+γ , (γ ≥ −1) (7)

Definition 2. The Caputo fractional derivative Dα of a function f(t) is defined
as

0D
α
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(t)dτ

(t− τ)α+1−n
, (n− 1 < Re(α) ≤ n, n ∈ N) (8)

the following are two basic properties of the Caputo fractional derivative

0D
α
t t

β =
Γ(1 + β)

Γ(1 + β − α)
tβ−α, (9)

(JαDα)f(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, (10)

we have chosen to the Caputo fractional derivative because it allows traditional
initial and boundary conditions to be included in the formulation of the problem.
And some other properties of fractional derivative can be found in [1, 2].

3. Description of the method

The variational iteration method which provides an analytical approximate so-
lution is applied to various nonlinear problems[9-14]. To solve the multi-fractional
Fokker-Planck equation by means of variation iteration method, we take Eq.(1) as
an example, and rewrite Eq.(1) in the form

∂αu(x, t)

∂tα
= [−∂βA(x, t)u(x, t)

∂xβ
+

∂2βB(x, t)u(x, t)

∂x2β
], t > 0, x > 0 (11)

where 0 < α ≤ 1, 0 < β ≤ 1, the correction functional for Eq.(11) can be approxi-
mately expressed as follows:

un+1 = un +

∫ t

0

λ(ξ)(
∂un(x, ξ)

∂ξ
+

∂βA(x, ξ)ũn(x, ξ)

∂xβ
− ∂2βB(x, ξ)ũ(x, ξ)

∂x2β
)dξ, (12)

where λ(ξ) is a general Lagrange multiplier, which can be identified optimally via
variational theory, here ũn(x, ξ) is considered as restricted variations, making the
above functional stationary,

δun+1 = δun + δ

∫ t

0

λ(ξ)(
∂un

∂ξ
+

∂βAũn

∂xβ
− ∂2βBũ

∂x2β
)dξ, (13)

yields the following Lagrange multiplier

λ(ξ) = −1, (14)

therefore, we obtain the following iteration formula:

un+1 = un −
∫ t

0

(
∂un(x, ξ)

∂ξ
+

∂βA(x, ξ)ũn(x, ξ)

∂xβ
− ∂2βB(x, ξ)ũ(x, ξ)

∂x2β
)dξ, (15)

we take initial condition u(x, 0) = φ(x) as the initial approximations u0(x, t), then
the approximations un(x, t),for n ≥ 1, can be completely determined. Finally, we
approximate the solution u(x, t) = limn→∞ un(x, t) by the Nth term uN (x, t).
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4. Approximate solutions of the multi-fractional equations

In order to access the advantages and the accuracy of the variational iteration
method presented in this paper for multi-fractional Fokker-Planck equation, we
have applied it to the following several problems. All the results are calculated by
using the symbolic calculus software Mathematica.

Case 1: In this case, we consider A(x, t, u) = 4u
x − x

3 , B(x, t, u) = u and the
time-space fractional forward Kolmogorov equation as follows:

∂αu(x, t)

∂tα
= [−

∂β( 4ux − x
3 )u

∂xβ
+

∂2βu2

∂x2β
], (16)

subject to the initial condition

u(x, 0) = x2, (17)

according to the formula (15), the iteration formula for Eq.(16) is given by

un+1 = un −
∫ t

0

(
∂un(x, ξ)

∂ξ
+

∂β( 4un

x − x
3 )un

∂xβ
− ∂2βu2

n

∂x2β
)dξ, (18)

by the above variational iteration formula, begin with u0 = x2 we can obtain the
following approximations

u0 = x2, (19)

u1 = x2 − 22tx3−β

Γ(4− β)
+

24tx4−2β

Γ(5− 2β)
, (20)

u2 = x2 − 768t3x7−5βΓ(8− 4β)

Γ(8− 5β)Γ2(5− 2β)
+

192t3x8−6βΓ(9− 4β)

Γ(9− 6β)Γ2(5− 2β)

48tx4−2β

Γ(5− 2β)

− 24t2−αx4−2β

Γ(3− α)Γ(5− 2β)
− 92t2x5−3βΓ(6− 2β)

Γ6− 3β)Γ(5− 2β)
+

24t2x6−4βΓ(7− 2β)

Γ(7− 4β)Γ(5− 2β)

−1936t3x5−3βΓ(6− 2β)

3Γ(6− 3β)Γ2(4− β)
− 44tx3−β

Γ(4− β)
+ +

484t3x6−4βΓ(7− 2β)

3Γ(7− 4β)Γ2(4− β)

+
22t2−αx3−β

Γ(3− β)Γ(4− β)
+

1408t3x6−4βΓ(7− 3β)

Γ(7− 4β)Γ(5− 2β)Γ(4− β)
− 352t3x7−5βΓ(8− 3β)

Γ(8− 5β)Γ(5− 2β)Γ(4− β)

+
253t2x4−2βΓ(5− β)

3Γ(5− 2β)Γ(4− β)
− 22t2x5−3βΓ(6− β)

Γ(6− 3β)Γ(4− β)
(21)

and so on, in the same manner the rest of components of the iteration formula
(18) can be obtained using the Mathematica package. When fractional derivatives
α = 1, β = 1, the exact solution of the Eq.(16) was given in [17] using homotopy
perturbation method. and the approximate solution of Eq.(16) is

u0 = x2,

u1 = x2(1 + t),

u1 = x2(1 + t+
t2

2!
),

...

If the fractional derivative β = 1, the approximate solution of the Eq.(16) is

u0 = x2,

u1 = x2(1 + t),
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u1 = x2(1 + t+
t2

2!
− t2−α

Γ(3− α)
),

...

which was given in [18].
Case 2: In this case, we consider A(x, t, u) = −(x+1), B(x, t, u) = x2et and the

space fractional backward Kolmogorov equation as follows:

∂αu(x, t)

∂tα
=

(x+ 1)∂βu

∂xβ
+

(x2et)∂2βu

∂x2β
, (22)

subject to the initial condition

u(x, 0) = x+ 1, (23)

according to the formula (15), the iteration formula for Eq.(22) is given by

un+1 = un −
∫ t

0

(
∂un(x, ξ)

∂ξ
− (x+ 1)∂βun

∂xβ
− (x2eξ)∂2βun

∂x2β
)dξ, (24)

by the above variational iteration formula, begin with u0 = x+1 we can obtain the
following approximations

u0 = x+ 1, (25)

u1 = 1 + x− 2x3−2β

Γ(2− 2β)
+

2etx3−2β

Γ(2− 2β)
+

tx1−β

Γ(2− β)
+

tx2−β

Γ(2− β)
, (26)

u2 = 1 + x+
6x5−4β

Γ(4− 4β)
− 12etx5−4β

Γ(4− 4β)
+

6etx5−4β

Γ(4− 4β)
− 10x5−4ββ

Γ(4− 4β)
+

20etx5−4ββ

Γ(4− 4β)

−10e2tx5−4ββ

Γ(4− 4β)
+

4x5−4ββ2

Γ(4− 4β)
− 8etx5−4ββ2

Γ(4− 4β)
+

4e2tx5−4ββ2

Γ(4− 4β)
+

x3−3ββ

Γ(2− 3β)
− etx3−3β

Γ(2− 3β)

+
ettx3−3β

Γ(2− 3β)
+

2x4−3ββ

Γ(3− 3β)
− 2etx4−3β

Γ(3− 3β)
+

2ettx4−3β

Γ(3− 3β)
− x4−3ββ

Γ(3− 3β)
+

etx4−3ββ

Γ(3− 3β)

+
tx2−β

Γ(2− β)
−ettx4−3ββ

Γ(3− 3β)
+

t2x1−2β

2Γ(2− 2β)
+

t2x2−2β

2Γ(2− 2β)
− x3−2β

Γ(2− 2β)
+

etx3−2β

Γ(2− 2β)
+

tx1−β

Γ(2− β)

+
2etx3−3βΓ(4− 2β)

Γ(4− 3β)Γ(2− 2β)
− 2x3−3βΓ(4− 2β)

Γ(4− 3β)Γ(2− 2β)
− 2tx3−3βΓ(4− 2β)

Γ(4− 3β)Γ(2− 2β)
− 2x4−3βΓ(4− 2β)

Γ(4− 3β)Γ(2− 2β)

+
2etx4−3βΓ(4− 2β)

Γ(4− 3β)Γ(2− 2β)
− 2tx4−3βΓ(4− 2β)

Γ(4− 3β)Γ(2− 2β)
+
t2x2−2βΓ(3− β)

2Γ(3− 2β)
+
t2x3−2βΓ(3− β)

2Γ(3− 2β)
(27)

and so on, in the same manner the rest of components of the iteration formula (30)
can be obtained using the Mathematica package. When fractional derivatives β = 1,
the exact solution of the Eq.(22) was given in [17] using homotopy perturbation
method. and the approximate solution of Eq.(22) is

u0 = x+ 1,

u1 = (x+ 1)(1 + t),

u2 = (x+ 1)(1 + t+
t2

2!
),

...
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Case 3: We will consider N = 2, A1(x, y) = x,A2(x, y) = 5y,B1,1(x, y) =
x2, B1,2(x, y) = 1, B2,1(x, y) = 1, B2,2(x, y) = y2, and the multi-fractional Fokker-
Planck equation as follows:

∂αu

∂tα
= −∂β(xu)

∂xβ
+

∂2β(x2u)

∂x2β
− ∂γ(5yu)

∂yγ
+

∂2γ(y2u)

∂y2γ
+

∂2m(u)

∂xm∂ym
+

∂2n(u)

∂yn∂xn
(28)

subject to the initial condition

u(x, y, 0) = x, (29)

similar to the formula (3.5), the iteration formula for Eq.(22) is given by

un+1 = un−
∫ t

0

(
∂αu

∂ξα
+
∂β(xu)

∂xβ
−∂2β(x2u)

∂x2β
+
∂γ(5yu)

∂yγ
−∂2γ(y2u)

∂y2γ
− ∂2m(u)

∂xm∂ym
− ∂2n(u)

∂yn∂xn
)dξ,

(30)
by the above variational iteration formula, begin withu0 = x+1, we can obtain the
following approximations

u0 = x, (31)

u1 = x+
6tx3−2β

Γ(4− 2β)
− 2tx2−β

Γ(3− β)
+

2txy2−2γ

Γ(3− 2γ)
− 5ty1−γ

Γ(2− γ)
, (32)

u2 = x+
12tx3−2β

Γ(4− 2β)
− 6t2−αx3−2β

Γ(3− α)Γ(4− 2β)
− t2x4−3βΓ(5− 2β)

Γ(5− 3β)Γ(4− 2β)
+

3t2x5−4βΓ(6− 2β)

Γ(6− 4β)Γ(4− 2β)

− 4tx2−β

Γ(3− β)
+

2t2−αx2−β

Γ(3− α)Γ(3− β)
+

t2x3−2βΓ(4− β)

Γ(4− 2β)Γ(3− β)
− t2x4−3βΓ(5− β)

Γ(5− 3β)Γ(3− β)
+

4txy2−2γ

Γ(3− 2γ)

− 2t2−αxy2−2γ

Γ(3− α)Γ(3− 2γ)
+

12t2x3−2βy2−2γ

Γ(4− 2β)Γ(3− 2γ)
− 4t2x2−βy2−2γ

Γ(3− β)Γ(3− 2γ)
−5t2xy3−3γΓ(4− 2γ)

Γ(4− 3γ)Γ(3− 2γ)

+
t2xy4−4γΓ(5− 2γ)

Γ(5− 4γ)Γ(3− 2γ)
+

t2x1−my2−m−2γ

Γ(2−m)Γ(3−m− 2γ)
+

t2x1−ny2−n−2γ

Γ(2− n)Γ(3− n− 2γ)
−10txy1−γ

Γ(2− γ)

+
5t2−αxy1−γ

Γ(3− α)Γ(2− γ)
− 30t2x3−2βy1−γ

Γ(4− 2β)Γ(2− γ)
+

10t2x2−βy1−γ

Γ(3− β)Γ(2− γ)
+
25t2xy2−2γΓ(3− γ)

Γ(3− 2λ)Γ(2− γ)

− 5t2xy3−3γΓ(4− γ)

2Γ(4− 3γ)Γ(2− λ)
− 5t2x1−my1−m−γ

2Γ(2−m)Γ(2−m− λ)
− 5t2x1−ny1−n−γ

2Γ(2− n)Γ(2− n− γ)
, (33)

and so on, in the same manner the rest of components of the iteration formula (4.15)
can be obtained using the Mathematica package. When fractional derivativesα =
β = γ = m = n = 1, the exact solution of the Eq.(28)u(x, t) = xet was given in [17]
using homotopy perturbation method. and the approximate solution of Eq.(28) is

u0 = x,

u1 = x(1 + t),

u2 = x(1 + t+
t2

2!
),

...

Table 1 shows the approximate solutions for Eq.(28) using the variational iter-
ation method and the exact solution u(x, t) = xet when the value α = β = γ =
m = n = 1 ,it is noted that only the third-order term of the variational iteration
solution was used in evaluating the approximate solutions for Table 1.



JFCA-2012/2 STUDY ON MULTI-ORDER FRACTIONAL FOKKER-PLANCK 7

Table 1. Numerical values and exact solutions when α = β =
γ = m = n = 1 for Eq.(16)

t x numerical value by VIM exact solution absolute error
0.06 0.25 0.2654 0.2654 0.0000

0.50 0.5309 0.5309 0.0000
0.75 0.7963 0.7963 0.0000
1.0 1.0618 1.0618 0.0000

0.2 0.25 0.305 0.3053 0.0003
0.50 0.61 0.6107 0.0007
0.75 0.915 0.9160 0.0010
1.0 1.22 1.2214 0.0014

0.4 0.25 0.37 0.3729 0.0029
0.50 0.74 0.7459 0.0059
0.75 1.11 1.1187 0.0087
1.0 1.48 1.49 0.0118

5. Conclusion

In this paper, approximate solutions for the fractional forward Kolmogorov equa-
tion, fractional backward Kolmogorov equation and fractional anisotropic Fokker-
Planck equation have been obtained, and the variational iteration method was
successfully used to these solutions. The reliability of this method and reduction in
computations give this method a wider applicability. The corresponding solutions
are obtained according to the recurrence relation using Mathematica.
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