MEASURABLE-LIPSCHITZ SELECTIONS AND SET-VALUED INTEGRAL EQUATIONS OF FRACTIONAL ORDER

AHMED M. A. EL-SAYED AND YASSINE KHOUNI

$$
\begin{aligned}
& \text { AbSTRACT. In this paper we study the sufficient conditions for the existence } \\
& \text { of measurable-Lipschitz selection for the set-valued function } F: I \times R \rightarrow R \\
& \text { in the two cases when } F \text { has convex or nonconvex values. } \\
& \text { An application we prove the existence of an integrable solution for the set- } \\
& \text { valued integral equation } \\
& \qquad x(t) \in g(t)+\int_{0}^{t} k(t, s) F(s, x(s)) d s, t \in[0,1]
\end{aligned}
$$

The set-valued integral equation of fractional-order

$$
x(t) \in g(t)+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} F(s, x(s)) d s, t \in[0,1] \text { and } \beta \in(0,1)
$$

will be given as an example.

1. Introduction

The existence of measurable-Lipschitz selection for the set valued map F has been studied by V.V. Chistyakov and A. Nowak in [3], when F is set-valued map from $T \times X$ into Y, where (X is an interval (open, closed, half-closed, bounded or not) on the real line R and (Y, d) be a metric space with metric d). P. Bettiol and H. Frankowska (see [3]) assumed that F is measurable-Lipschitz set-valued map and proved some properties of the set of solutions to the differential inclusion

$$
x^{\prime}(t) \in F(t, x(t)), x(t) \in K
$$

Myelkebir Aitalioubrahim in [1] prove the existence theorem of Boundary value problem of second order (with Neumann Boundary conditions), where F is measurable in the first argument and Lipschitz in the second argument.
Mireille Broucke and Ari Arapostathis in [5] show that given any finite set of trajectories of a Lipschitz differential inclusion (where F is measurable in the first argument and Lipschitz in the second argument) there exists a continuous selection from the set of its solutions that interpolates the given trajectories. In addition, we present a result on lipschitzian selections.

[^0]In the sequel we prove the existence of measurable-Lipschitz selection for the setvalued function $F: I \times R \rightarrow R$ in the two cases when F has convex or nonconvex values.
In section (4) as an application we prove the existence of an integrable solution x for the set-valued integral equation

$$
x(t) \in g(t)+\int_{0}^{t} k(t, s) F(s, x(s)) d s, t \in[0,1]
$$

An example we study the existence of integrable solution x for the following setvalued integral equation of fractional-order

$$
x(t) \in g(t)+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} F(s, x(s)) d s, t \in[0,1] \text { and } \beta \in(0,1)
$$

2. Preliminaries

In this section we establish our notations and we recall some basic definitions and known results used in the proof of our results here.
Let $L^{1}=L^{1}[0,1]$ be the class of equivalent integrable function on the interval $I=[0,1]$ with the usual norm

$$
\|x(t)\|=\int_{0}^{1}|x(s)| d s
$$

$P(Y)$ denoted to the family of nonempty subsets of Y.
$P_{c l}(Y)$ denoted to the family of nonempty closed subsets of Y.
$P_{c l, b d}(Y)$ denoted to the family of nonempty closed, bounded subsets of Y.
Let (X, d) be a metric space and let $A \subseteq X, x \in X$ and $d(x, A)=\inf \{d(a, x) ; a \in$ $A\}$.
Definition 1 For any $A, B \in P_{c l, b d}(X)$, the Hausdorff distance is defined by

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

Definition 2 Let (X, d) and (Y, ρ) be two metric spaces and let $T: X \rightarrow$ $P_{c l}(Y)$ be a multivalued mapping. Then T is called Lipschitz multivalued mapping (c-Lipschitz) if there exists a constant $c>0$ such that for each $x, y \in X$ we have

$$
H(T(x), T(y)) \leq c d(x, y)
$$

where H is the Hausdorff metric.
The constant c is called the Lipschitz constant of T. In particular if $c<1$, then T is called contraction multivalued mapping on X.
Definition 3 Let (T, Σ) be a measurable space and X be a topological space, a multivalued function $F: T \rightarrow X$ is measurable if for each open set O in X the set

$$
F^{-1}(O)=\{t \in T ; F(t) \bigcap O \neq \emptyset\}
$$

is measurable (i.e. $F^{-1}(O) \in \Sigma$).
Definition 4 A Polish space is a separable completely metrizable topological space, and a Suslin space is the image of a Polish space under a continuous mapping.
Remark: An example of Suslin space is a separable completely metrizable topological space.

Theorem (Yankov-Von Neumann selection theorem)
If (Ω, Σ, μ) complete measure space, X is Souslin space and

$$
F: \Omega \rightarrow P(X)
$$

is multifunction, such that

$$
G r(F) \in \Sigma \times \beta(X)
$$

(where $\beta(X)$ denote the Borel σ-field on X). Then F admits a measurable selection.

3. Measurable-Lipschitz selections

In this section we give some various sufficient conditions for the existence of measurable-Lipschitz selection of the set-valued function F in the two cases when F has convex and nonconvex values.
Definition 5 We say that F is measurable-Lipschitz if $F(., x)$ is measurable for all $x \in X$ and $F(t,$.$) is Lipschitz for all t \in I$.

For the compact convex set-valued functions we have the following selection theorem.
Theorem 1 Let $F: I \times R \rightarrow P(R)$ be a nonempty compact convex set-valued function satisfies the following conditions:
(i) $F(., x)$ is measurable in I for every $x \in R$,
(ii) $F(t,$.$) is c$-Lipschitz set-valued function for each fixed $t \in I$,
(iii) $F(t, 0)$ is integrable in the sense that $(\forall a \in F(t, 0)$ implies that a is integrable) and there exists an integrable function m, such that $|F(t, 0)| \leq$ $m(t)$.
Then there exists a selection f of F satisfies the following conditions:
(1) $f(., x)$ is measurable for every $x \in R$,
(2) $f(t,$.$) is c$-Lipschitz function,
(3) $f(t, 0)$ is integrable function.

Proof By Corollary [7. Co. 2] we have $F(t,$.$) has c$-Lipschitz selection $v($.$) .$ Now we define the set of all c-Lipschitz selections of the function $F(t,$.$) by the$ set valued function

$$
G(t)=\{v \in C(R, R): v \text { is Lipschitz selection of } F(t, .)\}
$$

Now we prove that G has a measurable selection.
Let $\alpha: I \rightarrow C(R, R)$ defined by

$$
\alpha(t)=\sup \left\{\frac{H(F(t, x), F(t, y))}{|x-y|}, x, y \in R, x \neq y\right\}
$$

from the definition of α we have α is measurable, because α can be written as

$$
\alpha(t)=\sup \{\varphi(t, x, y), x, y \in R, x \neq y\}
$$

such that $\varphi(t, x, y)=\frac{H(F(t, x), F(t, y))}{|x-y|}$, thus φ is measurable in t and by the continuity of φ in (x, y), we have

$$
\alpha(t)=\sup \{\varphi(t, x, y), x, y \in R \text { and rational }, x \neq y\}
$$

hence α is measurable.
Let $\beta: C(R, R) \rightarrow R \bigcup\{+\infty\}$ defined as follows

$$
\beta(v)=\sup \left\{\frac{|v(x)-v(y)|}{|x-y|}, x, y \in R, x \neq y\right\}
$$

for each $x, y \in R, x \neq y$, we have the function

$$
(v, x, y) \mapsto \frac{\mid(v(x)-v(y) \mid}{|x-y|}
$$

is continuous in (v, x, y). Therefore by the continuity of this function in (x, y), we can write β by

$$
\beta(v)=\sup \left\{\frac{|(v(x)-v(y))|}{|x-y|}, x, y \in R \text { and rational, } x \neq y\right\}
$$

therefore the function

$$
v \mapsto \frac{\mid(v(x)-v(y) \mid}{|x-y|}
$$

is continuous and hence lower semicontinuous.
We define also $\Gamma(t, u)=\sup \{d(u(x), F(t, x)), x \in R\}$,
then the function $(t, u, x) \mapsto d(u(x), F(t, x))$ is measurable in t and continuous in u and x.
Thus, for each fixed $x \in R$ it is $\Sigma \times \beta(C(X, Y))$-measurable.
We have $\Gamma(t, u)=\sup \{d(u(x), F(t, x)), x$ is rational $\}$ by virtue of the continuity in x. Consequently, Γ is product-measurable. Note that for each fixed $t \in I, \Gamma(t,$.$) is lower semicontinuous, being the supremum of continuous func-$ tions $u \mapsto d(u(x), F(t, x)), x \in R$. Now we set $\gamma(t, v)=\sup \{\Gamma(t, v), \beta(v)-\alpha(t)\}$ hence γ is product measurable and lower semicontinuous in v.
We have

$$
\left.\left.G r(G)=\{(t, v) \in I \times C(R, R): \gamma(t, v) \leq 0\}=\gamma^{-1}(]-\infty, 0\right]\right)
$$

hence

$$
G r(G) \in \Sigma \times \beta(C(R, R))
$$

and therefore G satisfies the Yankov-Von Neumann selection theorem, hence there exists a measurable selection g of G.
Now we define $f(t, x)=g(t)(x)$, observe that $f(t, x) \in F(t, x), \forall(t, x) \in I \times R$, first $f(t,$.$) is clearly Lipschitz (f(t,)=.g(t)($.$) is a Lipschitz selection of F(t,)$.$) ,$ let $U_{y} \subseteq R$ be open set, we set

$$
U=\left\{v \in C(R, R), v(x) \in U_{y}\right\} .
$$

We have U is open in $C(R, R)$, so that

$$
\begin{gathered}
(f(., x))^{-1}\left(U_{y}\right)=\left\{t \in I: f(t, x) \in U_{y}\right\}=\left\{t \in I: g(t)(x) \in U_{y}\right\} \\
=\{t \in I: g(t) \in U\}=g^{-1}(U) \in \Sigma
\end{gathered}
$$

Hence $t \mapsto f(t, x)$ is measurable for each fixed $x \in R$.
Now $f(t, 0) \in F(t, 0), \forall t \in I$, then by assumption (iii) $\exists m$ (integrable) such that $f(t, 0) \leq m(t)$, which implies that $f(t, 0)$ is integrable.

For the compact set-valued functions, as a result of [3], we have the following theorem.
Theorem 2 Let $F: I \times R \rightarrow P_{c p}(R)$ be measurable-Lipschitz multifunction.

Then F has a measurable-Lipschitz selection $f: I \times R \rightarrow R$.
Moreover, if there exists an integrable function m, such that $|F(t, 0)| \leq m(t)$, where

$$
|F(t, x)|=\sup \{|v|, v(t) \in F(t, x), t \in I\},
$$

then $f(t, 0)$ is integrable.
Proof (see [3]).
For the set-valued functions with closed valued (not necessarily convex) we have the following selection theorem.
Theorem 3 Let $F: I \times R \rightarrow P_{c l}(R)$ be a set-valued function satisfies the following conditions:
(i) $F(., x)$ is measurable in I for every $x \in R$.
(ii) $F(t,$.$) is c$-Lipschitz set-valued function for each fixed $t \in I$.
(iii) $F(t, 0)$ is integrable in the sense that $(\forall a \in F(t, 0)$ implies that a is integrable) and there exists an integrable function m, such that $|F(t, 0)| \leq$ $m(t)$.
Then there exists a selection f of F satisfies the following conditions:
(1) $f(., x)$ is measurable for every $x \in R$.
(2) $f(t,$.$) is c-$ Lipschitz function.
(3) $f(t, 0)$ is integrable.

Proof By Theorem [8, Th. 2] we have $F(t,$.$) has k$-Lipschitz selection $v($.$) . Now$ we define new set valued function

$$
G(t)=\{v \in C(R, R): v \text { is Lipschitz selection of } F(t, .)\}
$$

Now by the same way as in Theorem 1 we can prove that there exist selection f of F satisfies the conditions (1)-(3)

4. Set-valued integral equation

Consider the integral equation

$$
\begin{equation*}
x(t)=g(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s \tag{1}
\end{equation*}
$$

with the following assumptions
(1) $g: I \rightarrow R$ is integrable on I,
(2) $k(.,$.$) is measurable in the two variable and there exists M>0$ such that such that $\int_{0}^{1}|k(t, s)| d t \leq M, s \in I$.
(3) $f(., x)$ is measurable for each fixed $x \in R$.
(4) $f(t,$.$) is c$-Lipschitz for each fixed $t \in I$.
(5) $f(t, 0)=a(t)$ is integrable.
(6) $M c<1$.

Theorem 4 Assume that the assumptions (1)-(6) are satisfied. Then the integral equation (1) has a unique integrable solution x.
Proof Let us define the operator G by

$$
(G x)(t)=g(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s
$$

then the integral equation (1) can be written as

$$
x(t)=(G x)(t)
$$

From assumption (4) we have

$$
|f(t, x)-f(t, y) \leq c| x-y|\Rightarrow| f(t, x)-f(t, 0)|\leq c| x \mid
$$

which proves that

$$
|f(t, x)| \leq|a(t)|+c|x|
$$

Now, let x be integrable function, then

$$
\|G x\| \leq\|g\|+\int_{0}^{1} \int_{0}^{t}|k(t, s)| f(s, x(s)) \mid d s d t
$$

this implies that

$$
\begin{aligned}
&\|G x\| \leq\|g\|+\int_{0}^{1} \int_{0}^{t}|k(t, s)|[a(s)+c|x(s)|] d s d t \\
&\|G x\| \leq\|g\|+\int_{0}^{1}[a(s)+c|x(s)|] \int_{s}^{1}|k(t, s)| d t d s \\
&\|G x\| \leq\|g\|+M[\|a\|+c\|x\|]
\end{aligned}
$$

which proves that $G: L^{1} \rightarrow L^{1}$.
Now from our assumptions we have

$$
\|G x-G y\| \leq \int_{0}^{1} \int_{0}^{t}|k(t, s)||f(s, x(s))-f(s, y(s))| d s d t
$$

This implies that

$$
\|G x-G y\| \leq c \int_{0}^{1} \int_{0}^{t}|k(t, s)||x(s)-y(s)| d s d t
$$

and

$$
\|G x-G y\| \leq c \int_{0}^{1}|x(s)-y(s)| \int_{s}^{1}|k(t, s)| d t d s
$$

Therefore

$$
\|G x-G y\| \leq c M\|x-y\|
$$

whenever x, y are integrable. Then from Assumption (6) and the Banach Contraction Mapping Principle we deduce that G has unique fixed point x and therefore the integral equation (1) has a unique integrable solution x.

Now we present some existence theorems for the solution to the set-valued integral equation

$$
\begin{equation*}
x(t) \in g(t)+\int_{0}^{t} k(t, s) F(s, x(s)) d s \tag{2}
\end{equation*}
$$

Consider the following assumptions
(1) $g: I \rightarrow R$ is integrable on I,
(2) $k(.,$.$) is measurable in the two variable and there exists M>0$ such that such that $\int_{0}^{1}|k(t, s)| d t \leq M, s \in I$,
(3) F is Caratheodory- c-Lipschitz set-valued function, with compact, convex values,
(4) $F(t, 0)$ is integrable in the sense that $(\forall a \in F(t, 0)$ implies that a is integrable) and there exists an integrable function m, such that $|F(t, 0)| \leq$ $m(t)$,
(5) $M c<1$.

Theorem 5 If the assumptions (1)-(5) are satisfied, then set-valued integral equation (2) admits an integrable solution x.
Proof From Theorem 1 and assumption (3) we deduce that the set-valued function F admits a measurable-Lipschitz selection f and assumption (4) implies that $f(t, 0)$ is integrable. Applying Theorem 4 we deduce that the integral equation (1)

$$
x(t)=g(t)+\int_{0}^{t} k(t, s) f(t, x(s)) d s
$$

has a unique integrable solution x and hence the set-valued integral equation (2) admits an integrable solution in x.
Using Theorems 2 or 3 , the result of Theorem 5 can be obtained if we replace condition (3), in Theorem 5, by one of the following conditions:
(a) F is set-valued function with compact values and satisfies
(1) $F(., x)$ is measurable in $[0,1]$ for every $x \in R$,
(2) $F(t,$.$) is k$-Lipschitz set-valued function for each fixed $t \in I$.
(b) F is set-valued function with closed values and satisfies
(1) $F(., x)$ is measurable in $[0,1]$ for every $x \in R$,
(2) $F(t,$.$) is k$-Lipschitz set-valued function for each fixed $t \in I$.

5. SET-VALUED INTEGRAL EQUATION OF FRACTIONAL-ORDER

Definition 6 The fractional-order integral of the function $f \in L^{1}[a, b]$ of order $\beta>0$ is defined by (see [12])

$$
I_{a}^{\beta} f(t)=\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) d s
$$

Consider now the set-valued integral equation of fractional-order

$$
\begin{equation*}
x(t) \in g(t)+\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} F(s, x(s)) d s, t \in[0,1] \text { and } \beta \in(0,1) \tag{3}
\end{equation*}
$$

Corollary 1 If the assumptions 1 and $3-5$ of Theorem 5 are satisfied, then the set-valued integral equation (3) has an integrable solution x.
Proof Let $k(t, s)=\frac{(t-s)^{\beta-1}}{\Gamma(\beta)}$, then we find that it is measurable in the two variable and

$$
\int_{s}^{1} K(t, s) d t=\int_{s}^{1} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} d t=\left.\frac{(t-s)^{\beta}}{\Gamma(\beta) \beta}\right|_{s} ^{1}=\frac{(1-s)^{\beta}}{\Gamma(\beta+1)}
$$

Therefore

$$
\int_{s}^{1}|k(t, s)| d t=\frac{(1-s)^{\beta}}{\Gamma(\beta+1)} \leq \frac{1}{\Gamma(\beta+1)}=M
$$

and hence the assumptions of theorem 5 are satisfied and therefore the set-valued integral equation (3) admits an integrable solution x.

References

[1] M. Ailalioubrahim, Neumann boundary-value problems for Differential inclusions in Banach spaces, Electronic Journal of Differential Equations, Vol. 2010(2010), No. 104, pp. 1-5.
[2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.
[3] P. Bettiol and H. Frankowska, Regularity of solution maps of differential inclusions under state constraints, Set-Valued Anal 15(2007),21-45.
[4] Y. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V.V. Obukhouskii, Mulivalued Mappings, Itogi Nauki i Tekhn. Ser. Mat. Anal., 19, VINITI, Moscow, 1982, 127-230.
[5] M. Broucke, and A. Arapostathis, Continuous interpolation of solutions of Lipschitz inclusions, JMAA 258(201), 565-572.
[6] V. V. Chistyakov, A. Nowak, Regular Caratheodory-type selectors under no convexity assumptions, Journal of Functional Analysis 225(2005) 247-262.
[7] M. Cichoń, A.M.A El-Sayed and A.H. Hussien, Existence theorems for nonlinear functional integral equations of fractional orders, Commentationes Mathematicae Prace Mat. (2001) pp 59-67.
[8] L. Gasiński, and N. S. Papageorgiou. Nonsmoth Critical Point Theory and Nonlinear Boundary Value Problems, 2005.
[9] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic Publishers, (1999).
[10] J. Gurican and P. Kostyrko, On Lipschitz selections of Lipschitz multifunctions, Acta Mathematica Universitatis Comenianae 66-67 (1985), 131-135.
[11] I. Kupka, Continuous selection for Lipschitz multifunction, Acta Math. Univ. ComenianaeVol. LXXIV.(2005), 133-141.
[12] Podlubny, I. Fractional Differential Equations, Acad. press, San Diego-New York-London 1999.

Acknowledgement. The authors wishes to thank Prof. M.Cichon for his comments and help.

Ahmed M. A. El-Sayed
Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail address: amasayed5@yahoo.com, amasayed@hotmail.com
Yassine Khouni
Department of Biology, Faculty of Science, Batna university, Batna, Algeria, e.mail: YACINESPOIRE@HOTMAIL.COM

[^0]: 2000 Mathematics Subject Classification. 26A25; 26A33; 45Exx.
 Key words and phrases. Fractional differential equation, positive solution, Green's function, maximal and minimal solutions.

 Submitted Mar. 3, 2011. Published Jan. 1, 2012.

