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EXISTENCE RESULTS FOR INITIAL VALUE PROBLEMS WITH

INTEGRAL CONDITION FOR IMPULSIVE FRACTIONAL

DIFFERENTIAL EQUATIONS

YONG-KUI CHANG, A. ANGURAJ, P. KARTHIKEYAN

Abstract. In this paper, we establish some sufficient conditions for the ex-
istence of solutions for a class of initial value problem with integral condition
for an impulsive fractional differential equation. Some existence results are
proved when the nonlinearity has a sub-linear growth in its state variable (see

Corollary 3.1) or the growth of nonlinearity only depends upon the local prop-
erties of nonlinear term on a bounded set (see condition (3.2)). An example is
also given to illustrate our main results.

1. Introduction

This paper deals with the existence of solutions to a class of initial value problem
for an impulsive fractional order differential equation in the following form

cDαy(t) = f(t, y(t)), t ∈ J = [0, 1], t ̸= tk, (1.1)

∆y
∣∣
t=tk

= Ik(y(t
−
k )), (1.2)

y(0) =

∫ 1

0

g(s)y(s)ds, (1.3)

where k = 1, . . . ,m, 0 < α ≤ 1, cDα is the Caputo fractional derivative, f :
J × R → R is a given function, g ∈ L1(J, J), Ik : R → R, and y0 ∈ R, 0 = t0 <
t1 < · · · < tm < tm+1 = 1, ∆y|t=tk = y(t+k )− y(t−k ), y(t

+
k ) = limh→0+ y(tk + h) and

y(t−k ) = limh→0− y(tk + h) represent the right and left limits of y(t) at t = tk.
Impulsive differential equations have become important in recent years as math-

ematical models of phenomena in both the physical and social sciences. There
has a significant development in impulsive theory especially in the area of impul-
sive differential equations with fixed moments; see for instance the monographs by
Benchohra et al [8], Lakshmikantham et al [13] and the references therein.

Recently, differential equation of fractional order has been paid great attention
due to its much application in various fields of science and engineering, see the
monographs of Miller and Ross [14], Podlubny [16], and the papers of Agarwal et
al [1, 2, 3], Ahmad et al [4, 5, 6], Babakhani and Daftardar-Gejji [7], Benchohra et
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al [9, 10, 11], Chang and Nieto [12], Lv et al [15], Wang et al [17, 18, 22], Zhou et
al [19, 20, 21, 23, 24, 25] and the references therein.

The problem (1.1), (1.3) was studied by Lv, Liang and Xiao [15] in an Banach
space E without impulsive conditions (1.2). In present paper, we consider the
impulsive problem (1.1)-(1.3) in a finite real space R. Our results can be easily
applied to the cases when the nonlinearity has a sub-linear growth in its state
variable (see Corollary 3.1) or the growth of nonlinearity only depends upon the
local properties of nonlinear term on a bounded set (see (3.2)).

This paper is organized as follows. In Section 2 we introduce some preliminary
results needed in the following sections. In Section 3 we present some existence
results for the problem (1.1)-(1.3) by using the fractional calculus and suitable
fixed point theorems.

2. Preliminaries

First, we recall some basic definitions. Consider the set of functions

PC(J,R) = {x : J → R : x ∈ C((tk, tk+1],R), k = 0, . . . ,m and there exist

x(t−k ) and x(t
+
k ), k = 1, . . . ,m with x(t−k ) = x(tk)}.

This set is a Banach space with the norm [8]

∥x∥PC = sup
t∈J

|x(t)|.

Set J ′ := [0, 1]\{t1, . . . , tm} and R+ = (0,∞), R+ = [0,∞).
For basic facts about fractional derivative and fractional calculus one can refer the
books [14, 16].

Definition 2.1. A real function f is said to be in the space Cα, (α ∈ R) if there
exists a real number p > α such that f(t) = tpg(t) for some g ∈ C(R+), and f is
said to be in the space Cm

α if f (m) ∈ Cα (m ∈ N).
Definition 2.2. The fractional integral of the function f ∈ L1([a, b],R+) of

order q ∈ R+ is defined by

Iqaf(t) =

∫ t

a

(t− s)q−1

Γ(q)
f(s) ds,

where Γ is the Gamma function. When a = 0, we write Iqf(t) = f(t)∗φq(t), where

φq(t) =
tq−1

Γ(q) for t > 0, and φq(t) = 0 for t ≤ 0. Note that φq(t) → δ(t) as q → 0,

where δ is the delta function.
Definition 2.3. The Riemann–Liouville fractional integral of order q > 0, of a

function f ∈ Cµ,
(µ ≥ −1) is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s) ds, for q > 0 and t > 0,

and in the case q = 0 we put I0f(x) = f(x).
Definition 2.4. The Riemann–Liouville fractional derivative of order q > 0, of

a function f , is defined by

Dqf(t) =
1

Γ(n− q)

(
d

dt

)n ∫ t

0

f(s)

(t− s)q−n+1
ds,
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for n − 1 < q < n and n ∈ N , where the function f(t) has absolutely continuous
derivatives up to order n− 1.

Definition 2.5. The Caputo derivative of fractional order q for a function f(t)
is defined by

(cDqf)(t) =
1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q−n+1
ds,

for n − 1 < q < n and n = [q] + 1, where [q] denotes the integer part of the real
number q.

Lemma 2.1. Let q > 0. Then we have cDq(Iqf(t)) = f(t).
Lemma 2.2. Let q > 0 and n = [q] + 1. Then

Iq(cDqf(t)) = f(t)−
n−1∑
k=0

f (k)(0)

k!
tk.

Lemma 2.3. [15] If Q(τ) =
∫ 1

τ
g(s)(s − τ)q−1 ds for τ ∈ [0, 1], and if g ∈

L1([0, 1], [0, 1]), then

Q(τ)

Γ(q)
< e and

∫ t

0
(t− s)q−1 ds

Γ(q)
< e.

As a consequence of Lemmas 2.2 and 2.3, we have the following result which is
useful in what follows.

Lemma 2.4. Let 0 < α ≤ 1 and µ =
∫ 1

0
g(s)ds. let h : J → R be continuous. A

function y is a solution of the fractional integral equation

y(t) =


1

(1−µ)Γ(α)

∫ 1

0
Q(τ)h(τ)dτ + 1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds if t ∈ [0, t1],

1
(1−µ)Γ(α)

∫ 1

0
Q(τ)h(τ)dτ + 1

Γ(α)

∑k
i=1

∫ ti
ti−1

(ti − s)α−1h(s)ds

+ 1
Γ(α)

∫ t

tk
(t− s)α−1h(s)ds+

∑k
i=1 Ii(y(t

−
i )), if t ∈ (tk, tk+1],

(1)
where k = 1, . . . ,m, if and only if y is a solution of the fractional IVP

cDαy(t) = h(t), t ∈ J ′, (2)

∆y|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m, (3)

y(0) =

∫ 1

0

g(s)h(s)ds. (4)

Proof. Assume y satisfies (2)-(4). If t ∈ [0, t1] then

cDαy(t) = h(t).

Lemma 2.2 implies

y(t) =
1

(1− µ)Γ(α)

∫ 1

0

Q(τ)h(τ)dτ +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds.
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If t ∈ (t1, t2] then Lemma 2.2 implies

y(t) = y(t+1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1h(s)ds

= ∆y|t=t1 + y(t−1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1h(s)ds

= I1(y(t
−
1 )) +

1

(1− µ)Γ(α)

∫ 1

0

Q(τ)h(τ)dτ +
1

Γ(α)

∫ t1

0

(t1 − s)α−1h(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1h(s)ds.

If t ∈ (t2, t3] then from Lemma 2.2 we get

y(t) = y(t+2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1h(s)ds

= ∆y|t=t2 + y(t−2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1h(s)ds

= I2(y(t
−
2 )) + I1(y(t

−
1 )) +

1

(1− µ)Γ(α)

∫ 1

0

Q(τ)h(τ)dτ +
1

Γ(α)

∫ t1

0

(t1 − s)α−1h(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1h(s)ds+
1

Γ(α)

∫ t

t2

(t− s)α−1h(s)ds.

If t ∈ (tk, tk+1] then again from Lemma 2.2 we get (1).
Conversely, assume that y satisfies the impulsive fractional integral equation (1).

If t ∈ [0, t1] then y(0) = y(0) =
∫ 1

0
g(s)h(s)ds and using the fact that cDα is the

left inverse of Iα we get

cDαy(t) = h(t), for each t ∈ [0, t1].

If t ∈ [tk, tk+1), k = 1, . . . ,m and using the fact that cDαC = 0, where C is a
constant, we get

cDαy(t) = h(t), for each t ∈ [tk, tk+1).

Also, we can easily show that

∆y|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m.

3. Main Results

In this section, we prove some existences results for the problem (1.1)-(1.3).
Theorem 3.1. Suppose that
(H1) The function f : J × R → R is continuous.
(H2) There exists a continuous nondecreasing function ψ : R+ → R+ such that

|f(t, u)| ≤ ψ(|u|) for each (t, u) ∈ J × R and

lim inf
r→+∞

ψ(r)

r
= β.

(H3) The functions Ik ∈ C(R,R) and there exist continuous nondecreasing func-
tions φk : R+ → R+ such that |Ik(u)| ≤ φk(|u|) for each u ∈ R, k = 1, . . . ,m
and

lim inf
r→+∞

φk(r)

r
= γk, k = 1, . . . ,m.
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Then (1.1)-(1.3) has at least one solution on J provided that

β

[
e

1− µ
+

m

Γ(α+ 1)
+

1

Γ(α+ 1)

]
+

m∑
k=1

γk < 1. (3.1)

Proof. We transform the problem (1.1)-(1.3) into a fixed point problem. Con-
sider the operator F : PC(J,R) → PC(J,R) defined by

F (y)(t) =
1

(1− µ)Γ(α)

∫ 1

0

Q(τ)f(τ, y(τ))dτ +
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1f(s, y(s))ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1f(s, y(s))ds+
∑

0<tk<t

Ik(y(t
−
k )).

From Lemma 2.4, the fixed points of the operator F are solutions of the problem
(1.1)-(1.3). We shall apply Schauder’s fixed point theorem to prove that F has a
fixed point. The proof will be given in several steps. Let Br = {y ∈ PC(J,R) :
∥y∥PC ≤ r}.

Step1: F (Br) ⊆ Br for some r > 0.
If it is not true, then for each r > 0, there exists a function yr(·) ∈ Br but

|F (yr)(t)| > r for some t ∈ J . However, on the other hand, we have from (H2),
(H3) and Lemma 2.3,

r < |F (yr)(t)|

≤ e

1− µ
ψ(r) +

mψ(r)

Γ(α+ 1)
+

ψ(r)

Γ(α+ 1)
+

m∑
k=1

φk(r)

≤ ψ(r)

[
e

1− µ
+

m

Γ(α+ 1)
+

1

Γ(α+ 1)

]
+

m∑
k=1

φk(r).

Dividing both sides by r and let r → ∞, we obtain

1 ≤ β

[
e

1− µ
+

m

Γ(α+ 1)
+

1

Γ(α+ 1)

]
+

m∑
k=1

γk.

This contradicts (3.1). Hence for some positive number r, F (Br) ⊆ Br.
Step 2: F : Br → Br is continuous.
Let {yn} be a sequence such that yn → y in Br. Then for each t ∈ J

|F (yn)(t)− F (y)(t)| ≤ e

(1− µ)

∫ 1

0

f(τ, yn(τ))− f(τ, y(τ))|dτ

+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|f(s, yn(s))− f(s, y(s))|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|f(s, yn(s))− f(s, y(s))|ds

+
∑

0<tk<t

|Ik(yn(t−k ))− Ik(y(t
−
k ))|.

It is obvious that

|f(t, yn(t))− f(t, y(t))| ≤ 2ψ(r).
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Since f and Ik, k = 1, . . . ,m are continuous functions, we have by the dominated
convergence theorem

∥F (yn)− F (y)∥PC → 0 as n→ ∞.

Step 3: F maps Br into an equicontiuous family.
Let τ1 < τ2 ∈ J , y ∈ Br. Then

|F (y)(τ2)− F (y)(τ1)|

=
1

Γ(α)

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1||f(s, y(s))|ds

+
1

Γ(α)

∫ τ2

τ1

|(τ2 − s)α−1||f(s, y(s))|ds+
∑

0<tk<τ2−τ1

|Ik(y(t−k ))|

≤ ψ(r)

Γ(α+ 1)
[2(τ2 − τ1)

α + τα2 − τα1 ] +
∑

0<tk<τ2−τ1

φ(r).

As τ1 → τ2, the right-hand side of the above inequality tends to zero independent
of y ∈ Br.

By Steps 1-3 together with the Arzelá-Ascoli theorem, we show that F : Br → Br

is completely continuous. As a consequence of Schauder’s fixed point theorem, we
conclude that F has a fixed point y(·) ∈ Br which is a solution to the problem
(1.1)-(1.3). This ends of the proof.

As an immediate result of Theorem 3.1, we can obtain the following interesting
result when the nonlinearity f has sub-linear growth in the state variable.

Corollary 3.1. Assume that (H1) and the following conditions are satisfied:
(H2′) There exist constants c1 > 0, c2 ≥ 0 and µ ∈ [0, 1) such that |f(t, u)| ≤

c1 + c2|u|µ for all t ∈ [0, 1] and u ∈ R.
(H3′) There exist constants ak > 0, bk ≥ 0 and ρk ∈ [0, 1) such that |Ik(u)| ≤

ak + bk|u|ρk for each u ∈ R, k = 1, . . . ,m.
Then the problem (1.1)-(1.3) admits at least one solution on J .
The following result is concerned with the growth of nonlinear term at the height

of nonlinear term on a bounded set (see (3.2)).
Theorem 3.2. Assume that (H1) and the following conditions hold:
(H4) There exists a constant r > 0 such that

max {|f(t, u)| : (t, u) ∈ [0, 1]× [−r, r]} ≤ 1[
e

1−µ + m
Γ(α+1) +

1
Γ(α+1)

] r
2

(3.2)

and

max {|Ik(u)|, Ik ∈ C(R,R), k = 1, . . . ,m} ≤ r

2m
.

Then the problem (1.1)-(1.3) has at least one solution y(·) on J satisfying ||y|| ≤
r.
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Proof. Let F be defined as in Theorem 3.1 and y ∈ Br. Then |y(t)| ≤ r and
|f(t, y(t))| ≤ 1

e
1−µ+ m

Γ(α+1)
+ 1

Γ(α+1)

r
2 . Therefore

||Fy|| ≤
[

e

1− µ
+

m

Γ(α+ 1)
+

1

Γ(α+ 1)

]
max {|f(t, u)| : (t, u) ∈ [0, 1]× [−r, r]}

+mmax {|Ik(u)|, k = 1, . . . ,m}

≤
[

e

1− µ
+

m

Γ(α+ 1)
+

1

Γ(α+ 1)

]
1[

e
1−µ + m

Γ(α+1) +
1

Γ(α+1)

] r
2
+m

r

2m

≤ r.

This implies that F : Br → Br. Just as the proof of Theorem 3.1, the Schauder’s
fixed point theorem can be applied to complete the remainder of the proof.

Next, we give a uniqueness result for the problem (1.1)-(1.3).
Theorem 3.3 Assume that
(H5) There exists a constant l > 0 such that |f(t, u) − f(t, u)| ≤ l|u − u|, for

each t ∈ J , and each u, u ∈ R.
(H6) There exists a constant l∗ > 0 such that |Ik(u)−Ik(u)| ≤ l∗|u−u|, for each

u, u ∈ R and k = 1, . . . ,m. are satisfied.If µ =
∫ 1

0
g(s)ds and[

l(m+ 1)

Γ(α+ 1)
+

el

1− µ
+ml∗

]
< 1. (3.3)

Then (1.1)-(1.3) has a unique solution on J .
Proof. Let the operator F be defined as in Theorem 3.1. We shall use the

Banach contraction principle to prove that F has a fixed point. We shall show that
F is a contraction. Let x, y ∈ PC(J,R). Then, for each t ∈ J we have

|F (x)(t)− F (y)(t)|

≤ 1

(1− µ)Γ(α)

∫ 1

0

Q(τ)|f(τ, x(τ))− f(τ, y(τ))|dτ

+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|f(s, x(s))− f(s, y(s))|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|f(s, x(s))− f(s, y(s))|ds+
∑

0<tk<t

|Ik(x(t−k ))− Ik(y(t
−
k ))|

≤ el

(1− µ)

∫ 1

0

|x(τ))− y(τ))|dτ + l

Γ(α)

m∑
k=1

∫ tk

tk−1

(tk − s)α−1|x(s)− y(s)|ds

+
l

Γ(α)

∫ t

tk

(t− s)α−1|x(s)− y(s)|ds+
m∑

k=1

l∗|x(t−k )− y(t−k )|

≤ el

(1− µ)
∥x− y∥+ ml

Γ(α+ 1)
∥x− y∥+ l

Γ(α+ 1)
∥x− y∥+ml∗∥x− y∥.

Therefore,

∥F (x)− F (y)∥ ≤
[
l(m+ 1)

Γ(α+ 1)
+

el

(1− µ)
+ml∗

]
∥x− y∥.
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Consequently by (3.3), F is a contraction. As a consequence of Banach fixed point
theorem, we deduce that F has a fixed point which is a solution of the problem
(1.1)-(1.3). This achieves the proof.

4. An Example

In this section we give an example to illustrate our main results. Let us consider
the following impulsive fractional initial-value problem,

cDαy(t) =
et|y(t)|

(9 + et)(1 + |y(t)|)
, t ∈ J := [0, 1], t ̸= 1

2
, 0 < α ≤ 1, (5)

∆y|t= 1
2
=

|y( 12
−
)|

3 + |y( 12
−
)|
, (6)

y(0) =

∫ 1

0

|y(s)|
5 + |y(s)|

ds. (7)

Set

f(t, u) =
etu

(9 + et)(1 + u)
, (t, u) ∈ J × [0,∞), g(s) =

u(s)

5 + u(s)

and

Ik(u) =
u

3 + u
, u ∈ R+.

Let x, y ∈ R+ and t ∈ J . Then we have

|f(t, x)− f(t, y)| = e−t

(9 + et)

∣∣∣ x

1 + x
− y

1 + y

∣∣∣
=

e−t|x− y|
(9 + et)(1 + x)(1 + y)

≤ e−t

(9 + et)
|x− y|

≤ 1

10
|x− y|.

Hence the condition (H5) holds with l = 1/10. Let x, y ∈ R+. Then we have

|Ik(x)− Ik(y)| =
∣∣ x

3 + x
− y

3 + y

∣∣ = 3|x− y|
(3 + x)(3 + y)

≤ 1

3
|x− y|.

Hence the condition (H6) holds with l∗ = 1/3. We shall check that condition with
T = 1 and m = 1. Indeed[

l(m+ 1)

Γ(α+ 1)
+ml∗

]
< 1 ⇐⇒ Γ(α+ 1) >

3

10
, (8)

which is satisfied for some α ∈ (0, 1]. Then by Theorem 3.2 and Theorem 3.3, the
problem (5)-(7) has a unique solution on [0, 1] for values of α satisfying (8).
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