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ANALYTICAL SOLUTION OF FRACTIONAL BLACK-SCHOLES

EUROPEAN OPTION PRICING EQUATION BY USING

LAPLACE TRANSFORM

SUNIL KUMAR, A. YILDIRIM, Y. KHAN, H. JAFARI, K. SAYEVAND, L. WEI

Abstract. In this paper, Laplace homotopy perturbation method, which

is combined form of the Laplace transform and the homotopy perturbation
method, is employed to obtain a quick and accurate solution to the fractional
Black Scholes equation with boundary condition for a European option pricing

problem. The Black-Scholes formula is used as a model for valuing European or
American call and put options on a non-dividend paying stock. The proposed
scheme finds the solutions without any discretization or restrictive assumptions
and is free from round-off errors and therefore, reduces the numerical computa-

tions to a great extent. The analytical solution of the fractional Black Scholes
equation is calculated in the form of a convergent power series with easily
computable components. Two examples are presented.

1. INTRODUCTION

In 1973, Fischer Black and Myron Scholes [1] derived the famous theoretical
valuation formula for options. The main conceptual idea of Black and Scholes lie
in the construction of a riskless portfolio taking positions in bonds (cash), option
and the underlying stock. Such an approach strengthens the use of the no-arbitrage
principle as well. Thus, the Black-Scholes formula is used as a model for valuing
European (the option can be exercised only on a specified future date) or american
(the option can be exercised at any time up to the date, the option expires) call and
put options on a non-dividend paying stock by Manale and Mahomed [2]. Derivation
of a closed-form solution to the Black-Scholes equation depends on the fundamentals
solution of the heat equation. Hence, it is important, at this point, to transform
the Black-Scholes equation to the heat equation by change of variables. Having
found the closed form solution to the heat equation, it is possible to transform it
back to find the corresponding solution of the Black-Scholes PDE. Financial models
were generally formulated in terms of stochastic differential equations. However, it
was soon found that under certain restrictions these models could written as linear
evolutionary PDEs with variable coefficients by Gazizov and Ibragimov [3]. Thus,
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the Black-Scholes model for the value of an option is described by the equation

∂ v

∂ t
+

σ2x2

2

∂2v

∂x2
+ r(t) x

∂v

∂x
− r(t) v = 0, (x, t) ∈ R+ × (0, T ) (1)

wherev(x, t)is the European call option price at asset price x and at time t, Kis the
exercise price, T is the maturity, r(t)is the risk free interest rate, and σ(x, t)represents
the volatility function of underlying asset. Let us denote by vc(x, t) and vp(x, t) the
value of the European call and put options, respectively. Then, the payoff functions
are

vc(x, t) = max(x− E, 0 ), vp(x, t) = max(E − x, 0 ), (2)

whereE denotes the expiration price for the option and the function max(x, 0) gives
the larger value between x and 0. During the past few decades, many researchers
studied the existence of solutions of the Black Scholes model using many methods
in [4, 5, 6, 7, 8, 9, 10, 11, 12].

The seeds of fractional calculus (that is, the theory of integrals and derivatives
of any arbitrary real or complex order) were planted over 300 years ago. Since
then, many researchers have contributed to this field. Recently, it has turned
out that differential equations involving derivatives of non-integer order can be
adequate models for various physical phenomena Podlubny [13]. The book by
Oldham and Spanier [14] has played a key role in the development of the subject.
Some fundamental results related to solving fractional differential equations may
be found in Miller and Ross [15], Kilbas and Srivastava [16].

The LHPM basically illustrates how the Laplace transform can be used to ap-
proximate the solutions of the linear and nonlinear differential equations by manip-
ulating the homotopy perturbation method which was first introduced and applied
by He [17, 18, 19, 20, 21]. The proposed method is coupling of the Laplace trans-
formation, the homotopy perturbation method and He’s polynomials and is mainly
due to Ghorbani [22, 23]. In recent years, many authors have paid attention to
studying the solutions of linear and nonlinear partial differential equations by us-
ing various methods with combined the Laplace transform. Among these are the
Laplace decomposition methods [24, 25], Laplace homotopy perturbation method
[26, 27]. The LHPM method is very well suited to physical problems since it does
not require unnecessary linearization, perturbation and other restrictive methods
and assumptions which may change the problem being solved, sometimes seriously.

In this paper, the LHPM is applied to solve fractional Black-Scholes equation
by using He’s polynomials and well known Laplace transform. We discuss how to
solve fractional Black-Scholes equation by using LHPM.

2. BASIC DEFINITIONS OF FRACTIONAL CALCULUS AND
LAPLACE TRANSFORM

In this section, we give some basic definitions and properties of fractional calculus
theory which shall be used in this paper:

Definition 1. A real function f(t), t > 0 is said to be in the space Cµ, µ ∈ R if
there exists a real number p > µ, such that f(t) = tpf1(t) where f1(t) ∈ C(0,∞)
and it is said to be in the space Cn if and only if f (n) ∈ Cµ, n ∈ N.
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Definition 2. The left sided Riemann-Liouville fractional integral operator of order
µ ≥ 0, of a function f ∈ Cα, α ≥ −1 is defined as follows [28-29]:

Iµf(t) =

{
1

Γ(µ)

∫ t

0
(t− τ)

µ−1
f(τ)dτ, µ > 0, t > 0,

f(t), µ = 0
(3)

WhereΓ (.) is the well-known Gamma function.

Definition 3. The left sided Caputo fractional derivative of f, f ∈ Cm
−1, m ∈

N ∪ {0} is defind as follows [13, 30]:

Dµ
∗ f(t) =

∂µf(t)

∂tµ
=

{
Im−µ

[
∂mf(t)
∂tm

]
, m− 1 < µ < m, m ∈ N,

∂mf(t)
∂tm , µ = m,

(4)

Note that [13, 30]

Iµt f(x, t) =
1

Γ(µ)

∫ t

0

f(x, t)

(t− s)1−µ
dt, µ > 0, t > 0, (5)

Dµ
∗ f(x, t) = Im−µ

t

∂mf(x, t)

∂tm
m− 1 < µ ≤ m, (6)

Definition 4. The Mittag-Leffler function Eα(z) with α > 0 is defined by the
following series representation, valid in the whole complex plane [31]:

Eα(z) =
∞∑

n=0

zn

Γ(αn+ 1)
, (7)

Definition 5. The Laplace transform off(t)

F (s) = L[f(t)] =

∫ ∞

0

e−stf(t)dt. (8)

Definition 6. The Laplace transform L[f(t)]of the Riemann–Liouville fractional
integral is defined as follows [15]:

L[Iαf(t)] = s−αF (s). (9)

Definition 7. The Laplace transformL[f(t)] of the Caputo fractional derivative is
defined as follows [15]:

L[Dαf(t)] = sαF (s)−
n−1∑
k=0

s(α−k−1)f (k)(0), n− 1 < α ≤ n (10)

3. FRACTIONAL LAPLACE TRANSFORM HOMOTOPY
PERTURBATION METHOD

In order to elucidate the solution procedure of the fractional Laplace homotopy
perturbation method, we consider the following nonlinear fractional differential
equation:

Dα
t u(x, t) +R[x]u(x, t) +N [x]u(x, t) = q(x, t), t > 0, x ∈ R, 0 < α ≤ 1,

u(x, 0) = h(x),
(11)
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where Dα = ∂α

∂tα , R[x]is the linear operator inx, N [x] is the general nonlinear
operator in x, and q(x, t) are continuous functions. Now, the methodology consists
of applying Laplace transform first on both sides of Eq. (11), we get

L[Dα
t u(x, t)] + L[R[x]u(x, t) +N [x]u(x, t)] = L[q(x, t)], (12)

Now, using the differentiation property of the Laplace transform, we have

L[u(x, t)] = s−1h(x)− s−αL[q(x, t)] + s−αL[R[x]u(x, t) +N [x]u(x, t)], (13)

Operating the inverse Laplace transform on both sides in Eq. (13), we get

u(x, t) = G(x, t)− L−1
(
s−αL[R[x]u(x, t) +N [x]u(x, t)]

)
, (14)

where G(x, t), represents the term arising from the source term and the prescribed
initial conditions. Now, applying the classical perturbation technique, we can as-
sume that the solution can be expressed as a power series in p as given below

u(x, t) =
∞∑

n=0

pnun(x, t), (15)

where the homotopy parameter p is considered as a small parameter (p ∈ [0, 1]).
The nonlinear term can be decomposed as

Nu(x, t) =
∞∑

n=0

pnHn(u), (16)

where Hn are He’s polynomials of u0, u1, u2, ..., un and it can be calculated by the
following formula

Hn(u0, u1, u2, ..., un) =
1

n !

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2, 3, ....

Substituting Eq. (15) and (16) in Eq. (14) and using HPM [17, 18, 19, 20, 21], we
get

∞∑
n=0

pnun(x, t) = G(x, t)− p

(
L−1

[
s−α L

[
R

∞∑
n=0

pnun(x, t) +
∞∑

n=0

pnHn(u)

]])
,

(17)
This is coupling of the Laplace transform and homotopy perturbation method using
He’s polynomials. Now, equating the coefficient of corresponding power of p on both
sides, the following approximations are obtained as

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = L−1
(
s−α L[R[x]u0(x, t) +H0(u)]

)
,

p2 : u2(x, t) = L−1
(
s−α L[R[x]u1(x, t) +H1(u)]

)
,

p3 : u3(x, t) = L−1
(
s−α L[R[x]u2(x, t) +H2(u)]

)
,

p4 : u4(x, t) = L−1
(
s−α L[R[x]u3(x, t) +H3(u)]

)
,

...

Proceeding in this same manner, the rest of the components un(x, t) can be com-
pletely obtained and the series solution is thus entirely determined. Finally, we
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approximate the analytical solution u(x, t) by truncated series

u(x, t) = Lim
N→∞

N∑
n=1

un(x, t), (18)

The above series solutions generally converge very rapidly.

4. NUMERICAL EXAMPLES

In this section, we discuss the implementation of our proposed algorithm and in-
vestigate its accuracy by applying the homotopy perturbation method with coupling
of the Laplace transform. The simplicity and accuracy of the proposed method is
illustrated through the following numerical examples.

Example 1. We consider the following fractional Black-Scholes option pricing
equation [12] as follows:

∂αv

∂ tα
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, , 0 < α ≤ 1, (19)

with initial condition v(x, 0) = max (ex − 1, 0).. Notice that this system of equa-
tions contains just two dimensionless parameters k = 2 r

/
σ2, where k represents

the balance between the rate of interests and the variability of stock returns and
the dimensionless time to expiry 1

2σ
2T, even though there are four dimensional

parameters, E, T, σ2 and r,in the original statements of the problem.
Now, applying the aforesaid method subject to the initial condition, we have

L[v(x, t)] =
1

s
max(ex − 1, 0) +

1

sα
L [vxx + (k − 1)vx − kv] , (20)

Operating the Inverse Laplace transform on both sides in (20), we have

v(x, t) = max(ex − 1, 0) + L−1

(
1

sα
L [vxx + (k − 1)vx − kv]

)
, (21)

Now, we apply the homotopy perturbation method [17, 18, 19, 20, 21], we get

∞∑
n=0

pnvn(x, t) = max(ex − 1, 0) + p

(
L−1

(
1

sα
L

[ ∞∑
n=0

pnHn(v)

]))
, (22)

WhereHn(v) are He’s polynomials Ghorbani [22, 23]. The components of He’s
polynomials are given by the recursive relation

Hn(v) = vnxx + (k − 1)vxx + kvn, n ≥ 0, n ∈ N. (23)
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Equating the corresponding power of p on both sides in equation (22), we get

p0 : v0(x, t) = max(ex − 1, 0), (24)

p1 : v1(x, t) = L−1

(
1

sα
L[H0(v)]

)
= −max(ex, 0)

(−ktα)

Γ(α+ 1)
+ max(ex − 1, 0)

(−ktα)

Γ(α+ 1)
,

p2 : v2(x, t) = L−1

(
1

sα
L[H1(v)]

)
= −max(ex, 0)

(−ktα)2

Γ(2α+ 1)
+ max(ex − 1, 0)

(−ktα)2

Γ(2α+ 1)
,

p3 : v3(x, t) = L−1

(
1

sα
L[H2(v)]

)
= −max(ex, 0)

(−ktα)3

Γ(3α+ 1)
+ max(ex − 1, 0)

(−ktα)3

Γ(3α+ 1)
,

...

pn : vn(x, t) = L−1

(
1

sα
L[Hn−1(v)]

)
= −max(ex, 0)

(−ktα)n

Γ(nα+ 1)
+ max(ex − 1, 0)

(−ktα)n

Γ(nα+ 1)
.

So that the solutionv(x, t) of the problem given by

v(x, t) = Lim
p→1

∞∑
n=0

pivi(x, t) = max(ex−1, 0)Eα(−k tα)+max(ex, 0) (1− Eα(−k tα)) ,

(25)
where Eα(z) is Mittag-Leffler function in one parameter. Eq. (25) represents the
closed form solution of the fractional Black Scholes equation Eq. (19). Now for
the standard case α = 1, this series has the closed form of the solution v(x, t) =
max(ex − 1, 0) e−kt +max(ex, 0)

(
1− e−kt

)
,which is an exact solution of the given

Black Scholes equation (19) for α = 1.

Example 2. In this example, we consider the following generalized fractional Black
- Scholes equation [6] as follows:

∂αv

∂ tα
+ 0.08(2 + sinx)2x2 ∂

2v

∂x2
+ 0.06x

∂v

∂x
− 0.06 v = 0, 0 < α ≤ 1, (26)

with initial condition v(x, 0) = max (x − 25 e−0.06, 0). The methology consists of
the applying Laplace transform on both sides to Eq. (26), we get

L[v(x, t)] =
1

s
max(x−25e−0.06, 0)− 1

sα
L
[
0.08(2 + sinx)2x2vxx + 0.06xvx − 0.06v

]
,

(27)
Now, applying the inverse Laplace transform on both sides to Eq. (27), we get

v(x, t) = max(x−25e−0.06, 0)−L−1

(
1

sα
L
[
0.08(2 + sinx)2x2vxx + 0.06xvx − 0.06v

])
,

(28)
Now, we apply the homotopy perturbation method [17, 18, 19, 20, 21], we have

∞∑
n=0

pnvn(x, t) = max(x− 25e−0.06, 0)− p

(
L−1

(
1

sα
L

[ ∞∑
n=0

pnHn(v)

]))
, (29)

The components of He’s polynomials are given by relation

Hn(v) = 0.08(2 + sinx)x2 vnxx + 0.06xvnx − 0.06vn, n ≥ 0, (30)
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Equating the corresponding power of pon both sides in equation (29), we get

p0 : v0(x, t) = max(x− 25e−0.06, 0),

p1 : v1(x, t) = L−1

(
1

sα
L[H0(v)]

)
= −x

(−0.06tα)

Γ(α+ 1)
+ max(x− 25e−0.06, 0)

(−0.06tα)

Γ(α+ 1)
,

p2 : v2(x, t) = L−1

(
1

sα
L[H1(v)]

)
= −x

(−0.06tα)2

Γ(2α+ 1)
+ max(x− 25e−0.06, 0)

(−0.06tα)2

Γ(2α+ 1)
,

p3 : v3(x, t) = L−1

(
1

sα
L[H2(v)]

)
= −x

(−0.06tα)3

Γ(3α+ 1)
+ max(x− 25e−0.06, 0)

(−0.06tα)3

Γ(3α+ 1)
,

pn : vn(x, t) = L−1

(
1

sα
L[Hn−1(v)]

)
= −x

(−0.06tα)n

Γ(nα+ 1)
+ max(x− 25e−0.06, 0)

(−0.06tα)n

Γ(nα+ 1)
,

So that the solution v(x, t) of the problem given as

v(x, t) = Lim
p→1

∞∑
n=0

pivi(x, t) = x (1− Eα(−0.06 tα))+max(x−25 e−0.06, 0)Eα(−0.06 tα),

(31)
This is the exact solution of the given option pricing equation (26). Now the solution
of the generalized Black Scholes equation (26) at α = 1is v(x, t) = x (1− e−0.06t) +
max(x− 25e−0.006, 0)e−0.006 t.which is an exact solution of the given Black Scholes
equation (19) for α = 1.

5. CONCLUSION

The main study of this work is to provide analytical solution of the fractional
Black-Scholes option pricing equation by homotopy perturbation method with cou-
pling of the Laplace transform, and the two examples from literature [6, 12] are
presented to determine the efficiency and simplicity of the proposed method. The
main advantage of this method is to overcome the deficiency that is mainly caused
by unsatisfied conditions. Thus, it can be concluded that the LHPM methodology
is very powerful and efficient in finding approximate solutions as well as numerical
solutions.

References

[1] F. Black, M. S. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81
(1973), pp. 637-654.

[2] J. M. Manale, F. M. Mahomed, A simple formula for valuing American and European all
and put options in: J. Banasiak (Ed.), Proceeding of the Hanno Rund Workshop on the

Differential Equations, University of Natal, (2000), pp. 210-220.
[3] R. K. Gazizov, R. K., N. H. Ibragimov, Lie symmetry analysis of differential equations in

Finance, Nonlin. Dynam. 17 (1998), pp. 387-407.
[4] M. Bohner, Y. Zheng, On analytical solution of the Black-Scholes equation, Appl. Math.

Lett. 22 (2009), pp. 309-313.
[5] R. Company, E. Navarro, J. R. Pintos, E. Ponsoda,, Numerical solution of linear and nonlinear

Black-Scholes option pricing equations, Comput. Math. Appl. 56 (2008), pp. 813-821.
[6] Z. Cen, A. Le, A robust and accurate finite difference method for a generalized Black- Scholes

equation,J. Comput. Appl. Math. 235 (2011), pp. 3728-3733.
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