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EXISTENCE OF MILD SOLUTIONS FOR FRACTIONAL

EVOLUTION EQUATIONS .

ZUFENG ZHANG, BIN LIU∗

Abstract. In this article, we establish sufficient conditions for the existence
of mild solutions for fractional evolution differential equations by using a new
fixed point theorem. The results obtained here improve and generalize many

known results. An example is also given to illustrate our results.

1. Introduction

Our aim in this paper is to study the nonlocal initial value problem{
Dqx(t) = Ax(t) + f(t, x(t)), t ∈ [0, 1],

x(0) = g(x),
(1)

where Dq is the Caputo fractional derivative of order 0 < q < 1, A is the infinites-
imal generator of a strongly continuous semigroup of bounded linear operator (i.e.
C0-semigroup) T (t) in Banach space X, f : [0, 1]×X → X and g : C([0, 1];X) → X
are appropriate functions to be specified later.

Fractional differential equations have appeared in many branches of physics,
economics and technical sciences [1, 2]. There has been a considerable development
in fractional differential equations in the last decades. Recently, Many authors are
interested in the existence of mild solutions for fractional evolution equations. In
[3], El-Borai discussed the following equation in Banach X,{

Dαu(t) = Au(t) +B(t)u(t),

u(0) = u0,

where A generates an analytic semigroup and the solution was given in terms of
some probability densities. In [4], Zhou and Jiao concerned the existence and
uniqueness of mild solutions for fractional evolution equations by some fixed point
theorems. Cao et al. [5] studied the α-mild solutions for a class of fractional
evolution equations and optimal controls in fractional powder space. For more
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information on this subjects, the readers may refer to [6]-[10] and the references
therein.

Very recently, Zhu [11] used the measure of noncompactness to discuss problem
(1) when q = 1. Motivated by this paper we continue to study the existence of
mild solutions for problem (1) with a fixed point theorem related to the measure
of noncompactness which is firstly used to deal with fractional evolution equations.
We obtain the existence results without the compactness on T (t) which are different
from many existing papers such as [4, 6, 7]. The rest of the paper will be organized
as follows. In section 2 we will recall some basic definitions and lemmas from
the measure of noncompactness, fractional derivation and integration. Section 3 is
devoted to the existence results for problem (1). We shall present in Section 4 an
example which illustrates our main theorems.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary results which
are used in the rest of the paper.

Throughout this paper, we denote by R+ and N the set of positive real numbers
and the set of positive integers. Let (X, ∥ ·∥) be a real Banach space. We denote by
C([0, 1];X) the space of X-valued continuous functions on [0, 1] with the ∥x∥∞ =
sup{∥x(t)∥ : t ∈ [0, 1]}. Let Lp([0, 1];X) be the space of X-valued Bochner function

on [0,1] with the norm ∥x∥Lp = (
∫ 1

0
∥x(s)∥pds)

1
p , 1 ≤ p < ∞.

Definition 2.1 ([2]). The Riemann-Liouville fractional integral of order q ∈ R+

of a function f : R+ → X is defined by

Iq0f(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds, t > 0,

provided the right-hand side is pointwise defined on R+, where Γ is the gamma
function.

Definition 2.2 ([2]). The Caputo fractional derivative of order 0 < q < 1 of a
function f : C1(R+;X) is defined by

Dqf(t) =
1

Γ(1− q)

∫ t

0

(t− s)−qf ′(s)ds, t > 0.

Let α define the Hausdorff measure of noncompactness on bothX and C([0, 1];X).
To prove our results we need the following lemmas.

Lemma 2.3 ([12]). If W ⊆ C([0, 1];X) is bounded, then α(W (t)) ≤ α(W ) for
every t ∈ [0, 1], where W (t) = {x(t);x ∈ W}. Furthermore if W is equicontinuous
on [0, 1], then α(W (t)) is continuous on [0, 1] and α(W ) = sup{α(W (t)); t ∈ [0, 1]}.

Lemma 2.4 ([13]). If {un}∞n=1 ⊂ L1([0, 1];X) is uniformly integrable, then
α({un}∞n=1) is measurable and

α

({∫ t

0

un(s)ds

}∞

n=1

)
≤ 2

∫ t

0

α({un(s)}∞n=1)ds.

Lemma 2.5 ([14]). If W is bounded, then for each ϵ > 0, there is a sequence
{un}∞n=1 ⊆ W such that

α(W ) ≤ 2α({un}∞n=1) + ϵ.
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Lemma 2.6 ([15]). Suppose that x ≥ 1, then

(
x

e
)x
√
2πx(1 +

1

12x
) < Γ(x+ 1) < (

x

e
)x
√
2πx(1 +

1

12x− 0.5
).

Lemma 2.7 ([16] Fixed Point Theorem). Let G be a closed and convex subset
of a real Banach space X, let A : G → G be a continuous operator and A(G) be
bounded. For each bounded subset B ⊂ G, set

A1(B) = A(B), An(B) = A(co(An−1(B))), n = 2, 3, . . . ,

if there exist a constant 0 ≤ k < 1 and a positive integer n0 such that for each
bounded subset B ⊂ G,

α(An0(B)) ≤ kα(B),

then A has a fixed point in G.

3. Main results

In this section we will establish the existence results by using the Hausdorff
measure of noncompactness. Based on reference [6], we give the definition of the
mild solutions of problem (1) as follows.

Definition 3.1. By the mild solution of problem (1), we mean that the function
x ∈ C([0, 1];X) which satisfies

x(t) = S(t)g(x) +

∫ t

0

(t− s)q−1T(t− s)f(s, x(s))ds, t ∈ [0, 1],

where

S(t) =

∫ ∞

0

ξq(θ)T (t
qθ)dθ, T(t) = q

∫ ∞

0

θξq(θ)T (t
qθ)dθ, (2)

ξq(θ) =
1

q
θ−1− 1

qΨq(θ
− 1

q ),

Ψq(θ) =
1

π

∞∑
n=1

(−1)n−1θ−qn−1Γ(nq + 1)

n!
sin(nπq), θ ∈ R+.

Remark 3.2 ([6]). ξq(θ) is the probability density function defined on R+ and∫ ∞

0

θξq(θ)dθ =

∫ ∞

0

1

θq
Ψq(θ)dθ =

1

Γ(1 + q)
.

To state and prove our main results for the existence of mild solutions of problem
(1), we need the following hypotheses:
(H1) The C0-semigroup {T (t)}t≥0 generated by A is equicontinuous and M =
sup{∥T (t)∥; t ∈ [0,∞)} < +∞.
(H2) The function g : C([0, 1];X) → X is completely continuous, moreover there
exist positive constants c and d such that ∥g(x)∥ ≤ c∥x∥∞ + d, for every x ∈
C([0, 1];X).
(H3) The function f : [0, 1] ×X → X satisfies the Carathéodory type conditions,
i.e. f(t, ·) : X → X is continuous for a.e. t ∈ [0, 1] and f(·, x) : [0, 1] → X is
strongly measurable for each x ∈ C([0, 1], X).

(H4) There exist a function m ∈ L
1
p ([0, 1];R+), 0 < p < q and a nondecreasing

continuous function Ω : R+ → R+ such that ∥f(t, x)∥ ≤ m(t)Ω(∥x∥) for all x ∈ X
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and a.e. t ∈ [0, 1].
(H5) There exists L ∈ L1([0, 1];R+) such that for each bounded D ⊂ X,

α(f(t,D)) ≤ L(t)α(D), for a.e. t ∈ [0, 1].

Remark 3.3. (i) If A generates an analytic semigroup or a differentiable semi-
group {T (t)}t≥0, then {T (t)}t≥0 is an equicontinuous (see [18]).
(ii) If ∥f(t, x)− f(t, y)∥ ≤ L(t)∥x− y∥, L(t) ∈ L1([0, 1];R+), x, y ∈ X, then we can
get α(f(t,D)) ≤ L(t)α(D) for each bounded D ∈ X and a.e. t ∈ [0, 1] (see [11]).

For each positive constant r, let Br = {x ∈ C([0, 1], X); ∥x∥∞ ≤ r}, then Br is
clearly a bounded closed and convex subset in C([0, 1], X).

Lemma 3.4. Assume that hypotheses (H1)-(H4) hold, then
(i) For any fixed t ≥ 0, S(t) and T(t) defined in (2) are linear and bounded opera-
tors, i.e. for any x ∈ X,

∥S(t)x∥ ≤ M∥x∥, ∥T(t)x∥ ≤ M

Γ(q)
∥x∥.

(ii) S(t) and T(t) are strongly continuous.

(iii) The set {t →
∫ t

0
(t − s)q−1T(t − s)f(s, x(s))ds;x ∈ Br} is equicontinuous on

[0, 1].

Proof. (i) and (ii) were given in [6], we only check (iii) as follows.
For x ∈ Br, 0 ≤ t1 < t2 ≤ 1, we have

∥
∫ t2

0

(t2 − s)q−1T(t2 − s)f(s, x(s))ds−
∫ t1

0

(t1 − s)q−1T(t1 − s)f(s, x(s))ds∥

=

∥∥∥∥q ∫ t2

0

∫ ∞

0

θ(t2 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

−q

∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)T ((t1 − s)qθ)f(s, x(s))dθds

∥∥∥∥
≤

∥∥∥∥q ∫ t2

t1

∫ ∞

0

θ(t2 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

∥∥∥∥
+

∥∥∥∥q ∫ t1

0

∫ ∞

0

θ(t2 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

−q

∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

∥∥∥∥
+

∥∥∥∥q ∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

−q

∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)T ((t1 − s)qθ)f(s, x(s))dθds

∥∥∥∥
=

∥∥∥∥q ∫ t2

t1

∫ ∞

0

θ(t2 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

∥∥∥∥
+

∥∥∥∥q ∫ t1

0

∫ ∞

0

θ[(t2 − s)q−1 − (t1 − s)q−1]ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

∥∥∥∥
+

∥∥∥∥q ∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)[T ((t2 − s)qθ)− T ((t1 − s)qθ)]f(s, x(s))dθds

∥∥∥∥
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= q(I1 + I2 + I3),

where

I1 =

∥∥∥∥∫ t2

t1

∫ ∞

0

θ(t2 − s)q−1ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

∥∥∥∥,
I2 =

∥∥∥∥∫ t1

0

∫ ∞

0

θ[(t2 − s)q−1 − (t1 − s)q−1]ξq(θ)T ((t2 − s)qθ)f(s, x(s))dθds

∥∥∥∥,
I3 =

∥∥∥∥∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)[T ((t2 − s)qθ)− T ((t1 − s)qθ)]f(s, x(s))dθds

∥∥∥∥.
From hypothesis (H4), we have

I1 ≤ MΩ(r)

Γ(1 + q)

∫ t2

t1

|(t2 − s)q−1m(s)|ds

≤ MΩ(r)

Γ(1 + q)(1 + η)1−p
(t2 − t1)

(1+η)(1−p)∥m∥
L

1
p
,

I2 ≤ MΩ(r)

Γ(1 + q)

(∫ t1

0

((t1 − s)q−1 − (t2 − s)q−1)
1

1−p ds

)1−p

∥m∥
L

1
p

≤
MΩ(r)∥m∥

L
1
p

Γ(1 + q)

(∫ t1

0

((t1 − s)η − (t2 − s)η)ds

)1−p

=
MΩ(r)∥m∥

L
1
p

Γ(1 + q)(1 + η)1−p
(t1+η

1 − t1+η
2 + (t2 − t1)

1+η)1−p

≤
MΩ(r)∥m∥

L
1
p

Γ(1 + q)(1 + η)1−p
(t2 − t1)

(1+η)(1−p),

where η = q−1
1−p ∈ (−1, 0). Hence limt2→t1 I1 = 0 and limt2→t1 I2 = 0.

On the other hand, from (H1) and the Lebesgue dominated convergence theorem,
we get

lim
t2→t1

I3 ≤ lim
t2→t1

∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ)∥T ((t2 − s)qθ)f(s, x(s))

−T ((t1 − s)qθf(s, x(s))∥dθds

≤
∫ t1

0

∫ ∞

0

θ(t1 − s)q−1ξq(θ) lim
t2→t1

∥T ((t2 − s)qθ)f(s, x(s))

−T ((t1 − s)qθ)f(s, x(s))∥dθds
= 0.

Hence, ∥
∫ t2
0
(t2−s)q−1T(t2−s)f(s, x(s))ds−

∫ t1
0
(t1−s)q−1T(t1−s)f(s, x(s))ds∥ → 0

independently of x ∈ Br as t2 → t1. This completes the proof.

Lemma 3.5. Suppose that 0 < a < 1, b > 0 are two fixed constants, let

Sn =

(
an+C1

n

an−1b

Γ(q + 1)
+C2

n

an−2b2

Γ(2q + 1)
+· · ·+Cn−1

n

abn−1

Γ((n− 1)q + 1)
+Cn

n

bn

Γ(nq + 1)

)
.

Then, limn→∞ Sn = 0.

Proof. Since 0 < a < 1, there exists a constant b > 0 with a+ b < 1.
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From 0 < q < 1, we know that there exists n1 ∈ N such that, if n > n1 then
nq > 1. By Lemma 2.6 if n > n1, then

Γ(nq + 1) >

(
nq

e

)nq√
2πnq >

(
nq

e

)nq

.

Therefore, for n > n1, we have

1

Γ(nq + 1)
<

1

((nqe )q)n
.

On the other hand, there exists n2 ∈ N such that b
(nq

e )q < b for each n > n2.

Set n3 = max{n1, n2}, for n > n3, we divide Sn into two parts

Sn = S′
n + S′′

n,

where

S′
n = an + C1

n

an−1b

Γ(q + 1)
+ C2

n

an−2b2

Γ(2q + 1)
+ · · ·+ Cn3

n

an−n3bn3

Γ(n3q + 1)
,

S′′
n = Cn3+1

n

an−n3−1bn3+1

Γ((n3 + 1)q + 1)
+ Cn3+2

n

an−n3−2bn3+2

Γ((n3 + 2)q + 1)
+ · · ·+ Cn

n

bn

Γ(nq + 1)
.

For n > n3, we have

S′′
n = Cn3+1

n

an−n3−1bn3+1

Γ((n3 + 1)q + 1)
+ Cn3+2

n

an−n3−2bn3+2

Γ((n3 + 2)q + 1)
+ · · ·+ Cn

n

bn

Γ(nq + 1)

≤ Cn3+1
n

an−n3−1bn3+1

(( (n3+1)q
e )q)n3+1

+ Cn3+2
n

an−n3−2bn3+2

(( (n3+2)q
e )q)n3+2

+ · · ·+ Cn
n

bn

((nqe )q)n

≤ Cn3+1
n an−n3−1b

n3+1
+ Cn3+2

n an−n3−2b
n3+2

+ · · ·+ Cn
nb

n

≤ (a+ b)n.

In view of a + b < 1, we have limn→+∞ S′′
n = 0. Since limn→+∞ S′

n = 0 is
obvious, we obtain limn→+∞ Sn = 0. The proof is completed.

Theorem 3.6. If hypotheses (H1)-(H5) are satisfied, then there is at least one
mild solution for problem (1) provided that there exists a constant r such that

M(cr + d) +
MΩ(r)

(1 + η)1−pΓ(q)
∥m∥

L
1
p
≤ r, (3)

where η = q−1
1−p is defined in the proof of Lemma 3.4.

Proof. Define operator F : C([0; 1], X) → C([0, 1];X) by

(Fx)(t) = S(t)g(x) +

∫ t

0

(t− s)q−1T(t− s)f(s, x(s))ds, t ∈ [0, 1].

We can easily show that F is continuous by the usual techniques (see [4]). For any
x ∈ Br, we have

∥(Fx)(t)∥ ≤ ∥S(t)g(x)∥+
∥∥∥∥∫ t

0

(t− s)q−1T(t− s)f(s, x(s))ds

∥∥∥∥
=

∥∥∥∥∫ ∞

0

ξq(θ)T (t
qθ)g(x)dθ

∥∥∥∥
+

∥∥∥∥q ∫ t

0

(t− s)q−1

∫ ∞

0

θξq(θ)T ((t− s)qθ)dθf(s, x(s))ds

∥∥∥∥
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≤ M(cr + d) +
MΩ(r)

Γ(q)

∫ t

0

(t− s)q−1m(s)ds

≤ M(cr + d) +
MΩ(r)

Γ(q)

(∫ t

0

(t− s)
q−1
1−p ds

)1−p

∥m∥
L

1
p

≤ M(cr + d) +
MΩ(r)

(1 + η)1−pΓ(q)
∥m∥

L
1
p
.

Then from (3) we get ∥Fx∥∞ ≤ r which means that F : Br → Br is a bounded
operator.

Let B0 = coFBr. By Lemma 2.5 and the condition g(x) is compact, we get for
any B ⊂ B0 and ϵ > 0, there is a sequence {xn}∞n=1 ⊂ B such that

α(F 1B(t)) = α(FB(t))

≤ 2α

(∫ t

0

(t− s)q−1T(t− s)f(s, {xn}∞n=1)ds

)
+ϵ

≤ 4

∫ t

0

(t− s)q−1α(T(t− s)f(s, {xn}∞n=1))ds+ ϵ

≤ 4M

Γ(q)

∫ t

0

(t− s)q−1L(s)α({xn}∞n=1)ds+ ϵ

≤ 4M

Γ(q)
α(B)

∫ t

0

(t− s)q−1L(s)ds+ ϵ.

From the fact that there is a continuous function ϕ : [0, 1] → R+ such that for any
γ > 0, ∫ t

0

(t− s)q−1|L(s)− ϕ(s)|ds < γ.

We choose γ < Γ(q)
4M and let M = max{|ϕ(t)| : t ∈ [0, 1]}, then

α(F 1B(t)) ≤ 4M

Γ(q)
α(B)

[∫ t

0

(t− s)q−1|L(s)− ϕ(s)|ds+
∫ t

0

(t− s)q−1|ϕ(s)|ds
]
+ϵ

≤ 4M

Γ(q)
α(B)

(
γ +

Mtq

q

)
+ϵ.

From ϵ > 0 is arbitrary, it follows that

α(F 1B(t)) ≤ (a+
b

Γ(q + 1)
tq)α(B),

where a = 4Mγ
Γ(q) , b = 4MM .

From Lemma 2.5, we know for any ϵ > 0, there exists a sequence {yn}∞n=1 ⊂
co(F 1B) such that

α(F 2B(t)) = α(Fco(F 1B(t)))

≤ 2α

(∫ t

0

(t− s)q−1T(t− s)f(s, {yn}∞n=1)ds

)
+ϵ

≤ 4

∫ t

0

(t− s)q−1α(T(t− s)f(s, {yn}∞n=1))ds+ ϵ

≤ 4M

Γ(q)

∫ t

0

(t− s)q−1L(s)α(F 1B(s))ds+ ϵ

≤ 4M

Γ(q)
α(B)

∫ t

0

[(t− s)q−1|L(s)− ϕ(s)|+ |ϕ(s)|](a+
b

Γ(q + 1)
sq)ds+ ϵ
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≤ 4M

Γ(q)
α(B)

[
(a+

btq

Γ(q + 1)
)

∫ t

0

(t− s)q−1|L(s)− ϕ(s)|ds

+M

∫ t

0

(t− s)q−1(a+
b

Γ(q + 1)
sq)ds

]
+ϵ

≤
(
a2 + 2a

btq

Γ(q + 1)
+

b2t2q

Γ(2q + 1)

)
α(B) + ϵ.

From ϵ > 0 is arbitrary, it follows that

α(F 2B(t)) ≤
(
a2 + 2a

btq

Γ(q + 1)
+

b2t2q

Γ(2q + 1)

)
α(B).

By the method of mathematical induction, for any positive integer n and t ∈
[0, 1], we obtain

α(FnB(t)) ≤
(
an + C1

na
n−1 btq

Γ(q + 1)
+ C2

na
n−2 b2t2q

Γ(2q + 1)
+ · · ·

+Cn−1
n a

bn−1t(n−1)q

Γ((n− 1)q + 1)
+ Cn

n

bntnq

Γ(nq + 1)

)
α(B).

Therefore, by Lemma 3.4 and Lemma 2.3, we get

α(FnB) ≤
(
an + C1

na
n−1 b

Γ(q + 1)
+ C2

na
n−2 b2

Γ(2q + 1)
+ · · ·

+Cn−1
n a

bn−1

Γ((n− 1)q + 1)
+ Cn

n

bn

Γ(nq + 1)

)
α(B).

Then from Lemma 3.4, there exists a positive integer n0 such that(
an0 + C1

n0

an0−1b

Γ(q + 1)
+ C2

n0

an0−2b2

Γ(2q + 1)
+ · · ·

+Cn0−1
n0

abn0−1

Γ((n0 − 1)q + 1)
+ Cn0

n0

bn0

Γ(n0q + 1)

)
= k < 1.

Then α(Fn0B) ≤ kα(B). From Lemma 2.7 we conclude that F has at least one
fixed point in B0, i.e. the nonlocal value problem (1) has at least one mild solution
in B0. The proof is completed.

Corollary 3.7. If the hypotheses (H1)-(H5) are satisfied, then there is at least
one mild solution for (1) provided that

∥m∥
L

1
p
< lim inf

T→+∞

[T −M(cT + d)](1 + η)1−pΓ(q)

MΩ(T )
. (4)

Proof. (4) implies that there exists a constant r > 0 such that

M(cr + d) +
MΩ(r)

(1 + η)1−pΓ(q)
∥m∥

L
1
p
≤ r.

Then by Theorem 3.6 we know the corollary is true.

4. An example

Let X = L2(Rn). Consider the following fractional parabolic nonlocal Cauchy
problem.{

Dqu(t, z) = (Lu)(t, z) + f(t, u(t, z)), t ∈ [0, 1], z ∈ Rn,

u(0, z) =
∑m

i=1

∫
Rn K(z, y)u(ti, y)dy, z ∈ Rn,

(5)
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where Dq is the Caputo fractional partial derivative of order 0 < q < 1, f is a
given function, m is a positive integer, 0 < t1 < t2 < · · · < tm < 1, K(z, y) ∈
L2(Rn ×Rn;R+). Moreover,

(Lu)(t, z) =
n∑

i,j=1

aij(z)
∂u

∂zi∂zj
(t, z) +

n∑
i=1

bi(z)
∂u

∂zi
(t, z) + c(z)u(t, z),

where given coefficients aij , bi, c, i, j = 1, 2, . . . , n satisfy the usual uniformly
ellipticity conditions.

We define an operator A by A = L with the domain

D(A) = {v(·) ∈ X : H2(Rn)}.

From [19], we know that A generates an analytic, noncompact semigroup {T (t)}t≥0

on L2(Rn). In addition, there exists a constantM > 0 such thatM = sup{∥T (t)∥; t ∈
[0,∞)} < +∞.

Then the system (5) can be reformulated as follows in X,{
Dqx(t) = Ax(t) + f(t, x(t)), t ∈ [0, 1],

x(0) = g(x),

where x(t) = u(t, ·), that is x(t)z = u(t, z), z ∈ Rn. The function g : C([0, 1], X) →
X is given by

g(x)z =

m∑
i=0

Kgx(ti)(z),

where Kgv(z) =
∫
Rn K(z, y)v(y)dy for v ∈ X, z ∈ Rn.

Let’s take q = 1
2 , f(t, x(t)) = t−

1
4 sinx(t).

Firstly, we have (H1) and (H3) are satisfied. Then from ∥f(t, x(t))∥ ≤ t−
1
4 , we

get (H4) holds with Ω(∥x∥) = 1. From ∥f(t, x(t))− f(t, y(t))∥ ≤ t−
1
4 ∥x− y∥∞ and

Remark 3.3 we get that (H5) is satisfied. Furthermore, note that Kg : X → X

is completely continuous and assume that c = m(
∫
Rn

∫
Rn K2(z, y)dydz)

1
2 , we get

(H2) is satisfied.
If Mc < 1, then there exists a constant r which satisfies (3). According to

Theorem 3.6, problem (5) has at least one mild solution provided that Mc < 1.
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