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STABILITY ANALYSIS OF THE FRACTIONAL-ORDER RLβCα

CIRCUIT

A. G. RADWAN

Abstract. In this paper, we will introduce a generic study of the series
RLβCα circuit in the fractional-order domain. The added two fractional-order

parameters (α,β) increase the degree of freedom in the design over the conven-

tional RLC circuit. Therefore, the total number of parameters becomes five
instead of three which means that the conventional RLC theorems and anal-

yses represent a point (1, 1) in the α-β plane. Stability study in the fractional

plane (F) and in the physical s-plane for different cases will be introduced. The
effect of the circuit values (R,L,C) on the poles of the characteristic equation

will be investigated for each case. The analytical formula of the poles in case
of equal fractional-orders will be also presented. Many examples showing the

magnitude and phase responses for the fractional-order RLβCα low-pass filter

(LPF) will be discussed to validate the previous stability analysis.

1. Introduction

Although fractional calculus was investigated during the same time period of
the conventional calculus, but the lack of applications and its complexity analysis
were the main reasons for the delay in the development of research in the area of
fractional calculus. [1]-[2]. Recently and during the last five decades, the fractional
calculus research topics in different fields were investigated again due to the discov-
ery of its major advantages over the conventional modeling techniques. In addition,
the behavior of many natural-phenomena as investigated by scientists in numerous
fields depends on global memory and the ability to use information from its previous
history which can be modeled as fractional-order differential equations. As known,
to calculate the fractional-order derivative of a certain function you need to know
all the history of this function unlike the integer derivatives which need only few
previous values for calculation. Besides the advantage of long-memory dependence
of the fractional-order modeling, the extra fractional-order parameters increase the
degree of freedom of the system which can be used for flexible design, investiga-
tion of new fundamentals, best experimental fitting, optimization, and adding extra
constraints.
The influences of fractional-order modeling are discussed in many established fields
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and generate new concepts such as the fractional-order circuit theories [3]-[4], con-
trol theory [5]-[6], bioengineering [7]-[8], electromagnetics and Smith chart [9]-[10],
chaotic systems [11]-[12], bifurcation maps [13], digital designs [14] and modeling
of botanical systems [15]. The main reason for the huge research interests in the
area of fractional-calculus comes from the approximation techniques for solving the
fractional-order differential equations [16]-[17], stability analysis [18]-[19], and also
from the numerous trials for the physical realizations of the fractional-element [20]-
[27].
In this paper, we will restudy the series RLC circuit in the fractional-order domain
and discuss the stability issues for different cases which are required for the design
of the fractional-order filters and oscillators. Many numerical examples will be in-
troduced to validate the analytical study. In addition the magnitude and phase
responses will be presented for several cases.

2. Fractional-order RLβCα circuit

The series fractional-orderRLβCα is shown in Figure 1, where the current flowing
in this circuit is given by

E(t) = Ri(t) +
1

CΓ(α)

∫ t

0

i(σ)

(t− σ)1−α
dσ + L

dβi(t)

dtβ
(1)

R

Zeq

L


E
Vo



C

Figure 1. The fractional-order RLβCα circuit

Based on the Laplace transform, and assume zero initial conditions, the input
impedance of the RLβCα circuit in the s-plane is

Z(s) =
E(s)

I(s)
= R+ sβL+

1

sαC
(2)

Therefore, the input-output relationship of the shown fractional-order low-pass
filter in the frequency domain is given by

G(s) =
Vo(s)

E(s)
=

1

1 + sαRC + sα+βLC
(3)

The frequency response of this filter was discussed before in [4] when α = β and
many interesting fundamentals are shown only in the fractional-order and not in
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the conventional RLC circuit. The stability analysis of the circuit is considered the
first step for designing and analysis. For simplicity, assume that

LC = τα+β

RC = kτα

τ =
(
LC
) 1
α+β

k = RC

(LC)
α

α+β

y = τs

(4)

Hence (3) can be rewritten as

G(y) = Vo(y)
E(y)

= 1
1+kyα+yα+β

(5)

From the general theorems of the fractional-order oscillators discussed in [3], this
system will oscillate with frequency ωo if and only if the following condition is met

ωo =
( −Rsin(0.5απ)
Lsin(0.5(α+β)π)

) 1
β

=
(−sin(0.5(α+β)π)

RCsin(0.5βπ)

) 1
α , α+ β > 2

(6)

From the previous equation, it is clear that the frequency ωo is proportional to
the factor ( 1

RC )
1
α which means that if α = 0.2, this term will be ( 1

RC )5. Therefore,
one of the main advantages of using fractional-order elements is that the frequency
of oscillation can be controlled from very low frequencies up to very high frequencies
only by choosing the appropriate value of α as shown from Figure 2.

Figure 2. The frequency of oscillation ωo surface versus the α−β
plane when LC = 10−6

Generally, the system has four different cases as follows (assume α < 1):

(1) β ∈ (0, 1 − α]: The system poles are in the non-physical s-plane (no poles
exist in the s-plane).

(2) β ∈ (1 − α, 1): The poles enter the physical s-plane. The system poles
in this case conditionally depend on k and cant oscillate. Therefore, the
system has poles in the s-plane when k ∈ [0, kmax] where kmax is given by
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[h]

Figure 3. The values of kmax and kmin versus β

kmax =
−sin((α+ β)π)(

sinβ(βπ)sinα(απ)
) 1
α+β

, α+ β > 1 (7)

(3) β ∈ [1, 2 − α): The poles always in the stable region of the s-plane are
(unconditionally stable) whatever the value of k.

(4) β ∈ [2 − α, 2]: The poles initially (k = 0) located in the unstable region
of s-plane and as k increases as the poles move toward the stable region.
Then, the system will be stable if the value of k ∈ [kmin,∞) where kmin is
given by

kmin =
−sin(0.5(α+ β)π)(

sinβ(0.5βπ)sinα(0.5απ)
) 1
α+β

, α+ β > 2 (8)

Table 1. The values of kmax and kmin versus β

Note that, the value kmin calculated in (8) has the same condition of oscillation
given before in (6). Table 1 and Figure 3 show the critical values of k for different
values of β when α = 0.4. Therefore, the range of β for positive kmax and kmin
from (7) and (8) will be (0.6, 1) and (1.6, 2) respectively. It is clear from the figures
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that kmax and kmin scan all positive values from 0 up to∞. Note that the y-axis in
Figure 3(b) is log-scale to illustrate the sensitivity effect of β on the value of kmin.

3. Stability analysis in the F plane

The poles of this system can be calculated from the characteristic equation 1 +
kyα + yα+β = 0 and using the proposed technique in [18]. Figure 4 shows the poles
in the F-plane when β = mα and F = yα = (sτ)α where the number of poles is
(m + 1) in the F-plane. Four different cases are discussed at m = 1, 2, 3, and 4 in
the range of k ∈ [0.005, 50].
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Figure 4. Poles in the F-plane of the characteristic equation 1 +
kF1 + Fm+1

1 = 0, where F1 = (sτ)α and β = mα in case of
m = 1, 2, 3, and 4
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When α = β, the two poles always exist in the left half F-plane. However, in
the coming cases, there are two poles in the right half F-plane and other poles one
at m = 2, two at m = 3, and three at m = 4 lie on the left-half F-plane. The poles
in the F-plane when α = mβ in case of m = 2 and m = 3, are shown in Figure 5.

4. Stability analysis in the physical s-plane

The stability analysis discussion in the F-plane has no meaning without mapping
these poles into the physical s-plane. When F = sα, the physical s-plane is confined
between the two angles ∠F = ±απ, where the mapping area depends on α. For
the conventional case, the F-plane will be the same as s-plane.

Figure 6. Poles in the conventional s-plane when the parameter
k ∈ [0, 10]

4.1. Conventional case (α = β = 1.0). For the conventional case when(α = β =
1.0) and LC = 10−6, the poles in the s-plane are shown in Figure 6. There are
three different cases:

(1) If k = 0, the system will oscillate with frequency ωo = 1√
LC

= 1000Rad/Sec.

(2) If k < 2, the two poles (conjugate) are decaying as k increases, and the
poles’ frequency is less than 1000.

(3) If k ≥ 2, the two poles are negative real values and no frequency component
exists.

4.2. Fractional-order stability analysis (α, β 6= 1.0). Without loss of general-
ity, let β = mα where m is real value and can cover all the range of β. Then using
F = yα the characteristic equation will be given by

1 + kF + Fm+1 = 0 (9)
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The previous equation is a polynomial, and has (m + 1) roots in the F-plane.
In addition, it depends only on k and m values. In order to get the poles in the
s-plane, a conversion-scheme must be applied. This conversion from the F-plane
into the s-plane can be divided into two steps. The first step is to select the poles
in the F-plane which is inside the conventional s-plane. This can be achieved by
picking-up all the poles whose angle satisfies the following relationship:

|∠F∗| ≤ απ (10)

Then, these poles can be mapped into the s-plane through

s∗ =
F

1
α
∗

τ
=

F
1
α
∗

(LC)
1

α+β

= (
F∗s

m+1
√
LC

)
1
α (11)

Figure 7 shows the poles in both the F-plane and the s-plane for four different
cases when α = 0.4 and LC = 10−6. Since α < 1, the physical s-plane will be a
part of the F-plane. As known, the four quadrants in the s-plane are separated by
the angles θs = 0,±π/2,and ±π (overlapped two lines). The angle θs = 0 is the
same as θF = 0. However, the internal dotted lines (with cyan color) represent
the lines θs = ±π/2, s = ±jω and the external dotted lines (with green color)
represent the θs = ±π (the negative real-axis, which are identical) in the s-plane.
For the following cases, we will fix α = 0.4 and discuss the effect of β on the poles
of different systems. For β = α = 0.4 < 0.5 all the poles will be outside the physical
s-plane. Thus, no physical poles will exist in the s-plane. As β increases, the poles
start to enter the physical s-plane as shown in Figure 6.

When β = 2α = 0.8, the poles exist in the physical s-plane for a very limited
range of k ∈ [0, 0.85] as shown in Figure 7(a) by the purple lines. When k = 0,
only two from the three poles located between the dotted lines are located in the
F-plane. These two poles are transformed into two conjugate poles in the s-plane
(red circles). As k increases, the poles in the F-plane move away from the dotted
lines and the third real pole move right toward zero. In the s-plane, as k increases
(k < 0.85) the conjugate poles in the s-plane become closer. Moreover, the poles
frequency decreases until the poles overlap at k = 0.85. When k > 0.85, the system
is stable but there is no poles in the physical s-plane.

Figure 7(b) shows the poles in case of β = 3α = 1.2, where two poles from the
four poles are always between the dotted lines in the F-plane. Therefore, at any
value of k there are two conjugate poles in the s-plane which are always located in
the second and third quadrants. Since there is no intersection between the poles and
the cyan dotted lines (s = ±jω), then the system cannot oscillate for any positive
k. Another difference between this case and the previous one is as k increases
the distance between the conjugate poles in the s-plane increases, i.e. the poles
frequency increases as k increases.

When β = 4α = 1.6, as in the previous case two poles are always inside the
physical s-plane, however the system can oscillate with frequency ωo = 1√

LC
=

1000Rad/Sec when k = 0, which is clear from the intersection between the poles
(purple lines) and the cyan dotted lines in the F-plane as shown in Figure 7(c). In
the s-plane, the poles starts from the ±jω axis and separates away as k increases.
If β = 5α = 2.0, there are six poles in the F-plane for each value of k, two of them
always located between the dotted lines. But, they are inside the inner dotted lines
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(cyan color), which will be mapped into the unstable region in the s-plane as shown
in Figure 7(d).

In the integer-order case (α = β = 1) the properties of the poles depend on the
parameter k only. However, in the fractional-order case, the two extra parameters
which are added affect the system poles. From Figure 7 (α = 0.4), many systems
which have only two conjugate-poles are introduced, and none of them have real
poles. They are conveying different properties such as: stable or conditionally stable
or unstable. Moreover, the poles frequency increases or decreases as k increases and
with different ranges.

Five different cases are discussed for this fractional-order system as in Figure 7,
which are:

(1) No poles inside the s-plane as in the case when β = α = 0.4 independent
of k

(2) Poles inside the s-plane exist only in a certain range of k, as in the case
when β = 2α = 0.8

(3) Poles exist in the s-plane independent of k without the possibility of free
oscillations |∠θs| > π/2, as in β = 3α = 1.2

(4) Poles exist in the s-plane independent of k with the possibility of free os-
cillations |∠θs| > π/2, as in β = 4α = 1.6

(5) Poles always inside the left-half s-plane independent of k, as in the case
when β = 5α = 2.0

4.3. When α = β with Fixed k. In the case when α = β, the input output
relationship will be reduced to:

G(s) =
Vo(s)

E(s)
=

1

1 + k(τs)α + (τs)2α
=

1

1 + kF + F 2
(12)

Where LC = τ2α, RC = kτα, τ = (LC)
1
2α , k = RC√

LC
= R

√
C
L , F = (τs)α.

Therefore, the poles in the F and s planes can be given by

F =
1

2
(−k ±

√
k2 − 4) = (τs)α = sα

√
LC (13)

s∗ =
( 1

2
√
LC

(−k ±
√
k2 − 4)

) 1
α = |s1|

1
α e±

jθs
α (14)

For k < 2, the poles in the F-plane are conjugate poles, but in the case of k ≥ 2
the poles will be located in the negative real F-axis. When α < 1, the negative real
F-axis will be always outside the physical s-plane. Thus, poles could appear in the
s-plane only when k < 2. Figure 8, illustrates the poles locations in the s-plane for
four different cases of k and when α = β. In each case of k, there is a certain range
of αmin < α < 1, at which the system has poles in the s-plane. For example, when
k = 1 the poles in the s-plane are as follows:

s∗ =
( 1

2
√
LC

(−1± j
√

3)
) 1
α =

(e± j2π3√
LC

) 1
α (15)

Due to the boudary phase condition |θs| < π, the poles will appear if and only
if α > αmin = 2

3 as shown in Figure 8. Generally, as the value of k increases,
the range of α = β for which poles exist in the physical s-plane decreases. As k
approaches 2, this range shrinks into one point at α = 1. In addition, the shape
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Figure 8. Range of the fractional-order at which poles exist in
the s-plane when α = β for different cases of constant k

of the poles has a peak at a certain value of α = α∗ at which the tangent will be
horizontal. The poles can be rewritten in the form

s∗ = |s1|
1
α (cos(

θs
α

)± jsin(
θs
α

)) = σ ± jω (16)

Then at α = α∗ , ∂ω/∂α = 0, therefore

tan(
θs
α∗

) = − θs
ln(|s1|)

(17)

α∗ =
θs

tan−1( −θs
ln(|s1|) ) + nπ

, n = 0, 1, 2, .....αmin < α∗ < 1 (18)

In the special case when k = 1 and LC = 10−6, the value of α∗ = 0.7356 at
which the poles are s∗ = −11461± j3475 as shown in Figure 8.

5. Magnitude response

For the fractional-order low-pass filter shown in Fig.1, the magnitude response
is given by

G(jω, α, β) = [1 + ωαRCcos
(απ

2

)
+ ωα+βLCcos

( (α+ β)π

2

)
.

+j
(
ωαRCsin

(απ
2

)
+ ωα+βLCsin

( (α+ β)π

2

))]−1
(19)
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|G(jω, α, β)| = [1 + 2ωαRCcos(
απ

2
) + 2ωα+βLCcos(

(α+ β)π

2
).

+ω2αR2C2 + ω2α+2βL2C2 + 2ω2α+βRLC2cos(
βπ

2
)

]−1
2

(20)

Figure 9 shows the magnitude response of the fractional-order RLβCα circuit
for different values of k. It is shown from this figure that as k is very small and
(α+ β) > 1 the response has peaks and these peaks vanish as k increases. For the
first two subplots when β = 2α = 0.8 and β = 3α = 1.2, the systems are stable
(unconditionally stable). However, as β increases, the peak values increase which
shift the poles toward the unstable region of the s-plane. In addition, some of these
cases have poles in the physical s-plane and some do not.

10-4 10-2 100 102 104 1060

0.2

0.4

0.6

0.8

1

Frequency (Hz)

|G
(j


, 
, 

)|

LC=10-6

=0.4
=0.8

k=50

k=10

k=1

k=0.001 k=0.1

10-4 10-2 100 102 104 1060

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frequency (Hz)

|G
(j


, 
, 

)|

k=0.001LC=10-6

=0.4
=1.2

k=50

k=10 k=1

k=0.1

(a) (b)

10-4 10-2 100 102 104 1060

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frequency (Hz)

|G
(j


, 
, 

)|

 

 

k=0.1

LC=10-6

=0.4, =2.0 k=0.001

k=1
k=10

k=50

10-4 10-2 100 102 104 1060

0.2

0.4

0.6

0.8

1

Frequency (Hz)

|G
(j


, 
, 

)|

k=0.001
k=0.1

k=0.5

k=1

k=5

k=10

k=50

LC=10-6

==0.5

(c) (d)

Figure 9. The magnitude response of the fractional-order LPF
for different relationships between α and β

When β = 5α = 2.0, the system becomes unstable as clear from its magnitude
response shown in Figure 9(c) where the response has a huge peak for any value
of k. In addition, Figure 9(d) shows the magnitude response in case α = β = 0.4
where the system doesnt have any peaks since no poles exist in the physical s-plane
as verified before.
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Figure 10. The magnitude response of the fractional-order LPF
when β = 4α = 1.6

Figure10 illustrates the behavior of the fractional-order LPF when α + β = 2.0
where the system oscillates when k = 0 as shown from the first subplot. Note
that all systems in Figure10 are stable and as k increases the poles move from the
±jω axis toward the stable region of s-plane. As k increases to 1.6 the peak of the
magnitude response becomes smaller and the LPF effect appears. When k = 1,
the peak has a reasonable value and as k becomes 10 these peaks almost vanish as
shown in Figure10.

Conventionally, when the system oscillates, the magnitude response should be
impulse as shown in Figure 10 when k = 0.001 where the system is very close to
oscillate. Therefore, the peaks in Figures 9 and 10 reflect that the system is very
close to the oscillation condition (may be from the stable side or from the unstable
side). As long as the peak is high relative to other values, then systems poles are
more close to the jω axis. From Figure 9(b), when β = 3α = 1.2 the system is
stable when k = 0.001. However, for Figure 9(b) the system is unstable for all k
when β = 4α = 2.0.

6. Phase response

Similarly, the phase response of the RLβCα can be calculated from

tan(∠G(jω, α, β)) =
ωαRCsin(απ2 ) + ωα+βLCsin( (α+β)π

2 )

1 + ωαRCcos(απ2 ) + ωα+βLCcos( (α+β)π
2 )

(21)
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Figure 11. The phase response of the fractional-order LPF for
different relationships of α and β

Figure 11 shows the phase response for β = mα = 0.4m where m = 2, 3, 4, and 5.
The phase response begins at zero and as ω increases the phase reaches the value of
(−(α+ β)π/2) except in the unstable case shown in the last subplot β = 5α = 2.0.
In this case, as k tends to zero, the phase response changes from zero angle up to
π suddenly which is the case of oscillation. However, in the case β = 5α = 2.0 the
system performance was abnormal since the phase goes down a little bit and then
goes up to positive values which is unacceptable in the LPF systems. Therefore,
Figure 11 discusses the response of four different cases

(1) Unconditionally stable with and without poles in the physical s-plane when
(α, β) = (0.4, 0.8).

(2) Conditionally stable depends on the value of k but without oscillation when
(α, β) = (0.4, 1.2).

(3) Conditionally stable depends on the value of k but with the possibility of
oscillation when (α, β) = (0.4, 1.6).

(4) Unconditionally unstable when(α, β) = (0.4, 2.0).

7. Conclusion

In this paper, we studied the behavior of the conventional RLC in the fractional-
order sense where two different orders are imposed for the inductor and the capacitor
as RLβCα. Stability analysis and the locations of poles in the physical s-plane
are discussed with several cases showing four different scenarios. The first scenario
where the system doesnt have any poles in the physical s-plane , the second scenario
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where the poles exist in a confined range of k, the third scenario when the poles
always exist in the physical s-plane independent of the value of k, and the final
scenario when the poles exist in the physical s-plane with conditional stability
according to the value of the parameter k. Several examples are introduced for
these four scenarios including the oscillation condition and the limits of k for each
scenario. The magnitude and phase response of the fractional-order LPF are also
presented to verify the previous discussions.
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