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EXISTENCE RESULTS FOR FRACTIONAL IMPULSIVE
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

A. ANGURAJ, M. C. RANJINI

ABSTRACT. This paper is mainly concerned with the existence of solutions of
impulsive fractional neutral functional differential equations in Banach Spaces.
The results are obtained by using Krasnoselskii’s fixed point theorem.

1. INTRODUCTION

Fractional differential equations arise in many engineering and scientific dis-
ciplines as the mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of a complex medium, polymer
rheology, etc., involves derivatives of fractional order. Fractional differential equa-
tions also serve as an excellent tool for the description of hereditary properties of
various materials and processes. Though the concepts and the calculus of fractional
derivative are few centuries old, it is realized only recently that these derivatives
form an excellent framework for modeling real world problems.

In the consequence, fractional differential equations have been of great interest. For
details, see the monographs of Kilbas et al.[1], Lakshimkantham et al.[2], Miller and
Ross [3], Podlubny [4] and the papers in [5, 6, 7, 8, 9, 10] and the references therein.
On the otherhand, the theory of impulsive differential equations is also an impor-
tant area of research which has been investigated in the last few years by great
number of mathematicians. We recall that the impulsive differential equations may
better model phenomena and dynamical processes subject to a great changes in
short times issued, for instance, in biotechnology, automatics, population dynam-
ics, economics and robotics. To learn more about this kind of problems, we refer to
the books [11, 12]. So we propose to study fractional differential equation subject
to a finite number of impulses.

Recently, the study of impulsive differential equations has attracted a great deal of
attention in fractional dynamics and its theory has been treated in several works
[13, 12]. Balachandran and Trujillo [7] investigated the non-local Cauchy poblem for
non-linear fractional integro differential equations in Banach Spaces and in [14], Bal-
achandran, Kiruthika and Trujillo obtained existence results for fractional impul-
sive integrodifferential equations in Banach spaces and in [6], Agarwal, YongZhou,
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YunYunHe proved the existence results of fractional neutral functional differential
equations which motivates our present work to study the existence of solutions of
fractional impulsive neutral functional differential equations in Banach Spaces by
using fixed point theorems.

In this paper, we consider the fractional impulsive neutral functional differential
equations with bounded delay of the form

‘DY(x(t) — g(t,z)) = A(t, )z (t) + f(t, 1), t € (to,00), to >0, t # 1y
Azli—y, = Ii(x(t,)), t=1tr, k=1,2,....m (1)

'Ttg:qs

where ¢D® is the standard Caputo’s fractional derivative of order 0 < a < 1, f, g :
[to, +00) X C([—r,0],R™) — R™ are given functions, a > 0 and ¢ € C([-r,0],R").
If © € C([to—r,to+a],R™), then for any t € [tg, to+a], define z; by z:(6) = z(t+0),
for § € [—r,0]. Let A(t, z) be a bounded linear operator on a Banach space R™ and
I R — R™ Ax(ty) = z(t)) — z(t,) with x(t]) = limy, o+ 2(ty + h),z(t;,) =
limy,_,g- x(tk — h),k‘ =1,2,....mfor tyg < t; <ty < ...<tm.

2. PRELIMINARIES

Let J C R. Denote C(J,R™) be the Banach space of all continuous functions
from J into R™ with the norm ||z|| = sup,c;|z(t)|, where |.| denotes a suitable
complete norm on R™. Let B(R™) denote the Banach space of bounded linear op-
erators from R”™ to R™ with the norm || A||ggn) = sup{HA(y)H Syl = 1}.

Also, consider the Banach space

PC(JR") ={z:J = R" : z € C((tk, tit1],R™), k = 0,1,...,m and there exist
z(tf) and z(ty ), k =1,2,..m with z(t; ) = () }

with the norm ||z||pc = sup,¢; |2(t)].

Definition 1([1]). The Riemann-Liouville fractional integral operator of order
q > o with the lower limit ¢ for a function f is defined as

1 t
I1f(t) = —/ (t—s)T f(s)ds, t >t
I(q) Ji,
provided the right-hand side is pointwise defined on [tg, 00), where I" is the gamma
function.

Definition 2([1]). The Riemann-Liouville (R-L) derivative of order ¢ > 0 with
the lower limit ¢y for a function f : [tp,00) — R can be written as

1 oan
Dif(t :7—/ t—s) "IV f(s)ds, t > tg, n—1<q<n.
0= Fmgy i . ")

The most important property of R-L fractional derivative is that for ¢ > ¢y and
q > 0, we have D?(I9f(t)) = f(t), which means that R-L fractional differentiation
operator is a left inverse to the R-L fractional integration operator of the same
order q.
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Definition 3([1]). The Caputo fractional derivative of order ¢ > 0 with the
lower limit ¢y for a function f : [tp,00) — R can be written as

1 t
Dif(t) = / (t— s)("_q_l)f(")(s)ds = [(n=a) f(n) t), t>ty, n—1<g<n.

I'(n—q) to

We shall state some properties of the operators I and ¢D®.

Proposition 1([1, 2]). For «, 8 > 0 and f as a suitable function, we have
(i) I°I7f(t) = I°*P f(t)
(i) I°I°f(t) = I°I* f(t)
(iil) I*(f(t) + g(t)) = I*f(£) + I%g(t)
(iv) 1% °Df(t) = f(t) — F(0),0 < a < 1
(v) “DI*f(t) = f(t)
(vi) <DYf(t) = IO=IDf(t) = 11" f'(t),0<a<1,D=4
(vil) ©D* ©DA (1) # °D(@+) (1)
(viii) D™ ¢DPf(t) # D" <D f(t)
In [7], Balachandran and Trujillo observed that both the R-L and the Caputo
fractional differential operators do not possess neither semigroup nor commuta-
tive properties, which are inherent to the derivatives on integer order. For basic

facts about fractional integrals and fractional derivatives one can refer to the books
[1, 3, 4, 10].

Lemma 1 (Krasnoselskii’s Fixed point theorem)([17]). Let X be a Banach
space, let E be a bounded closed convex subset of X and let S, U be maps of
F into X such that Sx + Uy € E for every pair z,y € E. If S is a contraction
and U is completely continuous, then the equation Sz+Ux = x has a solution on E.

Lemma 2([15]). Let ¢ > 0; then the differential equation °*D?h(t) = 0 has
solution
h(t) =co+cit+eat? + ... +cp1t" e €Ri=0,1,2,...,n—1,n=[q] + 1.

Lemma 3.([15]). Let ¢ > 0, then
I19¢DYh(t) = h(t)+co+ecit+cat?+...4cp1t" L, for some ¢; € R,i = 0,1,2,...,n—
I,n=[q]+1.

3. EXISTENCE RESULTS

Let IO = [to,to =+ 5]
B(6.7) = {x € Cllto — 1, to + 81, B")| 2, = 6, supy,<ycry 5 la(t) — 6(0)] < 7}
where 9, are positive constants.
For the forthcoming results, we need the following hypothesis:

(H1) f(t,¢) is measurable with respect to ¢t on Ij.

(Hs) f(t, ) is continuous with respect to ¢ on C'([—r,0],R™).

(H3) there exist oy € (0, ) and a real-valued function m(t) € Lar (Ip) such that
for any x € B(d,7), |f(t,z)] < m(t), for t € Iy.

(Hy) for any x € B(d,7), g(t,z) = g1(t,x¢) + 92(t, z4).
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(Hs) ¢1 is continuous and for any z’, 2" € B(4,7),t € Iy,
91(t,2) — gu(t, )| < ]’ — a”||, where L € (0,1).

(Hg) g2 is completely continuous and for any bounded set A in B(J, ), the set
{t = ga(t, ;) : € A} is equicontinuous in PC(Iy,R").

(H7) A: Iy x R" — B(R") is a continuous bounded linear operator and
there exists a constant Ly > 0 such that ||A(t,z) — A(t,v)|| < Lil|z — yll,
for all z,y € R™.

(Hg) The functions I : R® — R™ are continuous and there exists a constant
0 < Ly < 1such that || I (u)—Ix(v)|| < %||u—v||,u,v eER™ k=1,2,...m
m > 0.

Lemma 4 If there exist 6 € (0,a) and v € (0,00) such that (Hy) — (H3) are
satisfied, then for ¢ € (tg,to + 9], the equation (1) is equivalent to the following
equation.

$(0) + g(t, xt> 9(to, ) + sy Joy (t = )27 f(s,5)ds

+F(a fto a 1A(S LE) (s)ds, te [tovtl]
x(t) = q¢(0)— gﬁo,¢)%fgaazt)+—f&3§jhﬁjk<tﬁ% ltk—fs yo= 1f(sag)ds (2)
+ﬁ fttk (t—s)* " Lf(s,z5)ds + ﬁzmdmt j;k (ks — VoL A(s, z)x(s)ds

ety Sl (= )0 A, ) (s)ds + Yy 2y r Tn((t k)), t € (tg, trii]
xto - ¢

Proof. Suppose that x satisfies the equation (1), then we have
if t € [to, 1],

w(t) = g(t,x) +

1 ' a—1 L ' _Safl s.x)z(s)ds — ¢
i 6= s+ s [ -) A<7><>d(3) :

for some ¢y € R.
Ifte (t17t2]7

1 ' a—1 1 t o a—1 B
T(a) /t1 (t—1s) f(s,xs)ds—i—@/ (t —s)* " A(s,z)x(s)ds — dy

t1

m(t) = g(taxt) +

for some dy € R.
Consider,

"E(t—li_) g(tlvajtl) 7d0

— " —5)* L f(s,24)ds
oy . (09 s +

i [ 6= A (s — o

to

w(ty) = glty,z,) +



JFCA-2012/3 EXISTENCE RESULTS 5

We know that Az|i—;, = x(t]) — z(t]) and Ax|i—y, = Li(2(t])).

a(t)

= g(t,z) + ﬁ/t (t—s)* 1 f(s,25)ds + L /t (t —s)* L A(s, x)x(s)ds

I'(«)
Hh(2(t7) + 2(t7) = gt )

= g(t,ze) + ﬁ/t (t—s)* 1 f(s,25)ds + L /t (t —s)* L A(s, x)x(s)ds

I'(«)
Fh(a() + ﬁ / (- 5)* 1 (s, xa)ds + ﬁ / (b - 5)*
A(s,x)z(s)ds — co

Ift e (tz,t3]7

x(t)

=g(t,x:) + L/t (t—s)* 1 f(s,25)ds + L /t (t —s)* L A(s, x)z(s)ds — eg

I'(a) I(a)

for some ey € R.

€ (t2 )
= g X + 71 - — S 1 (s, ds
(t27 tg) F( ) ‘/trl (t2 ) ( 9 s)

a(ty)

g(t27xt2) — €9

1 " a—1 _ 1 t1 a1

+I‘(a) /t1 (ta —5)* " A(s,x)x(s)ds + I (x(ty)) + o) /to (ty — )1 f(s,25)ds
1 " a—1 _

+1’\(a) /t0 (t1 —s) A(s,x)x(s)ds — ¢o

In view of Ax|i—y, = z(t]) — 2(t; ) and Ax|—s, = I>(2(t;)), we have

x(t)

gt z) + / 9T ds+@/t(t_s)a-%,m(s)ds

+a(tf) — (tz Tiy)

g(t,z) + —/ (t—s)* 1 f(s,25)ds + ﬁ/t (t —s)* L A(s, x)x(s)ds

Ha(e(3) + / Q(tz—s)“*f(s,mdﬂﬁ /t (s — 51 (s, hn(s)ds
+1(x(t))) + F(la)/l(h—S)alf(s,xs)ds

1 h a—1
+m /to (t1 — s)* T A(s,z)z(s)ds — co



6 A. ANGURAJ, M. C. RANJINI JFCA-2012/3

Applying initial conditions on equation (3), we have

() = $(0) — glto,d) + g(t,z) + ﬁ / olm e (s, s
F(la) / 2(t2 — s)o‘_lf(s,xs)ds + ﬁ /t (t— s)o‘_lf(s, xs)ds
+ﬁ /tolm — $)2 A(s, 2)a(s)ds + ﬁ / 12(7:2 — 5)2LA(s, ) (s)ds
—|—ﬁ /t (t—s8)* L A(s, 2)x(s)ds + I (x(t]) + La(z(t5)).

Proceeding like this, we get

w(t) = 9(0) ~ glto,0) +g(tm) + o D / (- 9 (s )

(a) to<tr <t

te—1
1 ¢
—i——/ (t—8)* " f(s,x5) ds—|— Z / (tr — 8)* Y A(s, z)z(s)ds
L) Ji, t <tp<t’tr—1

+%/ (t_s)aflA(s’x)x(s)ds—F Z I (z(t),)).

F( ) bk to<tp<t

Conversely, assume that x is a solution of equation (2).
If t € [to,t1], then z;, = ¢ and using the fact that °D® is the left inverse of I*,we
get
cD¥(x(t) — g(t,xs)) = A(t,z)x(t) + f(t, z¢) for each t € [to, t1].

If t € (te,tr+1],k = 1,2,...,m and using the fact that <D*C = 0, where C' is
a constant, we get “D(x(t) —g(t, x¢)) = A(t, z)x(t) + f (¢, z¢) for each t € (tg, tpy1]-

Also, we can easily show that Az|i—, = Ii(z(t;)), k= 1,2,.
Therefore, x is a solution of equation (1).

Also by (Hi) and (Haz), we get that f(t,z:) is Lebesgue measurable on . A

direct calculation gives that (¢t — s)~! € LT ([to,t]), for t € Iy. By Holder’s
inequality and by (Hj3), we get that

/ (= 5)* 7 f (s, @) lds < [|(t = 5)" 7] [Imll 4

LT ([to;t]) Le1 (Io)

which means that (¢t —s)*~! f(s, zs) is Lebesgue integrable with respect to s € [to, t]
for all t € Iy and = € B(4,7) , where

[1F|| ey = (f; |F(2) |pdt)%, for any LP-integrable function F : J — R.
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Theorem 1 Assume that there exist 6 € (0,a) and v € (0, 00) such that (H;) —

(Hg) are satisfied, then the IVP(1) has at least one solution

fU(t) = ¢(0) — g(to, ®) + gt xe) + Tiay Ptg<tovt ftk (e — )" f(s,25)ds
(1a fti t—s)*7 f(s,25)ds + ﬁ Dto<ti<t ftk 1 (te — s)* "1 A(s, z)2(s)ds
1y Jo (8= 9T A, 2)2(5)ds + iy <o In (2 (1)-

Tty = @

on [to,to + 1] for some positive number 7.

Proof. From (H,), equation (4) is of the form,

z(t) = #(0) — g1(to, @) — g2(to, @) + g1(¢, 21) + ga(t, 1)
+ﬁ Dto<ti<t ﬁ:t:,l (tr = 8)* ' f(s,24)ds
fttk (t —s) a_lf(s xs)ds + ﬁ Doto<ts <t ftk . V2L A(s, x)z(s)ds
+1‘(a ftk ) A(s, o) (s)ds + Zt0<tk.<t I (2(ty, ))7 t eIy
to = ¢

Let ¢ € B(8,7) be defined as ¢y, = ¢, p(to +t) = $(0),V t € [0,6].

]
If x is a solution of the equation (1), let us assume that x(tg+t) = ¢(to+t)+y(t),t €

[*’I", (ﬂ, then we have Tto+t = ¢t0+t + Yt t e [O, 5]
Therefore, the above equation becomes,

y(t) = —gito,d) — ga(to, 8) + grto +,ys + Do rt)) + 92 (to + £, Y1 + Gro41))
1 tk ~
+F7 Z / (tx — S)Q_lf(to + 8, Ys + O(to+s))ds
(a) to<tp<t”le—1
1 ¢ L _
__ _ \a—
*N@Lﬁ $)* 7 (to + 5,95 + Do) ds
1
Z / (tx — 5)* " Alto + s, 2)a(to + s)ds
F( to<tp<t”le—1
1 ¢ L
|
F(a) / (t 5) (tO + s, .’I?).T(to + s)dg
to<trp<t

According to (Hs) and (Hg), g1 and g2 are continuous, x; is continuous in ¢, there

exists § > 0, when 0 <t < 5,,

lg1(to + 1,y + (E(toth)) —g1(to, 9)| <

]2

and
lg2(to + 1,y + 5(to+t)) — g2(to, 9)| < %
Choose

_ s (@A +B)' N mrmtan I(a+1) 1
n_{m’( 5M(m +1) ) ’(5(Lw+k)(m+1)>}

(4)

(5)
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where 3 = 1_;11 e (-1 )aHdM—HmHLal( L)’
Define E(n,v) as E(n,v) = {y € PC([-r,n],R™)|y(s) =0 for s € [-r,0] and ||y|| <
7}

Clearly, E(n,~) is a closed bounded and convex subset of PC([—r, ], R™).
Now, we introduce the operators S and U on E(n,~) as follows:

Su(t) = {0, te -0 )
—g1(to, @) + g1(to +t,yt + dto4t)), t € [0,7]
0, t € [-r0]
—92(to, ®) + g2(to + 1 yt + 5 (to+1))
+ﬁ Zto<tk<t Lk . ) 1f@O"'S ys+¢ to +s))ds

+ﬁ fttk(tis a— 1f(t0+53ys +¢(t0+s))ds
+F(1a) Zt0<tk<t ‘ftk (tx — 5)* T A(to + s, 2)2(to + s)ds
+ ey ftk yo 1A(to + s, @)t + s)ds + 3, oy oo Ie(x(ty)), t € [0,7).

Then, y = Sy + Uy has a solution on E(n,v) iff y is a solution of equation (6).
Thus, z(to + t) = y(t) + ¢(to + ¢)

is a solution of equation (1), on [0, 7).

Therefore, if y has a fixed point in E(n,~), then there exists a solution of the
equation (1).

So, now, we have to prove that S + U has a fixed point in E(n,~).

For brevity, let us take k = sup,¢; ||A(t,0)]].

From (H7),

At 2)l] < ||A(t,2) — A(L,0)]| + [[A(, 0)]
S Ll’)’ + k.
The proof is divided into three steps.
Step 1. To prove Sz + Uy € E(n,~) for every pair z,y € E(n,7).
Since, z,y € E(n,7), (Sz+Uy)(t) = 0,t € [-r,0]. Obviously, Sz+Uy € PC([—r,n],R™).
Consider,
S2(t) + Uy(t)] < | = g1(to, ®) + g1(to + .yt + Biepr))|
+| = g2(to, @) + galto + t, yr + d(+1))|

tr

/ (tx — 8)* Ao + s, 2)|| [|z(to + 5)||ds

th—1

1
T

to<trp <t

1 t o
+F(a>/(t5) 1 Alto +s,2)] [[2(to + 5)]|ds

Z / [(t — s)*~ lf(t0+5,ys+¢(to+s))\d5

1
«
( to<tp<t”lh—1
1

F(a) /k|(ts)a1f(to+s,ys+$(to+s))|ds+ Z [T (z ()]

to<tp <t
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1 ¢ o
F(a)(Ll'y—Fk)v/tk(t—s) Lds
1

) > / ’f_slo”)

to<tp<t te—

1—0(1

l1—ay t [e5}

1 t a-1 a1
+F(a)</tk(t—s)1al) ( 5 m(s)=1 ) + Loy
< X (m+1)n
- 5 D(a+1)
M(m + ]_) 7](14’5)(17041)
[la)  (1+p)tmn

(Liy + k)Y

+

+ Loy

< v

Therefore, ||Sz +Uy|| = sup¢jg  [S2(t) + Uy(t)| < v which means that Sz + Uy €

E(n,~) for any z,y € E(n,7).
Step II To prove S i is a contractlon on E(n,7).

Let 4,y € E(m,7),Y; + Bteott)s Y + Bltorr) € B(6,7). From (Hs), we have

1Sy (1) =Sy (1) = lg1(to +t, 5, + Srrorey) — 91(to + 1,5, + Disese))]
<y -yl

which implies that ||Sy'—Sy" || < ||y’ —y"||, where 0 < [ < 1. So, S is a contraction
on E(n,7).

Step III. To prove that U is a completely continuous operator.

Let

0tel-r0
Uy(t) = Y
ly( ) {_92(150’ d)) —+ g2(t0 + &y + ¢(t0+t))7 te [0777]

and

0tel-r0
5 Sttt Jo (b= 9)° 7 f(to + 5,95 + G(to + 5))ds
Usy(t) = Q-+ i (t— 52" f(to + 5,95 + Oto + 5))ds
+ﬁ Dto<ti<t j;t:_l (tr, — 8)* 1 A(to + s, z)x(to + s)ds
gy (= )T At + s, 2)a(to + 8)ds + 0, oy, o Tr(a(t), t € [0,7).

Clearly, U = Uy + Us.

Since, g5 is completely continuous, U is continuous and {Uly cy € E(n, ’y)} is uni-
formly bounded. From (Hg), we can conclude that U; is a completely continnuous
operator.
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On the otherhand, for any ¢ € [0, 7], we have

[|U2y(t)]] < ) Z |(tk—5)04 1f(t0+s y6+¢(t0+8))|d$
<t/te—1
Lo
Pi/ —8)* 7 f(to +, ys+¢(t0+8))|ds
1 tr
Ty, 2 / (tx = 8)* M Alto + s,2)|| |lz(to + s)||ds
to<tp<t?trk—1
1 ' a—1
+@/(t_5) |A(to + s, )] [|z(to + 5)||ds
122
+ 2 )
to<tp<t

M(m + 1) p(t+Ad—e)

S T e
m%w +k)v+ Loy
<

Hence, {Usy : y € E(n,v)} is uniformly bounded.
Next, we have to prove that {Ugy y € E(n,y } is equicontinuous.

For any 0 <t; <ty <nandy € E(n,v), we get that

|Usy(ta) — Uay(t)| < ﬁ toq;g tl/ |(tr — 8)“  fto + 8,ys + ¢ to + s))|ds
s /tl[(t2 —5)°7 — (t — ) Y|f (to + 5,ys + Sto + 5))|ds
T(a) J, RO

ey L st Gt + )l

" (1a) t0<t;2 tl/ [tk = 5)° 7 Alto + s, 0)a(to + )lds
1 " a—1 a—1
F(a)/ [(t2 — s) — (t1 — ) || A(to + s, 2)|| ||=(to + 9)||ds

1 b2 o
iy L 2= A+ 5,2l o + )ds

+ Y M)

to<tp<tz2—t1
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1 t .
< L / (b — ) F(to + 5,55 + dto + 5))|ds

F(Oé) to<tp<ta—ty Y k-1

+M(/t1 (t — 5)% — (ts — s)ﬁds)l_al

Lla)\ i,

A ey

+ﬁ tm;g tl/ |(ts — s)* T A(to + s, )z (to + 5)|ds
Rt~ ) = (1 - 10" + 202 - 1))

+ D k()]
to<tp<ta—t1
The right-hand side tends to zero as to—t; — 0, which means that {Ugy cy € E(n, 'y)}
is equicontinuous. Also, it is clear that Us is continuous. So, Us is a completely
continuous operator. Thus, U = U; + Us is a completely continuous operator.

Therefore, by Krasnoselskii’s fixed point theorem S + U has a fixed point on
E(n,~) and hence the equation (1) has a solution z(t) = ¢(0) 4+ y(t —to), for all ¢t €
[to, to+n]. Since, n is arbitrary, the equation (1) has a solution z(t) = ¢(0)+y(t—to)
for all ¢ € [tg, 00).

This completes the proof.

In the case where g; = 0, we get the following result.
Theorem 2 Assume that there exist 6 € (0,a) and v € (0, 00) such that (Hy)—(Hs)
hold and (H;) g is continuous and for any ',z € B(4,7), t € I
l91(t.2}) — g1 (t.2)| < Ulla’ — ||, where L € (0,1).
Then the equation (1) has atleast one solution on [tg, to + 7] for some positive num-
ber 7.

In the case where go = 0, we have the following result.
Theorem 3 Assume that there exist ¢ € (0,a) and v € (0, 00) such that (H;)—(Hs)
hold and (Hg) g is completely continuous and for any bounded set A in B(6,7),
the set {t — g(t,zy) 1 x € A} is equicontinuous on PC(Iy, R™).
Then the equation (1) has atleast one solution on [tg,tg + 1] for some positive
number 7.

4. EXAMPLE

Consider the following fractional differential equation with impulsive conditions
of the form

CDQ({,L'(t) — %) = %Slnm(t)m(t) + %, te (0,00), whe'f'e tO = 0
_ =3I

Azli=y = g et

zo = ¢ [-1,0]

(7)
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where 0 < o < 1. Take =1 so that Iy = [0, 1].
Also, we choose o = %,al =lsothat f==2,7p=1and v=1.
Clearly, we have L1 = é,l = an = %.

Here k = § and M = 0.0816543 < 7.
If we take m = 1, all the conditions of theorem [1] are satisfied. Hence, by the
conclusion of theorem [1], the problem (7) has a solution on [0, 1].

3
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