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GENERALIZED SOLUTIONS FOR FRACTIONAL NONLINEAR

DISPERSIVE EQUATIONS

YANQIN LIU

Abstract. In this paper, homotopy perturbation method is implemented to
obtain generalized solutions of fractional nonlinear dispersive equations. Some

examples including the time fractional cubic Boussinesq equation, time frac-
tional Boussinesq-type equation, time-space fractional K(2, 2)type equation
and time-space fractional Kdv-Burgers are investigated and the obtained re-
sults reveal that the method is very effective and convenient to solve the frac-

tional nonlinear dispersive equations.

1. Introduction

Nonlinear wave phenomena appear in a wide variety of scientific applications such
as fluid mechanics, plasma physics, biology, hydrodynamics, solid state physics and
optical fibers. These nonlinear phenomena are often related to wave and dispersive
equations. And in recent years, it has turned out that many phenomena in fluid me-
chanics, viscoelasticity, biology, physics, engineering and other areas of science can
be successfully modeled by the use of fractional derivatives[1, 2]. But these nonlin-
ear fractional differential equation are difficult to get their exact solutions[3, 4, 5].
Several analytical and numerical methods have been proposed to solve fractional
ordinary differential equations, and fractional partial differential equations. For
examples, Adomian decomposition method[6, 7], variational iteration method[8, 9],
differential transform method[10] and homotopy perturbation method[11, 12]. The
homotopy perturbation method first introduced by He[13, 14] for solving linear or
nonlinear partial differential equations. The method has been employed to solve
a large variety of linear and nonlinear problems with approximations converging
rapidly to accurate solutions. The method, which does not require a small param-
eter in an equation, has many advantages over the classical technique.

The aim of the present paper is to extend the application of the homotopy pertur-
bation method to derive the solutions of fractional nonlinear dispersive equations[15],
including the time-fractional cubic Boussinesq equation, time fractional Boussinesq-
type equation, time-space fractional K(2,2) type equation and time-space fractional
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Kdv-Burgers, and these equations are as follows:

∂αu(x, t)

∂tα
− uxx + 2(u3)xx + uxxxx = 0, 1 < α ≤ 2 (1)

∂αu(x, t)

∂tα
− uxx + (u2)xx + [u(u)xx]xx = 0, 1 < α ≤ 2 (2)

∂αu(x, t)

∂tα
+

∂βu2(x, t)

∂xβ
+

∂3βu2(x, t)

∂x3β
= 0, 1 < α, β ≤ 1 (3)

∂αu(x, t)

∂tα
+ εu

∂βu2(x, t)

∂xβ
− υ

∂2βu2(x, t)

∂x2β
+ η

∂3βu2(x, t)

∂x3β
= 0, 1 < α, β ≤ 1 (4)

where t > 0 and the fractional derivatives are defined in Caputo sense, which will
be introduce in next sections. Our work here stems mainly from homotopy per-
turbation method, that has been widely used in applied sciences, which is capable
of handing a wider class of diffusion problems. Numerical solutions of fractional
nonlinear dispersive equations shall be presented to demonstrate the effectiveness
of the algorithm.

2. Fractional Calculus

Definition 1. The Riemann-Liouville fractional integral operator Jα(α ≥ 0) of
a function f(t), is defined as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (α ≥ 0) (5)

where Γ(·) is the well-known gamma function, and some properties of the operator
Jα are as follows

JαJβf(t) = Jα+βf(t), (α ≥ 0, β ≥ 0) (6)

Jαtγ =
Γ(1 + γ)

Γ(1 + γ + α)
tα+γ , (γ ≥ −1) (7)

Definition 2. The Caputo fractional derivative Dα of a function f(t) is defined
as

0D
α
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(t)dτ

(t− τ)α+1−n
, (n− 1 < Re(α) ≤ n, n ∈ N) (8)

the following are two basic properties of the Caputo fractional derivative

0D
α
t t

β =
Γ(1 + β)

Γ(1 + β − α)
tβ−α, (9)

(JαDα)f(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, (10)

we have chosen to the Caputo fractional derivative because it allows traditional
initial and boundary conditions to be included in the formulation of the problem.
And some other properties of fractional derivative can be found in [1].
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3. Homotopy perturbation method

For convenience of the reader, we will present a review of the homotopy pertur-
bation method[13, 14], let us consider the following nonlinear differential equation:

L(u) +N(u) = f(r), r ∈ Ω (11)

where L is a linear operator, while N is nonlinear operator and f(r) is a known
analytic function. The he’s homotopy perturbation technique[12-14] defines the
homotopy v(r, p) : Ω× [0, 1] → R which satisfies

H(v, p) = L(v)− L(u0) + pL(u0) + p[N(v)− f(r)] = 0, (12)

wherer ∈ R and p ∈ [0, 1] is an embedding parameter. In case Eq.(12) is a linear
differential equation, L(v) − L(u0) = 0 which is easy to solve; and when Eq.(12)
turns out to be the original one (11), u0 is an initial approximation which satisfies
the boundary conditions. The basic assumption is that the solutions can be written
as a power series in P

v = vpv1 + p2v2 + · · · , (13)

the approximate solution of Eq(11), therefore, can be readily obtained:

u = lim
p→

v = v0 + v1 + v2 + · · · , (14)

The homotopy perturbation method depends on the proper selection of the initial
approximation v0(x, t), In the following sections, we implement the above theory
to derive generalized solutions for fractional nonlinear dispersive equation.

4. Generalized solutions of fractional nonlinear dispersive
equations

In order to access the advantages and the accuracy of the homotopy perturbation
method presented in this paper for fractional nonlinear dispersive equation, we have
applied it to the following several problems. All the results are calculated by using
the symbolic calculus software Mathematica.

Case 1: In this case, we first consider the time fractional cubic Boussinesq equa-
tion

∂αu(x, t)

∂tα
− uxx + 2(u3)xx + uxxxx = 0, 1 < α ≤ 2 (15)

subject to the initial condition

u(x, 0) =
1

x
, ut(x, 0) = − 1

x2
(16)

in view of the homotopy (12), we construct the homotopy

∂αu(x, t)

∂tα
= p[uxx − 2(u3)xx − uxxxx], (17)

substituting (13) and the initial condition (16) into the homotopy (17) and equat-
ing the terms with identical powers of p, the first few components of the homotopy
solution for Eq.(15) are derived as follows:

u0 =
1

x
− t

x2
(18)

u1 = Jα[u0xx − 2(u3
0)xx − u0xxxx]
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=
2tα

x3Γ(1 + α)
− 6t1+α

x4Γ(2 + α)
− 360t2+α

x7Γ(3 + α)
+

504t3+α

x8Γ(4 + α)
, (19)

u2 = Jα[u1xx − 6(u2
0u1)xx − u1xxxx]

=
360t2αα

x7Γ(1 + 2α)
+

24t2α

x5Γ(1 + 2α)
− 3528t1+2α

x8Γ(2 + 2α)
− 120t1+2α

x6Γ(2 + 2α)
+

1008t1+2αΓ(2 + α)

x8Γ(1 + α)Γ(2 + 2α)

−1620000t2+2α

x11Γ(3 + 2α)
− 20160t2+2α

x9Γ(3 + 2α)
− 672t2+2αΓ(3 + α)

x9Γ(1 + α)Γ(3 + 2α)
− 4032t2+2αΓ(3 + α)

x9Γ(2 + α)Γ(3 + 2α)

−3659040t3+2α

x12Γ(4 + 2α)
+

36288t3+2α

x10Γ(4 + 2α)
+

2592t3+2αΓ(4 + α)

x10Γ(2 + α)Γ(4 + 2α)
− 475200t3+2αΓ(4 + α)

x12Γ(3 + α)Γ(4 + 2α)

+
285120t4+2αΓ(5 + α)

x13Γ(3 + α)Γ(5 + 2α)
+

798336t4+2αΓ(5 + α)

x13Γ(4 + α)Γ(5 + 2α)
− 471744t5+2αΓ(6 + α)

x14Γ(4 + α)Γ(6 + 2α)
, (20)

...

u(x, 0) =
1

x
− t

x2
+

2tα

x3Γ(1 + α)
− 6t1+α

x4Γ(2 + α)
− 360t2+α

x7Γ(3 + α)
+

504t3+α

x8Γ(4 + α)
(21)

if we take α = 2, the first few components of the homotopy solution of Eq.(15) as
follows:

u0 =
1

x
− t

x2
(22)

u1 =
t2

x3
− t3

x4
− 15t4

x7
+

21t5

5x8
, (23)

u2 =
t4

x5
− t5

x6
+

15t4

x7
− 21t5

5x8
− 308t6

5x9
+

612t7

35x10
− 2250t6

x11
+

1782t7

7x12
+

11583t8

35x13
− 273t9

5x14
,

(24)
we have the solution of Eq.(15) in a series form for α = 2

u(x, t) =
1

x
− t

x2
+

t2

x3
− t3

x4
+

t4

x5
− t5

x6
+ · · · , (25)

and the solution in closed form is

u(x, t) =
1

x+ t
. (26)

Case 2: In this case, we consider the time fractional Boussinesq-type equation

∂αu(x, t)

∂tα
− uxx + (u2)xx + [u(u)xx]xx = 0, 1 < α ≤ 2 (27)

subject to the initial condition

u(x, 0) = −2(c2 − 1) sinh2(
1

2
x), ut(x, 0) = (c2 − 1) sinh(x), (28)

in view of the homotopy (12), we construct the homotopy

∂αu(x, t)

∂tα
= p[uxx + (u2)xx + [u(u)xx]xx], (29)
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substituting (13) and the initial condition (27) into the homotopy (28) and equat-
ing the terms with identical powers of p, the first few components of the homotopy
solution for Eq.(26) are derived as follows:

u0 = −(c2 − 1)[cosh(x)− t sinh(x)− 1], (30)

u1 = Jα[u0xx + (u2
0)xx + [u0(u0)xx]xx]

= c2(c2 − 1)(− tα cosh(x)

Γ(1 + α)
+

t1+α sinh(x)

Γ(2 + α)
), (31)

u2 = Jα[u1xx + 2(u0u1)xx + [u0u1xx + u1u0xx]xx]

= c4(c2 − 1)(− tα cosh(x)

Γ(1 + 2α)
+

t1+2α sinh(x)

Γ(2 + 2α)
), (32)

...

and so on, in the same manner the rest of components can be obtained using
Mathematica package, Consequently, we have the solution of Eq.(27) in a series
form

u(x, t) = −(c2−1)[cosh(x)−t sinh(x)−1]+c2(c2−1)(− tα cosh(x)

Γ(1 + α)
+
t1+α sinh(x)

Γ(2 + α)
)+· · ·

= −(c2 − 1)[cosh(x)(1 +
c2

Γ(1 + α)
tα +

c4

Γ(1 + 2α)
t2α + · · · )− 1]

+ (c2 − 1)[sinh(x)(t+
c2

Γ(2 + α)
t1+α +

c4

Γ(2 + 2α)
t1+2α + · · · )], (33)

if we take α = 2, the first few components of the homotopy solution of Eq.(27) as
follows:

u0 = u0 = −(c2 − 1)[cosh(x)− t sinh(x)− 1], (34)

u1 = c2(c2 − 1)[− t2 cosh(x)

2!
+

t3 sinh(x)

3!
], (35)

u2 = c4(c2 − 1)[− t4 cosh(x)

4!
+

t5 sinh(x)

5!
], (36)

· · ·

un = c2n(c2 − 1)(− t2n cosh(x)

(2n)!
+

t2n+1 sinh(x)

(2n+ 1)!
), (37)

we have the solution of Eq.(27) in a series form for α = 2,

u(x, t) = −(c2−1)[cosh(x)−t sinh(x)−1]+c2(c2−1)(− tα cosh(x)

Γ(1 + α)
+
t1+α sinh(x)

Γ(2 + α)
)+· · ·

= −(c2 − 1)[cosh(x)(1 +
c2

Γ(1 + α)
tα +

c4

Γ(1 + 2α)
t2α + · · · )− 1]

u(x, t) = −(c2−1)[cosh(x)(1+
c2t2

2!
+
c4t4

4!
+· · · )−1]+(c2−1)[t sinh(x)(1+

c2t2

3!
+
c4t4

5!
+· · · )],

(38)
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Case 3:In this case, we first consider the time-space fractional K(2,2) type equa-
tion

∂αu(x, t)

∂tα
+

∂βu2(x, t)

∂xβ
+

∂3βu2(x, t)

∂x3β
= 0, 1 < α, β ≤ 1 (39)

subject to the initial condition

u(x, 0) = x, (40)

in view of the homotopy (12), we construct the homotopy

∂αu(x, t)

∂tα
= p[−∂βu2(x, t)

∂xβ
− ∂3βu2(x, t)

∂x3β
], (41)

substituting (13) and the initial condition (37) into the homotopy (41) and equat-
ing the terms with identical powers of p, the first few components of the homotopy
solution for Eq.(39) are derived as follows:

u0 = x, (42)

u1 = Jα[−∂βu2
0(x, t)

∂xβ
− ∂3βu2

0(x, t)

∂x3β
]

= [− −2x2−β

Γ(3− β)
− −2x2−3β

Γ(3− 3β)
]

tα

Γ(1 + α)
, (43)

u2 = Jα[−2
∂βu0u1

∂xβ
− 2

∂3βu0u1

∂x3β
]

=
4Γ(4− 3β)t2αx3−4β

Γ(1 + 2α)Γ(3− 3β)Γ(4− 4β)
+

4Γ(4− β)t2αx3−2β

Γ(1 + 2α)Γ(3− β)Γ(4− 2β)

+
4Γ(4− 3β)t2αx3−6β

Γ(1 + 2α)Γ(3− 3β)Γ(4− 6β)
+

4Γ(4− β)t2αx3−4β

Γ(1 + 2α)Γ(3− β)Γ(4− 4β)
, (44)

u3 = Jα[−∂β(u2
1 + 2u0u2)

∂xβ
− ∂3β(u2

1 + 2u0u2)

∂x3β
]

= − 4Γ(1 + 2α)Γ(5− 6β)t3αx4−9β

Γ2(1 + α)Γ(1 + 3α)Γ(5− 9β)Γ2(3− 3β)
− 4Γ(1 + 2α)Γ(5− 6β)t3αx4−7β

Γ2(1 + α)Γ(1 + 3α)Γ(5− 7β)Γ2(3− 3β)

− 8Γ(5− 6β)Γ(4− 3β)t3αx4−9β

Γ(1 + 3α)Γ(5− 9α)Γ(4− 6β)Γ(3− 3β)
− 8Γ(5− 6β)Γ(4− 3β)t3αx4−7β

Γ(1 + 3α)Γ(5− 7α)Γ(4− 6β)Γ(3− 3β)

− 8Γ(5− 4β)Γ(4− 3β)t3αx4−7β

Γ(1 + 3α)Γ(5− 7β)Γ(4− 4β)Γ(3− 3β)
− 8Γ(5− 4β)Γ(4− 3β)t3αx4−5β

Γ(1 + 3α)Γ(5− 5β)Γ(4− 4β)Γ(3− 3β)

− 4Γ(5− 2β)Γ(1 + 2α)t3αx4−5β

Γ2(1 + α)Γ(1 + 3α)Γ(5− 5β)Γ2(3− β)
− 4Γ(5− 2β)Γ(1 + 2α)t3αx4−3β

Γ2(1 + α)Γ(1 + 3α)Γ(5− 3β)Γ2(3− β)

− 8Γ(5− 4β)Γ(1 + 2α)t3αx4−7β

Γ2(1 + α)Γ(1 + 3α)Γ(5− 7β)Γ(3− β)Γ(3− 3β)
− 8Γ(5− 4β)Γ(1 + 2α)t3αx4−5β

Γ2(1 + α)Γ(1 + 3α)Γ(5− 5β)Γ(3− β)Γ(3− 3β)

− 8Γ(5− 4β)Γ(4− β)t3αx4−7β

Γ(1 + 3α)Γ(5− 7β)Γ(4− 4β)Γ(3− β)
− 8Γ(5− 4β)Γ(4− β)t3αx4−5β

Γ(1 + 3α)Γ(5− 5β)Γ(4− 4β)Γ(3− β)

− 8Γ(5− 2β)Γ(4− β)t3αx4−5β

Γ(1 + 3α)Γ(5− 5β)Γ(4− 2β)Γ(3− β)
− 8Γ(5− 2β)Γ(4− β)t3αx4−3β

Γ(1 + 3α)Γ(5− 3β)Γ(4− 2β)Γ(3− β)
,

(45)
...
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and so on, in the same manner the rest of components can be obtained using
Mathematica package, Consequently, we have the solution of Eq.(34) in a series
form

u(x, t) = x+ [− 2x2−β

Γ(3− β)
− 2x2−3β

Γ(3− 3β)
]

tα

Γ(1 + α)
+

4Γ(4− 3β)t2αx3−4β

Γ(1 + 2α)Γ(3− 3β)Γ(4− 4β)
+ · · · , (46)

if we take α = β = 1, the homotopy solution is given by

u(x, t) = x(1− 2t+ 4t2 − 8t3 + · · · ), (47)

Hence the exact solution of Eq.(39) for α = β = 1 is given by

u(x, t) =
x

1 + 2t
, (48)

Case 4: the time In this case, we consider the time-space fractional Kdv-Burgers
equation

∂αu(x, t)

∂tα
+ εu

∂βu(x, t)

∂xβ
− υ

∂2βu(x, t)

∂x2β
+ η

∂3βu(x, t)

∂x3β
= 0, 1 < α, β ≤ 1 (49)

subject to the initial condition

u(x, 0) = x3, (50)

in view of the homotopy (12), we construct the homotopy

∂αu(x, t)

∂tα
= p[−εu

∂βu(x, t)

∂xβ
+ υ

∂2βu(x, t)

∂x2β
− η

∂3βu(x, t)

∂x3β
], (51)

substituting (13) and the initial condition (50) into the homotopy (51) and equat-
ing the terms with identical powers of p, the first few components of the homotopy
solution for Eq.(49) are derived as follows:

u0 = x3, (52)

u1 = Jα[−εu0
∂βu0

∂xβ
+ υ

∂2βu0

∂x2β
− η

∂3βu0

∂x3β
]

= − 6εtαx6−β

Γ(1 + α)Γ(4− β)
+

6υtαx3−2β

Γ(1 + α)Γ(4− 2β)
− 6ηtαx3−3β

Γ(1 + α)Γ(4− 3β)
, (53)

u2 = Jα[−εu0
∂βu1

∂xβ
− εu1

∂βu0

∂xβ
+ υ

∂2βu1

∂x2β
− η

∂3βu1

∂x3β
]

6t2αx3−6βη2

Γ(1 + 2α)Γ(4− 6β)
− 12t2αx3−5βηυ

Γ(1 + 2α)Γ(4− 5β)
+

6t2αx6−4βεη

Γ(1 + 2α)Γ(4− 4β)

6t2αx3−4βυ2

Γ(1 + 2α)Γ(4− 4β)
− 6t2αx6−3βευ

Γ(1 + 2α)Γ(4− 3β)
+

36t2αx9−2βε2

Γ(1 + 2α)Γ2(4− β)

+
36t2αx6−4βηε

Γ(1 + 2α)Γ(4− 3β)Γ(4− β)
− 36t2αx6−3βευ

Γ(1 + 2α)Γ(4− 2β)Γ(4− β)

+
6t2αx6−4βηεΓ(7− β)

Γ(1 + 2α)Γ(7− 4β)Γ(4− β)
− 6t2αx6−3βυεΓ(7− β)

Γ(1 + 2α)Γ(7− 3β)Γ(4− β)

+
6t2αx9−2βε2Γ(7− β)

Γ(1 + 2α)Γ(7− 2β)Γ(4− β)
, (54)
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and so on, in the same manner the rest of components can be obtained using
Mathematica package, Consequently, we have the solution of Eq.(49) in a series
form

u(x, t) = x3 − 6εtαx6−β

Γ(1 + α)Γ(4− β)
+

6υtαx3−2β

Γ(1 + α)Γ(4− 2β)
− 6ηtαx3−3β

Γ(1 + α)Γ(4− 3β)
+ · · · ,

(55)

5. Conclusion

In this paper, approximate solutions for the time fractional cubic Boussinesq
equation, time fractional Boussinesq-type equation, time-space fractional K(2.2)
type equation and time-space fractional Kdv-Burgers have been obtained, and the
homotopy perturbation method was successfully used to these solutions. The re-
liability of this method and reduction in computations give this method a wider
applicability. The corresponding solutions are obtained according to the recurrence
relation using Mahtematica.
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