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EXISTENCE RESULTS FOR IMPULSIVE FRACTIONAL

SEMILINEAR FUNCTIONAL INTEGRODIFFERENTIAL

EQUATIONS IN BANACH SPACES

C. RAVICHANDRAN, M. MALLIKA ARJUNAN

Abstract. In this paper, we study the existence and uniqueness of mild solu-
tions for a class of impulsive fractional integrodifferential equations in Banach
spaces. The results are obtained by using Banach fixed point theorem and
Krasnoselskii’s fixed point theorem.

1. Introduction

The purpose of this paper is to prove the existence and uniqueness of mild
solutions for impulsive fractional functional integrodifferential equations of the form

Dαx(t) = Ax(t) + f
(
t, xt,

∫ t

0

h(t, s, xs)ds
)
,

t ∈ J = [0, T ], t ̸= tk, k = 1, 2, ...,m, (1.1)

∆x|t=tk = Ik(x(t
−
k )), k = 1, 2, ...,m, (1.2)

x(t) = ϕ(t), t ∈ [−r, 0], (1.3)

where T > 0, Dα is Caputo fractional derivative of order 0 < α < 1, A : D(A) ⊂
X → X is the bounded linear operator of an α-resolvent family {Sα(t) : t ≥ 0}
defined on a Banach space X, h : J×J×D → X and f : J×D×X → X are given
functions, where D = {ψ : [−r, 0] → X such that ψ is continuous everywhere except
for a finite number of points s at which ψ(s−) and ψ(s+) exists and ψ(s−) = ψ(s)},
ϕ ∈ D(0 < r < ∞), 0 =< t0 < t1 < ... < tk < .. < tm < tm+1 = T , ∆x|t=tk =
Ik(x(t

−
k )), x(t

+
k ) = lim

h→0+
x(tk + h) and x(t−k ) = lim

h→0−
x(tk + h) represent the right

and left limits of x(t) at t = tk respectively.
For any continuous function x defined on the interval [−r, T ]−{t1, t2, ..., tm} and

any t ∈ J . We denote by xt be the element of D defined by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].
Here xt(·) represents the history of the time t − r, upto the present time t. For
ψ ∈ D, then ∥ψ∥D = sup {|ψ(θ)| : θ ∈ [−r, 0]}.
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Recently, fractional differential equations have gained considerable importance
due to their application in various fields of engineering, mechanics, electrical net-
works, control theory of dynamical systems, viscoelasticity, electrochemistry, and
so on. In recent years, there has been a significant development in ordinary
and partial differential equations involving fractional derivatives, see the mono-
graphs of Diethelm [13], Kilbas et al. [23], Lakshmikantham et al. [25], Miller
and Ross [29], Michalski [24], Podlubny [32] and Tarasov [35] and the papers of
[28, 20, 30, 33, 34, 9, 14, 37, 38, 39, 40, 41, 42, 43].

Differential equations with impulsive conditions constitute an important field of
research due to their numerous applications in ecology, medicine biology, electrical
engineering, and other areas of science. There has been a significant development
in impulsive theory especially in the area of impulsive differential equations with
fixed moments, see for instance the monographs by Lakshmikantham et al. [26],
Bainov et al. [6], Samoilenko et al. [18] and the papers of [1, 2, 12, 10, 15, 16].
Nowadays, many authors [11, 17, 21, 30, 19, 44, 36] have been studied the existence
results combined with fractional derivative and impulsive conditions.

In [19] , Xiao-Bao Shu et al. studied the existence of mild solutions for impulsive
fractional differential equations of the form

Dα
t x(t) = Ax(t) + f

(
t, x(t)

)
, t ∈ I = [0, T ], t ̸= tk, k = 1, 2, ..,m,

x(0) = x0 ∈ X,

∆x|t=tk = Ik(x(t
−
k )), k = 1, 2, ...,m,

where 0 < α < 1, A is a sectorial operator on a Banach space X, Dα is the
Caputo fractional derivative and by using Banach contraction principle and Leray-
Schauder’s Alternative fixed point theorem.

Very recently, Archana Chauhan et al. [4] extended the results of [19] into the
following impulsive fractional order semilinear evolution equations with nonlocal
conditions of the form

dα

dtα
x(t) +Ax(t) = f

(
t, x(t), x(a1(t)), ..., x(am(t))

)
,

t ∈ J = [0, T ], t ̸= ti, i = 1, 2, ..., p,

x(0) + g(x) = x0,

∆x(ti) = Ii(x(t
−
i )), i = 1, 2, ..., p,

where dα

dtα is Caputo fractional derivative of order 0 < α < 1, −A generates α-
resolvent family {Sα(t) : t ≥ 0} of bounded linear operators in X and by using
Banach contraction principle and Krasnoselskii’s fixed point theorem.

Motivated by the above mentioned works [4, 8, 19, 37, 38, 40, 43], we consider the
problem (1.1)− (1.3) to study the existence and uniqueness of a mild solution using
the solution operator and fixed-point theorems. The rest of this paper is organized
as follows: In Section 2, we present some necessary definitions and preliminary
results that will be used to prove our main results. The proof of our main results
are given in Section 3.

2. Preliminaries

In this section, we mention some definitions and properties required for estab-
lishing our results. Let X be a complex Banach space with its norm denoted as
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∥ · ∥X , and L(X) represents the Banach space of all bounded linear operators from
X into X, and the corresponding norm is denoted by ∥ · ∥L(X). Let C(J,X) denote
the space of all continuous functions from J into X with supremum norm denoted
by ∥ · ∥C(J,X). In addition, Br(x,X) represents the closed ball in X with the center
at x and the radius r.
A two parameter function of the Mittag-Leffler type is defined by the series expan-
sion

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Ha

µα−βeµ

µα − z
dµ, α, β > 0, z ∈ C,

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and
encircles the disc |µ| ≤ |z| 1

α contour clockwise. For short, Eα(z) = Eα,1(z). It is
an entire function which provides a simple generalization of the exponent function:
E1(z) = ez and the cosine function: E2(−z2) = cos(z), and plays an important role
in the theory of fractional differential equations. The most interesting properties
of the Mittag-Leffler functions are associated with their Laplace integral∫ ∞

0

e−λttβ−1Eα,β(wt
α)dt =

λα−β

λα − w
, Re λ > w

1
α , w > 0,

see [32] for more details.

Definition 2.1. [4] Caputo derivative of order α for a function f : [0,∞) → R is
defined as

dα

dtα
f(t) =

1

Γ(m− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

for n− 1 < α < n, n ∈ N . If 0 < α ≤ 1, then

dα

dtα
f(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf (1)(s)ds.

The Laplace transform of the Caputo derivative of order α > 0 is given as

L{Dα
t f(t) : λ} = λαf̂(λ)−

n−1∑
k=0

λα−k−1f (k)(0); n− 1 < α ≤ n.

Definition 2.2. [3] Let A be a closed and linear operator with domain D(A) defined
on a Banach space X and α > 0. Let ρ(A) be the resolvent set of A. We call A the
generator of an α-resolvent family if there exists w ≥ 0 and a strongly continuous
function Sα : R+ → L(X) such that {λα : Re λ > w} ⊂ ρ(A) and

(λαI −A)−1x =

∫ ∞

0

e−λtSα(t)xdt, Re λ > w, x ∈ X.

In this case, Sα(t) is called the α-resolvent family generated by A.

Definition 2.3. [5] Let A be a closed and linear operator with domain D(A) defined
on a Banach space X and α > 0. Let ρ(A) be the resolvent set of A. We call A the
generator of an α-resolvent family if there exists w ≥ 0 and a strongly continuous
function Sα : R+ → L(X) such that {λα : Re λ > w} ⊂ ρ(A) and

(λαI −A)−1x =

∫ ∞

0

e−λtSα(t)xdt, Re λ > w, x ∈ X.

In this case, Sα(t) is called the solution operator generated by A.
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The concept of the solution operator is closely related to the concept of a resol-
vent family ([31], Chapter 1). For more details on α-resolvent family and solution
operators, we refer to [31, 27] and the references therein.

3. Existence Results

In this section, we present and prove the existence of mild solutions for the
system (1.1)− (1.3). In order to prove the existence results, we need the following
results which is taken from [7, 19]. If α ∈ (0, 1) and A ∈ Aα(θ0, w0), then for any
x ∈ X and t > 0, we have

∥Sα(t)∥ ≤Mewt, ∥Tα(t)∥ ≤ Cewt(1 + tα−1), t > 0, w > w0.

Let M̃S := sup
0≤t≤T

∥Sα(t)∥L(X), M̃T := sup
0≤t≤T

Ceωt(1 + t1−α), where L(X) is the

Banach space of bounded linear operators from X into X equipped with its natural
topology. So, we have

∥Sα(t)∥L(X) ≤ M̃S , ∥Tα(t)∥L(X) ≤ t1−αM̃T . (3.1)

Let us consider the set functions PC([−r, T ], X) = {x : [−r, T ] → X : x ∈
C((tk, tk+1], X), k = 0, 1, 2, ..,m and there exist x(t−k ) and x(t+k ), k = 1, 2, .,m

with x(t−k ) = x(tk), x0 = ϕ}.
Endowed with the norm

∥x∥PC = sup
t∈[−r,T ]

∥x(t)∥X ,

the space (PC([−r, T ], X), ∥ · ∥PC) is a Banach space.

Lemma 3.1. [4, 19] If f satisfies the uniform Hölder condition with the exponent
β ∈ (0, 1] and A is a sectorial operator, then the unique solution of the Cauchy
problem

Dαx(t) = Ax(t) + f
(
t, xt,

∫ t

0

h(t, s, xs)ds
)
, t > t0, t0 ∈ R, 0 < α < 1

x(t) = ϕ(t), t ≤ t0

is given by

x(t) = Sα(t− t0)(x(t
+
0 )) +

∫ t

t0

Tα(t− s)f
(
s, xs,

∫ t

0

h(s, τ, xτ )dτ
)
ds, where

Sα(t) = Eα,1(At
α) =

1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ

Tα(t) = tα−1Eα,α(At
α) =

1

2πi

∫
B̂r

eλt
1

λα −A
dλ,

B̂r denotes the Bronwich path, Tα(t) is called the α-resolvent family, Sα(t) is the
solution operator, generated by A.

Now, we define the mild solution of a system (1.1)− (1.3).

Definition 3.4. A function x(·) ∈ PC is called a mild solution of the system
(1.1) − (1.3) if x(t) = ϕ(t) on [−r, 0]; ∆x|t=tk = Ik(x(t

−
k )), k = 1, 2, ...,m and
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satisfies the following integral equation

x(t) =



Sα(t)ϕ(t) +
∫ t

0
Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ (0, t1];

Sα(t− t1)(x(t
−
1 ) + I1(x(t

−
1 )))

+
∫ t

t1
Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ (t1, t2];

...

Sα(t− tm)(x(t−m) + I1(x(t
−
m)))

+
∫ t

tm
Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ (tm, T ].

From Lemma (3.1) we can verify this definition.
Now we list the following hypothesis:

H1 f : J ×D ×X → X is continuous and there exist functions L ∈ L1(J,R+)
such that

∥f(t, xt, u)− f(t, yt, v)∥X ≤ L
[
∥x− y∥+ ∥u− v∥

]
, for x, y ∈ PC, u, v ∈ X.

H2 h : J × J ×D → X is continuous and there exists a constant M1 > 0 such
that for all (t, s) ∈ J × J∥∥∥∫ t

0

[h(t, s, xs)− h(t, s, ys)]ds
∥∥∥
X

≤M1∥x− y∥PC .

H3 The function Ik : X → X are continuous and there exists ρk > 0 such that

∥Ik(x)− Ik(y)∥X ≤ ρk∥x− y∥, x, y ∈ X, k = 1, 2, ..,m.

Theorem 3.1. Assume that (H1)− (H3) are satisfied and[
M̃S(ρi + 1) +

1

α
M̃TT

αL(1 +M1)
]
< 1.

Then the impulsive system (1.1)−(1.3) has a unique mild solution x ∈ PC([−r, T ], X).

Proof: We define the operator N : PC([−r, T ], X) → PC([−r, T ], X) by

Nx(t) =



Sα(t)ϕ(t)

+
∫ t

0
Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ (0, t1];

Sα(t− t1)(x(t
−
1 ) + I1(x(t

−
1 )))

+
∫ t

t1
Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ (t1, t2];

...

Sα(t− tm)(x(t−m) + I1(x(t
−
m)))

+
∫ t

tm
Tα(t− s)f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
ds, t ∈ (tm, T ].

Note that N is well defined on PC([−r, T ], X).
Let us take t ∈ (0, t1] and x, y ∈ PC([−r, T ], X). From the equation (3.1) and the
hypothesis (H1)− (H2), we have

∥(Nx)(t)− (Ny)(t)∥X ≤ M̃T
1

α
TαL

[
∥xt − yt∥D +M1∥xt − yt∥D

]
≤ M̃T

1

α
TαL

[
∥x− y∥PC +M1∥x− y∥PC

]
≤ M̃T

1

α
TαL(1 +M1)∥x− y∥PC .
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For t ∈ (t1, t2], and by using (3.1), (H1)− (H3), we have

∥(Nx)(t)− (Ny)(t)∥X

≤ M̃S(1 + ρ1)∥x− y∥PC +

∫ t

0

(t− s)α−1M̃TL
[
∥x− y∥PC +M1∥x− y∥PC

]
ds

≤
[
M̃S(1 + ρ1) +

1

α
M̃TT

αL(1 +M1)
]
∥x− y∥PC .

Similarly, for t ∈ (ti, ti+1]

∥(Nx)(t)− (Ny)(t)∥X ≤
[
M̃S(1 + ρi) +

1

α
M̃TT

αL(1 +M1)
]
∥x− y∥PC .

and for t ∈ (tm, T ]

∥(Nx)(t)− (Ny)(t)∥X ≤
[
M̃S(1 + ρm) +

1

α
M̃TT

αL(1 +M1)
]
∥x− y∥PC .

Thus, for all t ∈ [0, T ], we have

∥(Nx)− (Ny)∥PC ≤ max
1≤i≤m

[
M̃S(1 + ρi) +

1

α
M̃TT

αL(1 +M1)
]
∥x− y∥PC .

Since max
1≤i≤m

[
M̃S(ρi + 1) + 1

αM̃TT
αL(1 +M1)

]
< 1, N is a contraction. Therefore

N has a unique fixed point by Banach contraction principle. This completes the
proof.
Our second existence result is based on the Krasnoselskii’s fixed point theorem.

Theorem 3.2. [22] Let B be a closed convex and nonempty subset of a Banach
space X. Let P and Q be two operators such that (i) Px + Qy ∈ B whenever
x, y ∈ B,(ii) P is compact and continuous, (iii) Q is a contraction mapping. Then
there exists z ∈ B such that z = Pz +Qz.

Now, we list the following hypothesis:

H4 For each (t, s) ∈ J × J , the functions h(t, s, ·) : D → X is continuous, and
for each x ∈ D the function h(·, ·, x) : J × J → X is strongly measurable.

H5 For each t ∈ J , the function f(t, ·, ·) : D ×X → X is continuous, and for
each (x, y) ∈ D×X the function f(·, x, y) : J → X is strongly measurable.

H6 There exists a continuous function p1 : J → R = [0,∞] such that∥∥∥∫ t

0

h(t, s, xs)ds
∥∥∥
X

≤ p1(t)ψ(∥x∥D), for every t, s ∈ J and x ∈ D,

where ψ : [0,+∞) → (0,∞) is a continuous non-decreasing function.
H7 There exists a continuous function p2 : J → R = [0,∞] such that∥∥∥f(t, x, y)∥∥∥

X
≤ p2(t)ψ(∥x∥D) + ∥y∥, for every t, s ∈ J and x ∈ D, y ∈ X.

where ψ : [0,+∞) → (0,∞) is a continuous non-decreasing function.
H8 The function Ik : X → X are continuous and there exists ρ > c1 such that

ρ = max
1≤k≤m,x∈Br

{∥Ik(x)∥X}.

Theorem 3.3. Assume that (H4)− (H8) are satisfied and[
M̃T

1

α
TαL(1 +M1)

]
< 1.

Then the impulsive problem (1.1)−(1.3) has at least one mild solution on PC([−r, T ], X).



JFCA-2012/3 EXISTENCE RESULTS FOR IMPULSIVE FRACTIONAL 7

Proof: Choose r >
[
M̃S(r + ρ) + M̃T

1
αT

αψ(r)(p2(t) + p1(t))
]
and consider Br =

{x ∈ PC([−r, T ], X) : ∥x∥PC ≤ r}, then Br is a bounded, closed convex subset in
PC([−r, T ], X). Define on Br the operators P and Q by :

(Px)(t) =


Sα(t)ϕ(t), t ∈ [0, t1];

Sα(t− t1)(x(t
−
1 ) + I1(x(t

−
1 ))), t ∈ (t1, t2];

...

Sα(t− tm)(x(t−m) + I1(x(t
−
m))), t ∈ (tm, T ].

(Qx)(t) =



∫ t

0

Tα(t− s)f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ

)
ds, t ∈ (0, t1];∫ t

0

Tα(t− s)f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ

)
ds, t ∈ (t1, t2];

...∫ t

0

Tα(t− s)f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ

)
ds, t ∈ (tm, T ].

The proof will be given in five steps:
Step 1: We show that Px+Qy ∈ Br, whenever x, y ∈ Br. Let x, y ∈ Br, then

∥Px+Qy∥PC ≤



∥Sα(t)∥L(X)∥ϕ∥X
+
∫ t

0
∥Tα(t− s)∥L(X)∥f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
∥Xds, t ∈ (0, t1];

∥Sα(t− t1)∥L(X)

[
∥x(t−1 )∥+ ∥I1(x(t−1 ))∥

]
X

+
∫ t

t1
∥Tα(t− s)∥L(X)∥f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
∥Xds, t ∈ (t1, t2];

...

∥Sα(t− tm)∥L(X)

[
∥x(t−m)∥+ ∥I1(x(t−m))∥

]
X

+
∫ t

tm
∥Tα(t− s)∥L(X)∥f

(
s, xs,

∫ s

0
h(s, τ, xτ )dτ

)
∥Xds, t ∈ (tm, T ].

≤


M̃S(r) + M̃T

Tα

α [ψ(r)(p2(t) + p1(t))], t ∈ (0, t1];

M̃S(r + ρ) + M̃T
Tα

α [ψ(r)(p2(t) + p1(t))], t ∈ (t1, t2];
...

M̃S(r + ρ) + M̃T
Tα

α [ψ(r)(p2(t) + p1(t))], t ∈ (tm, T ].

This implies

∥Px+Qy∥PC ≤
[
M̃S(r + ρ) + M̃T

Tα

α
[ψ(r)(p2(t) + p1(t))]

]
≤ r.

Step 2: We show that the operator (Px)(t) is continuous in Br. For this purpose,
let {xn} be a sequence in Br such that xn → x in Br. Then for every t ∈ J ,
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we have

∥(Pxn)(t)− (Px)(t)∥X ≤



0, t ∈ (0, t1];

∥Sα(t− t1)∥L(X)

(×)
[
∥xn(t−1 )− x(t−1 )∥X + ∥I1(xn(t−1 ))− x(t−1 )∥X

]
,

t ∈ (t1, t2];
...

∥Sα(t− tm)∥L(X)

(×)
[
∥xn(t−m)− x(t−m)∥X + ∥I1(xn(t−m))− x(t−m)∥X

]
,

t ∈ (tm, T ].

Since the functions Ik, k = 1, 2..,m are continuous, lim
n→∞

∥Pxn−Px∥PC = 0 in Br.

This implies that the mapping P is continuous on Br.
Step 3: P maps bounded sets into bounded sets in PC([−r, T ], X).
Let us prove that for any r > 0 there exists a γ > 0 such that for x ∈ Br = {x ∈
PC([−r, T ], X) : ∥x∥PC ≤ r}, we have ∥Px∥PC ≤ γ. Indeed, we have for any
x ∈ Br

∥(Px)(t)∥X =



∥Sα(t)∥L(X)∥ϕ(t)∥X , t ∈ [0, t1];

∥Sα(t− t1)∥L(X)

[
∥x(t−1 )∥X + ∥I1x(t−1 ))∥X

]
, t ∈ (t1, t2];

...

∥Sα(t− tm)∥L(X)

[
∥x(t−m)∥X + ∥I1(x(t−m))∥X

]
, t ∈ (tm, T ].

≤


M̃S(r + c1), t ∈ (0, t1];

M̃S(r + ρ), t ∈ (t1, t2];
...

M̃S(r + ρ), t ∈ (tm, T ].

This implies that ∥Px∥PC ≤ M̃S(r + ρ) = γ.
Step 4: We prove that P (Br) is equicontinuous.
For 0 ≤ u ≤ v ≤ T , we have

∥(Px)(v)− (Px)(u)∥X ≤



∥Sα(v)− Sα(u)∥L(X)∥ϕ∥X , 0 ≤ u < v ≤ t1;

∥Sα(v − t1)− Sα(u− t1)∥L(X)

(×)
[
∥x(t−1 )∥X + ∥I1(x(t−1 ))∥X

]
, t1 < u < v ≤ t2;

...

∥Sα(v − tm)− Sα(u− tm)∥L(X)

(×)
[
∥x(t−m)∥X + ∥Im(x(t−m))∥X

]
, tp < u < v ≤ T.
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≤


r∥Sα(v)− Sα(u)∥L(X), 0 ≤ u < v ≤ t1;

(r + ρ)∥Sα(v − t1)− Sα(u− t1)∥L(X), t1 < u < v ≤ t2;
...

(r + ρ)∥Sα(v − tm)− Sα(u− tm)∥L(X), tp < u < v ≤ T.

Therefore, the continuity of the function t→ ∥S(t)∥ allows us to conclude that

lim
u→v

∥Sα(v − ti)− Sα(u− ti)∥L(X) = 0, i = 1, 2, ..,m and lim
u→v

∥Sα(v)− Sα(u)∥L(X) = 0.

Finally, combining Step 2 to Step 4 with the Ascoli’s theorem, we deduce that the
operator P is compact.
Step 5: We show that Q is contraction mapping.
Let x, y ∈ Br and we have

∥(Qx)(t)− (Qy)(t)∥X ≤



∫ t

0

∥Tα(t− s)∥L(X)

(×)∥f(s, xs,
∫ t

0
h(s, τ, xτ )dτ)− f(s, ys,

∫ t

0
h(s, τ, xτ )dτ)∥Xds,
t ∈ (0, t1];∫ t

0

∥Tα(t− s)∥L(X)

(×)∥f(s, xs,
∫ t

0
h(s, τ, xτ )dτ)− f(s, ys,

∫ t

0
h(s, τ, xτ )dτ)∥Xds,
t ∈ (t1, t2];

...∫ t

0

∥Tα(t− s)∥L(X)

(×)∥f(s, xs,
∫ t

0
h(s, τ, xτ )dτ)− f(s, ys,

∫ t

0
h(s, τ, xτ )dτ)∥Xds,
t ∈ (tm, T ].

≤


M̃T

Tα

α L[1 +M1]∥x− y∥PC , t ∈ (0, t1];

M̃T
Tα

α L[1 +M1]∥x− y∥PC , t ∈ (t1, t2];
...

M̃T
Tα

α L[1 +M1]∥x− y∥PC , t ∈ (tm, T ].

Since
[
M̃T

Tα

α L[1 + M1]
]
< 1, then Q is a contraction mapping. Hence, by the

Krasnoselskii’s theorem, we can conclude that (1.1)− (1.3) has atleast one solution
on PC([−r, T ], X). This completes the proof of the theorem.
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