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EXISTENCE RESULTS FOR FIRST ORDER BOUNDARY VALUE

PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

AND INCLUSIONS WITH FRACTIONAL INTEGRAL

BOUNDARY CONDITIONS

SOTIRIS K. NTOUYAS

Abstract. This paper studies a new class of boundary value problems of non-
linear differential equations and inclusions of fractional order with fractional
integral boundary conditions. Some new existence and uniqueness results are
obtained by using standard fixed point theorems. Some illustrative examples

are also discussed.

1. Introduction

In this paper, we discuss the existence and uniquness of solutions for a boundary
value problem of nonlinear fractional differential equations and inclusions of order
q ∈ (0, 1] with fractional integral boundary conditions. More precisely, in Section 3,
we consider the following boundary value problem of fractional differential equations{ cDqx(t) = f(t, x(t)), 0 < t < 1, 0 < q ≤ 1,

x(0) = αIpx(η), 0 < η < 1,
(1)

where cDq denotes the Caputo fractional derivative of order q, f : [0, 1] × R → R
is a given continuous function, α ∈ R is such that α ̸= Γ(p+ 1)/ηp, Γ is the Euler
gamma function and Ip, 0 < p < 1 is the Riemann-Liouville fractional integral of
order p.

Fractional differential equations have aroused great interest, which is caused by
both the intensive development of the theory of fractional calculus and the applica-
tion of physics, mechanics and chemistry engineering. For some recent development
on the topic see [1]-[23] and the references cited therein.

In [26], the authors studied the following boundary value problem with fractional
integral boundary conditions{ cDq

0+x(t) = f(t, x(t),cDp
0+x(t)), 0 < t < 1, 1 < q ≤ 2, 0 < p < 1

x(0) = 0, x′(1) = αIp0+x(1).
(2)
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Existence and uniqueness results are proved via Banach’s contraction principle and
Leray-Schauder Nonlinear Alternative.

Ahmad et al. in [10] discussed existence results for nonlinear fractional differen-
tial equations with three-point integral boundary conditions

cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = α

∫ η

0

x(s)ds, 0 < η < 1,
(3)

where cDq denotes the Caputo fractional derivative, and α ∈ R, α ̸= 2/η2.
In Section 3, we prove new existence and uniqueness results for the problem (1).

These results are based on Banach’s fixed point theorem, Krasnoselskii’s fixed point
theorem and nonlinear alternative of Leray-Schauder type.

In Section 4, we continue our study for boundary value problems with fractional
integral boundary conditions for multivalued maps (inclusion case) and consider
the problem { cDqx(t) ∈ F (t, x(t)), 0 < t < 1, 0 < q ≤ 1,

x(0) = αIpx(η), 0 < η < 1,
(4)

where F : [0, 1]×R → P(R) is a multivalued map, P(R) is the family of all subsets
of R.

We establish existence results for the problem (4), when the right hand side
is convex as well as non-convex valued. In the first result, we shall combine the
nonlinear alternative of Leray-Schauder type for single-valued maps with a selection
theorem due to Bressan and Colombo for lower semicontinuous multivalued maps
with nonempty closed and decomposable values, while in the second result, we shall
use the fixed point theorem for contraction multivalued maps due to Covitz and
Nadler.

2. Linear Problem

Let us recall some basic definitions of fractional calculus [28, 31, 32].

Definition 2.1. For at least n-times differentiable function g : [0,∞) → R, the
Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

The following lemmas gives some properties of Riemann-Liouville fractional in-
tegrals and Caputo fractional derivative [28].

Lemma 2.3. Let p, q ≥ 0, f ∈ L1[a, b]. Then I
pIqf(t) = Ip+qf(t) and cDqIqf(t) =

f(t), for all t ∈ [a, b].
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Lemma 2.4. Let β > α > 0, f ∈ L1[a, b]. Then
cDαIβf(t) = Iβ−αf(t), for all

t ∈ [a, b].

To define the solution of the boundary value problem (1) we need the following
lemma, which deals with a linear variant of the problem (1).

By a solution of (1), we mean a continuous function x(t) which satisfies the
equation cDqx(t) = f(t, x(t)), 0 < t < 1, and the boundary condition x(0) =
αIpx(η), 0 < η < 1.

Lemma 2.5. Let α ̸= Γ(p+ 1)

ηp
. Then for a given g ∈ C([0, 1],R), the solution of

the fractional differential equation

cDqx(t) = g(t), 0 < q ≤ 1 (5)

subject to the boundary condition

x(0) = αIpx(η) (6)

is given by

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
g(s)ds

+
αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
g(s)ds, t ∈ [0, 1].

(7)

Proof. For some constant c0 ∈ R, we have [28]

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
g(s)ds− c0. (8)

Using the Riemann-Liouville integral of order p for (8), we have

Ipx(t) =

∫ t

0

(t− s)p−1

Γ(p)

[∫ s

0

(s− r)q−1

Γ(q)
g(r)dr − c0

]
ds

= IpIqg(t)− c0
tp

Γ(p+ 1)
= Ip+qg(t)− c0

tp

Γ(p+ 1)
,

where we have used Lemma 2.3. Using the condition (6) in the above expression,
we get

c0 = − αΓ(p+ 1)

Γ(p+ 1)− αηp
Ip+qg(η).

Substituting the value of c0 in (8), we obtain (7). �

3. Existence results for single-valued case

Let C = C([0, 1],R) denotes the Banach space of all continuous functions from
[0, 1] → R endowed with the norm defined by ∥x∥ = sup{|x(t)|, t ∈ [0, 1]}.

In view of Lemma 2.5, we define an operator F : C → C by

(Fx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds

+
αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s, x(s))ds, t ∈ [0, 1].

(9)
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Observe that the problem (1) has solutions if and only if the operator equation
Fx = x has fixed points.

Our first existence result is obtained by the use of the well-known Banach’s
contraction principle.

Theorem 3.1. Suppose that f : [0, 1]× R → R is continuous and that there exists
a constant L > 0 such that

(A1) |f(t, x)− f(t, y)| ≤ L|x− y|, t ∈ [0, 1], x, y ∈ R.
If LA < 1, where

A =
1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|
, (10)

then the boundary value problem (1) has a unique solution.

Proof. Let us set supt∈[0,1] |f(t, 0)| = M and show that FBρ ⊂ Bρ, where F is

defined by (9), Bρ = {x ∈ C ([0, 1],R) : ∥x∥ ≤ ρ} and ρ ≥ MA

1− LA
, with A given

by (10).
For x ∈ Bρ, t ∈ [0, 1], we have

∥(Fx)(t)∥

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|f(s, x(s))|ds

}

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)ds

}
= [Lρ+M ]

{
1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|

}
≤ [Lρ+M ]A ≤ ρ.

This shows that FBρ ⊂ Bρ.

Now, for x, y ∈ C ([0, 1],R) and t ∈ [0, 1], we obtain

∥(Fx)− (Fy)∥

≤ sup
t∈[0,1]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|f(s, x(s))− f(s, y(s))|ds

}
≤ L∥x− y∥

{
1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|

}
= LA∥x− y∥.
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As LA ∈ (0, 1) by assumption, therefore F is a contraction. Hence Banach’s con-
traction principle applies and the problem (1) has a unique solution. �

Now, we prove the existence of solutions of (1) by applying Krasnoselskii’s fixed
point theorem [30].

Theorem 3.2. (Krasnoselskii’s fixed point theorem). Let M be a closed, bounded,
convex and nonempty subset of a Banach space X. Let A,B be the operators such
that (i) Ax+ By ∈ M whenever x, y ∈ M ; (ii) A is compact and continuous; (iii)
B is a contraction mapping. Then there exists z ∈M such that z = Az +Bz.

Theorem 3.3. Let f : [0, 1]× R → R be a continuous function satisfying (A1). In
addition we assume that the following assumption holds:

(A2) |f(t, x)| ≤ µ(t), ∀(t, x) ∈ [0, 1]× R, and µ ∈ C([0, 1],R+).

Then the boundary value problem (1) has at least one solution on [0, 1], provided
that

L|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|
< 1. (11)

Proof. Letting supt∈[0,1] |µ(t)| = ∥µ∥, we fix

r ≥ ∥µ∥
{

1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|

}
and consider Br = {x ∈ C : ∥x∥ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds, t ∈ [0, 1],

(Qx)(t) =
αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s, x(s))ds, t ∈ [0, 1].

For x, y ∈ Br, we find that

∥Px+Qy∥ ≤ ∥µ∥
∫ 1

0

(1− s)q−1

Γ(q)
ds+

∥µ∥|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
ds

≤ ∥µ∥
{

1

Γ(q + 1)
+

|α|ηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|

}
≤ r.

Thus, Px+Qy ∈ Br. It follows from the assumption (A1) together with (11) that Q
is a contraction mapping. Continuity of f implies that the operator P is continuous.
Also, P is uniformly bounded on Br as

∥Px∥ ≤ ∥µ∥
Γ(q + 1)

.

Now we prove the compactness of the operator P.
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In view of (A1), we define sup(t,x)∈[0,1]×Br
|f(t, x)| = f, and consequently we

have

|(Px)(t1)− (Px)(t2)| =

∣∣∣∣ 1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds

+

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds

∣∣∣∣
≤ f

Γ(q + 1)
(tq2 − tq1),

which is independent of x and tends to zero as t2 − t1 → 0. Thus, P is equicon-
tinuous. Hence, by the Arzelá-Ascoli Theorem, P is compact on Br. Thus all the
assumptions of Theorem 3.2 are satisfied. So the conclusion of Theorem 3.2 implies
that the boundary value problem (1) has at least one solution on [0, 1]. �

The next existence result is based on Leray-Schauder nonlinear alternative.

Theorem 3.4. (Nonlinear alternative for single valued maps)[25]. Let E be a
Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U.
Suppose that F : U → C is a continuous, compact (that is, F (U) is a relatively
compact subset of C) map. Then either

(i) F has a fixed point in U, or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.5. Assume that:

(A3) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a
function ϕ ∈ L1([0, 1],R+) such that

|f(t, x) ≤ ϕ(t)ψ(∥x∥) for each (t, x) ∈ [0, 1]× R;

(A4) there exists a constant M > 0 such that

M

ψ(M)

[
Iqϕ(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qϕ(η)

] > 1.

Then the boundary value problem (1) has at least one solution on [0, 1].

Proof. Observe that the operator F : C([0, 1],R) → C([0, 1],R) defined by
(9) is continuous. Next we show that F maps bounded sets into bounded sets in
C([0, 1],R). For a positive number ρ, let Bρ = {x ∈ C([0, 1],R) : ∥x∥ ≤ ρ} be a
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bounded ball in C([0, 1],R). Then, we have

|(Fx)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|f(s, x(s))|ds

≤ ψ(∥x∥)
∫ 1

0

(1− s)q−1

Γ(q)
ϕ(s)ds

+
ψ(∥x∥)|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
ϕ(s)ds

≤ ψ(∥x∥)
[
Iqp(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qϕ(η)

]
.

Thus,

∥Fx∥ ≤ ψ(ρ)

[
Iqϕ(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qϕ(η)

]
.

Now we show that F maps bounded sets into equicontinuous sets of C([0, 1],R).
Let t′, t′′ ∈ [0, 1] with t′ < t′′ and x ∈ Bρ. Then

|(Fx)(t′′)− (Fx)(t′)|

≤

∣∣∣∣∣ψ(ρ)
∫ t′

0

[
(t′′ − s)q−1 − (t′ − s)q−1

Γ(q)

]
ϕ(s)ds+ ψ(ρ)

∫ t′′

t′

(t′′ − s)q−1

Γ(q)
ϕ(s)ds

∣∣∣∣∣ .
Obviously the right hand side of the above inequality tends to zero independently

of x ∈ Bρ as t′′ − t′ → 0. Therefore it follows by the Ascoli-Arzelá theorem that
F : C([0, 1],R) → C([0, 1],R) is completely continuous.

Now let λ ∈ (0, 1) and let x = λFx. Then for t ∈ [0, 1] we have

x(t) = λ

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds+λ

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s, x(s))ds.

Then, using the computations by the first step, we have

|x(t)| ≤ ψ(∥x∥)

[
Iqϕ(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qϕ(η)

]
.

Consequently,

∥x∥

ψ(∥x∥)
[
Iqϕ(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qϕ(η)

] ≤ 1.

In view of (A4), there exists M such that ∥x∥ ≠M . Let us set

U = {x ∈ C([0, 1],R) : ∥x∥ < M}.
Note that the operator F : U → C([0, 1],R) is continuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x = λF (x) for
some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Lemma 3.4), we deduce that F has a fixed point x ∈ U which is a solution of the
problem (1). This completes the proof. �

In the special case when p(t) = 1 and ψ(|x|) = k|x| + N we have the following
corollary.
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Corollary 3.6. Let f : [0, 1]× R → R be a continuous function. Assume that:

(A5) there exist constants 0 ≤ κ <
1

A
, where A is given by (10) and M > 0 such

that

|f(t, x)| ≤ κ|x|+M, for all t ∈ [0, 1], x ∈ C[0, 1].

Then the boundary value problem (1) has at least one solution.

Example 3.7. Consider the following fractional boundary value problem
cD1/2x(t) =

1

2(t+ 2)2
|x|

1 + |x|
+ 1 + sin2 t, t ∈ [0, 1],

x(0) =
√
3I1/2x

(
1

3

)
.

(12)

Here, q = 1/2, α =
√
3, p = 1/2, η = 1/3 and f(t, x) =

1

2(t+ 2)2
|x|

1 + |x|
+ 1 +

sin2 t. As α =
√
3 ̸= Γ(p+1)/ηp = Γ(3/2)/(1/3)1/2 and |f(t, x)−f(t, y)| ≤ 1

8
|x−y|,

therefore, (A1) is satisfied with L =
1

8
. Since

LA = L

{
1

Γ(q + 1)
+

αηp+qΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− αηp|

}
=

1

8

{
2√
π
+

√
3π

3(2−
√
π)

}
≈ 0.7019863 < 1,

by the conclusion of Theorem 3.1, the boundary value problem (12) has a unique
solution on [0, 1].

Example 3.8. Consider the following boundary value problem
cD1/2x(t) =

1

16π
sin(2πx) +

|x|
2(1 + |x|)

+
1

2
, t ∈ [0, 1],

x(0) =
√
3I1/2x

(
1

3

)
.

(13)

Here, ∣∣∣f(t, x)∣∣∣ = ∣∣∣∣ 1

16π
sin(2πx) +

|x|
2(1 + |x|)

+
1

2

∣∣∣∣ ≤ 1

8
|x|+ 1.

Clearly M = 1 and κ =
1

8
<

1

A
≈ 0.1780661. Thus, all the conditions of Corollary

3.6 are satisfied and consequently the problem (13) has at least one solution.

4. Existence Results for multi-valued case

Let us recall some basic definitions on multi-valued maps [22], [27].
For a normed space (X, ∥ · ∥), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =

{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) =
{Y ∈ P(X) : Y is compact and convex}. A multi-valued map G : X → P(X) is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is
bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X)
(i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.)
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on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and
if for each open set N of X containing G(x0), there exists an open neighborhood
N0 of x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is
relatively compact for every B ∈ Pb(X). If the multi-valued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a
closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed
point if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued
operator G will be denoted by FixG. A multivalued map G : [0; 1] → Pcl(R) is said
to be measurable if for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.
Let C([0, 1]) denote a Banach space of continuous functions from [0, 1] into R with
the norm ∥x∥ = supt∈[0,1] |x(t)|. Let L1([0, 1],R) be the Banach space of measurable

functions x : [0, 1] → R which are Lebesgue integrable and normed by ∥x∥L1 =∫ 1

0
|x(t)|dt.

4.1. The lower semi-continuous case. As a first result in the subsection, we
study the case when F is not necessarily convex valued. Our strategy to deal with
this problems is based on the nonlinear alternative of Leray Schauder type together
with the selection theorem of Bressan and Colombo [19] for lower semi-continuous
maps with decomposable values.

Definition 4.1. Let X be a nonempty closed subset of a Banach space E and
G : X → P(E) be a multivalued operator with nonempty closed values. G is lower
semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩B ̸= ∅} is open for any open set
B in E.

Definition 4.2. Let A be a subset of [0, 1]×R. A is L⊗B measurable if A belongs
to the σ−algebra generated by all sets of the form J × D, where J is Lebesgue
measurable in [0, 1] and D is Borel measurable in R.

Definition 4.3. A subset A of L1([0, 1],R) is decomposable if for all x, y ∈ A and
measurable J ⊂ [0, 1] = J , the function xχJ + yχJ−J ∈ A, where χJ stands for
the characteristic function of J .

Definition 4.4. Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator. We say N has a property (BC) if N is lower semi-
continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1]×R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0, 1]× R) → P(L1([0, 1],R)) associated with
F as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]},
which is called the Nemytskii operator associated with F.

Definition 4.5. Let F : [0, 1]×R → P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Nemytskii operator F is lower semi-continuous and has nonempty closed
and decomposable values.
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Lemma 4.6. ([24]) Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator satisfying the property (BC). Then N has a continu-
ous selection, that is, there exists a continuous function (single-valued) g : Y →
L1([0, 1],R) such that g(x) ∈ N(x) for every x ∈ Y .

Definition 4.7. A function x ∈ C2([0, 1],R) is a solution of the problem (4) if
x(0) = αIpx(η), and there exists a function f ∈ L1([0, 1],R) such that f(t) ∈
F (t, x(t)) a.e. on [0, 1] and

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s)ds. (14)

Theorem 4.8. Assume that (A4) holds. In addition we suppose that the following
conditions hold:

(H1) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a
function p ∈ L1([0, 1],R+) such that

∥F (t, x)∥P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(∥x∥) for each (t, x) ∈ [0, 1]× R;
(H2) F : [0, 1]×R → P(R) is a nonempty compact-valued multivalued map such

that
(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,
(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, 1];

Then the boundary value problem (4) has at least one solution on [0, 1].

Proof. It follows from (H1) and (H2) that F is of l.s.c. type. Then from
Lemma 4.6, there exists a continuous function f : C([0, 1],R) → L1([0, 1],R) such
that f(x) ∈ F(x) for all x ∈ C([0, 1],R).

Consider the problem{
cDqx(t) = f(x(t)), 0 < q ≤ 1, t ∈ [0, 1],

x(0) = αIpx(η), 0 < η < 1.
(15)

Observe that if x ∈ C1([0, 1],R) is a solution of (15), then x is a solution to the
problem (4). In order to transform the problem (15) into a fixed point problem, we
define the operator ΩF as

ΩFx(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(x(s))ds+

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(x(s))ds.

ΩF is continuous. Let {xn} be a sequence such that xn → x in C([0, 1],R).
Then

|ΩF (xn)(t)− ΩF (x)(t)|

=

∣∣∣∣∣
∫ t

0

(t− s)q−1

Γ(q)
[f(xn(s))− f(x(s))] ds

+
αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
[f(xn(s))− f(x(s))]

∣∣∣∣∣
≤

∫ t

0

(t− s)q−1

Γ(q)
∥f(yn(s))− f(y(s))∥ ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
∥f(xn(s))− f(x(s))∥.
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Hence

∥ΩF (xn)− ΩF (x)∥ ≤
∫ t

0

(t− s)q−1

Γ(q)
∥f(xn)(s)− f(x)(s)∥ ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
∥f(xn(s))− f(x(s))∥,

which tends to 0, as n→ ∞. Thus ΩF is continuous.
The remaining part of the proof is similar to that of Theorem 3.5. So we omit

it. This completes the proof. �

Example 4.9. Consider the following fractional boundary value problem
cD1/2x(t) ∈ F (t, x(t)), 0 < t < 1,

x(0) =
√
3I1/2x

(
1

3

)
.

(16)

Here, q = 1/2, p = 1/2, α =
√
3, η = 1/3, and F : [0, 1] × R → P(R) is a

multivalued map given by

x→ F (t, x) =

[
|x|3

|x|3 + 3
+ 3t3 + 5,

|x|
|x|+ 1

+ t+ 1

]
.

Clearly α =
√
3 ̸= Γ(p+ 1)/ηp = Γ(3/2)/(1/3)1/2 and for f ∈ F, we have

|f | ≤ max

(
|x|3

|x|3 + 3
+ t3 + 1,

|x|
|x|+ 1

+ t+ 1

)
≤ 3, x ∈ R.

Thus,
∥F (t, x)∥P := sup{|y| : y ∈ F (t, x)} ≤ 3 = p(t)ψ(|x|), x ∈ R,

with p(t) = 1, ψ(|x|) = 3.
Further, using the condition (H3) we find that M > 16.847672. Clearly, all the

conditions of Theorem 4.8 are satisfied. So there exists at least one solution of the
problem (16) on [0, 1].

4.2. The Lipschitz case. Now we prove the existence of solutions for the problem
(4) with a nonconvex valued right hand side by applying a fixed point theorem for
multivalued maps due to Covitz and Nadler [21].

Let (X, d) be a metric space induced from the normed space (X; ∥ · ∥). Consider
Hd : P(X)× P(X) → R ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X),Hd) is
a metric space and (Pcl(X), Hd) is a generalized metric space (see [29]).

Definition 4.10. A multivalued operator N : X → Pcl(X) is called:

(a) γ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ−Lipschitz with γ < 1.

Lemma 4.11. (Covitz-Nadler, [21]) Let (X, d) be a complete metric space. If
N : X → Pcl(X) is a contraction, then FixN ̸= ∅.
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Definition 4.12. A measurable multi-valued function F : [0, 1] → P(X) is said to
be integrably bounded if there exists a function h ∈ L1([0, 1], X) such that for all
v ∈ F (t), ∥v∥ ≤ h(t) for a.e. t ∈ [0, 1].

Theorem 4.13. Assume that the following conditions hold:

(H3) F : [0, 1]× R → Pcp(R) is such that F (·, x) : [0, 1] → Pcp(R) is measurable
for each x ∈ R.

(H4) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x− x̄| for almost all t ∈ [0, 1] and x, x̄ ∈ R with
m ∈ L1([0, 1],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, 1].

Then the boundary value problem (4) has at least one solution on [0, 1] if

γ = Iqm(1) +
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qm(η) < 1.

Proof. Define the operator ΩF : C([0, 1],R) → P(C([0, 1],R)) by

ΩF (x) =



h ∈ C([0, 1],R) :

h(t) =


∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+
αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
f(s)ds,


for f ∈ SF,x.

Observe that the set SF,x is nonempty for each x ∈ C([0, 1],R) by the assumption
(H3), so F has a measurable selection (see Theorem III.6 [20]). Now we show
that the operator ΩF , satisfies the assumptions of Lemma 4.11. To show that
ΩF (x) ∈ Pcl((C[0, 1],R)) for each x ∈ C([0, 1],R), let {un}n≥0 ∈ ΩF (x) be such
that un → u (n → ∞) in C([0, 1],R). Then u ∈ C([0, 1],R) and there exists
vn ∈ SF,xn such that, for each t ∈ [0, 1],

un(t) =

∫ t

0

(t− s)q−1

Γ(q)
vn(s)ds+

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
vn(s)ds.

As F has compact values, we pass onto a subsequence to obtain that vn converges
to v in L1([0, 1],R). Thus, v ∈ SF,x and for each t ∈ [0, 1],

un(t) → u(t) =

∫ t

0

(t− s)q−1

Γ(q)
v(s)ds+

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
v(s)ds.

Hence, u ∈ ΩF (x).
Next we show that there exists γ < 1 such that

Hd(ΩF (x),ΩF (x̄)) ≤ γ∥x− x̄∥ for each x, x̄ ∈ C([0, 1],R).
Let x, x̄ ∈ C([0, 1],R) and h1 ∈ ΩF (x). Then there exists v1(t) ∈ F (t, x(t)) such
that, for each t ∈ [0, 1],

h1(t) =

∫ t

0

(t− s)q−1

Γ(q)
v1(s)ds+

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
v1(s)ds.

By (H4), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t)− x̄(t)|.
So, there exists w ∈ F (t, x̄(t)) such that

|v1(t)− w| ≤ m(t)|x(t)− x̄(t)|, t ∈ [0, 1].
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Define U : [0, 1] → P(R) by
U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|x(t)− x̄(t)|}.

Since the multivalued operator U(t) ∩ F (t, x̄(t)) is measurable (Proposition III.4
[20]), there exists a function v2(t) which is a measurable selection for U . So v2(t) ∈
F (t, x̄(t)) and for each t ∈ [0, 1], we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x̄(t)|.

For each t ∈ [0, 1], let us define

h2(t) =

∫ t

0

(t− s)q−1

Γ(q)
v2(s)ds+

αΓ(p+ 1)

Γ(p+ 1)− αηp

∫ η

0

(η − s)p+q−1

Γ(p+ q)
v2(s)ds.

Thus,

|h1(t)− h2(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|v1(s)− v2(s)|ds

+
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|

∫ η

0

(η − s)p+q−1

Γ(p+ q)
|v1(s)− v2(s)|ds.

Hence,

∥h1 − h2∥ ≤
∫ 1

0

(1− s)q−1

Γ(q)
m(s)ds+

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qm(η)

= Iqm(1) +
|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qm(η).

Analogously, interchanging the roles of x and x, we obtain

Hd(ΩF (x),ΩF (x̄)) ≤ γ∥x− x̄∥

≤
{
Iqm(1) +

|α|Γ(p+ 1)

|Γ(p+ 1)− αηp|
Ip+qm(η)

}
∥x− x̄∥.

Since ΩF is a contraction, it follows by Lemma 4.11 that ΩF has a fixed point x
which is a solution of (4). This completes the proof. �

Acknowledgments. The author would like to express his thanks to the referee
for his/her helpful comments and suggestions.
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