MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR FRACTIONAL EIGENVALUE PROBLEM WITH NONLOCAL CONDITIONS

MOUSTAFA EL-SHAHED AND WAFA M. SHAMMAKH

Abstract. The nonlinear fractional nonlocal boundary value problem

$$
\begin{aligned}
& D_{0+}^{\alpha} u(t)+\lambda g(t) f(t, u(t))=0, \quad t \in(0,1), \quad n-1<\alpha \leq n \\
& u(0)=0, \quad u^{(k)}(0)=0, \quad 1 \leq k \leq n-2, \quad u^{\prime \prime}(1)=\theta[u]
\end{aligned}
$$

is considered under some conditions concerning the principal characteristic value to the relevant linear operator, where $n-1<\alpha \leq n$ is a real number, D_{0+}^{α} is the standard Riemann-Liouville fractional derivative, and $\theta[u]=$ $\int_{0}^{1} u(s) d A(s)$ is given by Riemann-Stieltjes integral with a signed measure. The existence of positive solutions is obtained by means of the fixed point index theory in cones.

1. Introduction

The purpose of this paper is to study the existence of a positive solutions for the following boundary value problem

$$
\begin{equation*}
D_{0+}^{\alpha} u(t)+\lambda g(t) f(t, u(t))=0, \quad t \in(0,1), \quad n-1<\alpha \leq n \tag{1}
\end{equation*}
$$

with the nonlocal BCs

$$
\begin{equation*}
u(0)=0, \quad u^{(k)}(0)=0, \quad 1 \leq k \leq n-2, \quad u^{\prime \prime}(1)=\theta[u] \tag{2}
\end{equation*}
$$

where $\lambda>0$ is a parameter and $\theta[u]$ is given by a Riemann-Stieltjes integral

$$
\begin{equation*}
\theta[u]=\int_{0}^{1} u(s) d A(s) \tag{3}
\end{equation*}
$$

This type of BC includes, as particular cases, multi-point problems when $\theta[u]=$ $\sum_{i=1}^{m-2} \alpha_{i} u\left(\zeta_{i}\right)$, (see $\left.[1,15,18,29]\right)$, and a continuously distributed case when $\theta[u]=$ $\int_{0}^{1} \alpha(s) u(s) d s,($ see $[4])$.
The nonlocal BVPs have been studied extensively. The methods used therein mainly depend on the fixed-point theorems, degree theory, upper and lower solutions techniques, and monotone iteration. The existence results are available in

[^0]the literature $[2,3,5-10,12,16,21,26-28]$. Recently, Wang et al. [19] studied the nonlocal BVP
\[

$$
\begin{aligned}
& D_{0+}^{\alpha} u(t)+q(t) f(t, u(t))=0, \quad t \in(0,1), \quad n-1<\alpha \leq n \\
& u(0)=u^{\prime}(0)=\ldots=u^{(n-2)}(0)=0, \quad u(1)=\int_{0}^{1} u(s) d A(s)
\end{aligned}
$$
\]

where $\alpha \geq 2, D_{0+}^{\alpha}$ is the standard Riemann-Liouville derivative, $q(t)$ may be singular at $t=0$ and/or $t=1, f(t, u)$ may also have singularity at $u=0 . \int_{0}^{1} u(s) d A(s)$ denotes the Riemann- Stieltjes integral with a signed measure. It is worth mentioning that the idea using a Riemann-Stieltjes integral with a signed measure is due to Webb and Infante in $[23,24]$. The papers $[13,20-25]$ contain several new ideas, and give a unified approach to many BVPs.
In this paper, we obtain the results on the existence of one and two positive solution by utilizing the results of Webb and Lan [25] involving comparison with the principal characteristic value of a related linear problem to the fractional case. We then use the theory worked out by Webb and Infante in $[22,23]$ to study the general nonlocal BCs.

2. Preliminaries

In this section, we will present some definitions and lemmas that will be used in the proof of our main results.
Definition 2.1([14, 17]). The fractional integral of order $\alpha>0$ of a function $y:(0, \infty) \rightarrow R$ is given by

$$
I_{0+}^{\alpha} y(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s
$$

provided that the integral on the right-hand side converges.
Definition 2.2([14, 17]). The standard Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $y:(0, \infty) \rightarrow R$ is given by

$$
D_{0+}^{\alpha} y(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t}(t-s)^{n-\alpha-1} y(s) d s
$$

where $n=[\alpha]+1$, provided that the integral on the right-hand side converges. Definition 2.3([11]). Let E be a real Banach space. A nonempty closed convex set $K \subset E$ is called cone of E if it satisfies the following conditions

$$
\begin{array}{lll}
\text { (1) } & x \in K, \sigma \geq 0 & \text { implies } \\
\text { (2) } & \sigma \in K \in K ; \\
\text { (2mplies } & x=0 .
\end{array}
$$

Definition 2.4 ([11]). An operator is called completely continuous if it is continuous and maps bounded sets into precompact sets.
Lemma 2.1([11, 30]). Suppose $T: K \rightarrow K$ is a completely continuous operator and has no fixed points on $\partial K_{\rho} \bigcap K$. Then the following are true:
(i) If $\|T u\| \leq\|u\|$ for all $u \in \partial K_{\rho} \bigcap K$, then $i\left(T, K_{\rho} \bigcap K, K\right)=1$, where i is the fixed point index on K.
(ii) If $\|T u\| \geq\|u\|$ for all $u \in \partial K_{\rho} \bigcap K$, then $i\left(T, K_{\rho} \bigcap K, K\right)=0$.

Lemma 2.2([11, 30]). Let K be a cone in Banach space E. Suppose that $T: \bar{K}_{\rho} \rightarrow K$ is a completely continuous operator. If there exists $u_{0} \in K \backslash\{0\}$ such that $u-T u \neq \mu u_{0}$ for any $u \in \partial K_{r}$, and $\mu \geq 0, i\left(T, K_{\rho}, K\right)=0$.

Lemma 2.3([11, 30]). Let K be a cone in Banach space E. Suppose that $T: \bar{K}_{\rho} \rightarrow K$ is a completely continuous operator. If $T u \neq \mu u$ for any $u \in \partial K_{r}$ and $\mu \geq 1$, then $i\left(T, K_{\rho}, K\right)=1$.
Lemma 2.4([14]). Assume that $u \in C(0,1) \cap L(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L(0,1)$. Then

$$
I_{0+}^{\alpha} D_{0+}^{\alpha} u(t)=u(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\ldots+c_{n} t^{\alpha-n}
$$

Lemma 2.5. Let $y(t) \in C[0,1]$ be a given function and $n-1<\alpha \leq n$, then $u(t)$ is a solution of BVP (1) - 2) if and only if $u(t)$ is a solution of the integral equation:

$$
\begin{equation*}
u(t)=\gamma(t) \theta[u]+\int_{0}^{1} G_{0}(t, s) y(s) d s \tag{4}
\end{equation*}
$$

where

$$
\gamma(t)=\frac{t^{\alpha-1}}{(\alpha-1)(\alpha-2)}, \quad G_{0}(t, s)= \begin{cases}\frac{t^{\alpha-1}(1-s)^{\alpha-3}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1 \tag{5}\\ \frac{t^{\alpha-1}(1-s)^{\alpha-3}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1\end{cases}
$$

Proof. Assume that $u(t)$ is a solution of BVP (1)-(2). Applying Lemma 2.4, (11) can be reduced to an equivalent integral equation

$$
\begin{equation*}
u(t)=-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\ldots+c_{n} t^{\alpha-n} \tag{6}
\end{equation*}
$$

By (2), we obtain
$c_{n}=\ldots=c_{2}=0$, and $c_{1}=\frac{\theta[u]}{(\alpha-1)(\alpha-2)}+\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-3} y(s) d s$.
Therefore, we obtain

$$
\begin{aligned}
u(t) & =\frac{t^{\alpha-1}}{(\alpha-1)(\alpha-2)} \theta[u]+\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-3} y(s) d s-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) d s \\
& =\gamma(t) \theta[u]+\int_{0}^{t} \frac{t^{\alpha-1}(1-s)^{\alpha-3}-(t-s)^{\alpha-1}}{\Gamma(\alpha)} y(s) d s+\int_{t}^{1} \frac{t^{\alpha-1}(1-s)^{\alpha-3}}{\Gamma(\alpha)} y(s) d s \\
& =\gamma(t) \theta[u]+\int_{0}^{1} G_{0}(t, s) y(s) d s .
\end{aligned}
$$

Conversely, if $u(t)$ is a solution of the integral equation (4), using the relation $D^{\alpha} t^{\alpha-m}=0$, where $m=1,2, \ldots, n$, where n is the smallest integer greater than or equal to α, we have

$$
\begin{aligned}
D_{0+}^{\alpha} u(t) & =D_{0+}^{\alpha} t^{\alpha-1}\left(\frac{\theta[u]}{\alpha-1}\right)+D_{0+}^{\alpha} t^{\alpha-1}\left(\int_{0}^{1} \frac{(1-s)^{\alpha-3}}{\Gamma(\alpha)} y(s) d s\right) \\
& -D_{0+}^{\alpha}\left(\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} y(s) d s\right) \\
& =-D_{0+}^{\alpha} I^{\alpha} y(t)=-y(t)
\end{aligned}
$$

A simple computation showed $u(0)=0, \quad u^{(k)}(0)=0, \quad 1 \leq k \leq n-2, \quad u^{\prime \prime}(1)=$ $\theta[u]$.
Remark 2.1. $G_{0}(t, s)$ is the Green's function for the local BVP

$$
\begin{align*}
& D_{0+}^{\alpha} u(t)+\lambda g(t) f(t, u(t))=0, \quad t \in(0,1), n-1<\alpha \leq n, \\
& u(0)=0, u^{(k)}(0)=0,1 \leq k \leq n-2, u^{\prime \prime}(1)=0 \tag{7}
\end{align*}
$$

Lemma 2.6. $G_{0}(t, s)$ has the following properties
(i) $G_{0}(t, s) \geq 0$ is continuous for all $t, s \in[0,1]$;
(ii) $c_{0}(t) \Phi_{0}(s) \leq G_{0}(t, s) \leq \Phi_{0}(s), \quad \forall t, s \in[0,1]$,
where

$$
\Phi_{0}(s)=G_{0}(1, s)=\frac{(1-s)^{\alpha-3}-(1-s)^{\alpha-1}}{\Gamma(\alpha)}, c_{0}(t)=t^{\alpha-1} .
$$

Proof. It is obvious that $G_{0}(t, s)$ is nonnegative and continuous.
(i) For $s \leq t$, we have

$$
\begin{aligned}
\frac{\partial G_{0}(t, s)}{\partial t} & =\frac{(\alpha-1)}{\Gamma(\alpha)}\left[t^{\alpha-2}(1-s)^{\alpha-3}-(t-s)^{\alpha-2}\right] \\
& \geq \frac{(\alpha-1) t^{\alpha-2}}{\Gamma(\alpha)}\left[(1-s)^{\alpha-3}-(t-s)^{\alpha-2}\right] \\
& \geq \frac{(\alpha-1) t^{\alpha-2} s(1-s)^{\alpha-3}}{\Gamma(\alpha)} \geq 0
\end{aligned}
$$

and

$$
\frac{G_{0}(t, s)}{\Phi_{0}(s)}=\frac{t^{\alpha-1}(1-s)^{\alpha-3}-(t-s)^{\alpha-1}}{(1-s)^{\alpha-3}-(1-s)^{\alpha-1}} \geq t^{\alpha-1}
$$

For $s \geq t$, we have

$$
\frac{\partial G_{0}(t, s)}{\partial t}=\frac{(\alpha-1) t^{\alpha-2}(1-s)^{\alpha-3}}{\Gamma(\alpha)} \geq 0
$$

and

$$
\frac{G_{0}(t, s)}{\Phi_{0}(s)}=\frac{t^{\alpha-1}(1-s)^{\alpha-3}}{(1-s)^{\alpha-3}-(1-s)^{\alpha-1}} \geq t^{\alpha-1}
$$

Thus, (i) holds.
Defining $\mathrm{G}_{A}(s)=\int_{0}^{1} G_{0}(t, s) d A(t)$, it is shown in [21] that the Green's function for nonlocal BVP (1)-(2) is given by

$$
\begin{equation*}
G(t, s)=\frac{\gamma(t)}{[1-\theta[\gamma]]} \mathrm{G}_{A}(s)+G_{0}(t, s) \tag{8}
\end{equation*}
$$

By similar arguments to [23], we obtain the following Lemma.
Lemma 2.7. If G_{0} satisfies (i), (ii), then G satisfies (i), (ii) for a function Φ, with the same interval $[a, b]$ and the same constant c, where

$$
\Phi(s)=\Phi_{0}(s)+\frac{\|\gamma\|}{[1-\theta[\gamma]]} \mathrm{G}_{A}(s)
$$

$\Phi_{0}(s)$ defined in Lemma 2.6, and $c=\min \left\{c_{0}(t), \quad t \in[a, b]\right\}$
Proof. We have

$$
\begin{aligned}
G(t, s) & =\frac{\gamma(t)}{[1-\theta[\gamma]]} \mathrm{G}_{A}(s)+G_{0}(t, s) \\
& \leq \frac{\|\gamma\|]}{[1-\theta[\gamma]]} \mathrm{G}_{A}(s)+\Phi_{0}(s)=: \Phi(s)
\end{aligned}
$$

and for $t \in[a, b]$

$$
G(t, s) \geq \frac{c\|\gamma\|}{[1-\theta[\gamma]]} \mathrm{G}_{A}(s)+c \Phi_{0}(s)=c \Phi(s)
$$

Note that $g \Phi \in L^{\infty}$ because A has finite variation and $\mathrm{G}_{A}(s) \leq \Phi(s) \operatorname{var}(A)$.
Thus, the Green's function $G(t, s)$ satisfies (i), (ii) for a function Φ and the constant c. Throughout the paper we assume that:
(iii) A is a function of bounded variation, and $\mathrm{G}_{A}(s)=\int_{0}^{1} G_{0}(t, s) d A(t)$ satisfies $\mathrm{G}_{A}(s) \geq 0$ for a. e. $s \in[0,1]$. Note that $\mathrm{G}_{A}(s)$ exists for a. e. $s \in[0,1]$ by (i).
(iv) The functions g, Φ satisfy $g \geq 0$ almost everywhere, $g \Phi \in L^{1}[0,1]$, and

$$
\int_{a}^{b} \Phi(s) g(s) d s>0
$$

(v) $f:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ satisfies Caratheodory conditions, that is, $f(\cdot, u)$ is measurable for each fixed $u \in[0, \infty)$ and $f(t, \cdot)$ is continuous for almost every
$t \in[0,1]$, and for each $r>0$, there exists $\phi_{r} \in L^{\infty}[0,1]$ such that $0 \leq f(t, u) \leq \phi_{r}$ for all $u \in[0, r]$ and almost all $t \in[0,1]$.
(vi) $\gamma \in C[0,1], \quad \gamma(t) \geq 0, \quad 0 \leq \theta[\gamma]<1$.

3. Main Result

Set $E=C[0,1]$ is a Banach space with the norm $\|u\|=\sup _{t \in[0,1]}|u(t)|$. Let $P=$ $\{u \in E: u \geq 0\}$ denote the standard cone of non-negative functions. Define

$$
\begin{equation*}
K=\left\{u \in P, \min _{a \leq t \leq b} u(t) \geq c\|u\|\right\} \tag{9}
\end{equation*}
$$

where $[a, b]$ is some subset of $[0,1]$ and $c=\min \left\{c_{0}(t): t \in[a, b]\right\}$.
Note that $\gamma \in K$ so $K \neq\{0\}$. For any $0<r<R<+\infty$, let $K_{r}=\{u \in K:\|u\|<r\}$, $\partial K_{r}=\{u \in K:\|u\|=r\}, \bar{K}_{r}=\{u \in K:\|u\| \leq r\}, \bar{K}_{R} \backslash K_{r}=\{u \in K: r \leq\|u\| \leq R\}$ and $V_{r}=\left\{u \in K: \min _{t \in[a, b]} u(t)<r\right\}$ and V_{r} is bounded for K. Recall that a cone K in Banach space E is said to be reproducing if $E=K-K$, and is a total cone if $E=\overline{K-K}$. Define a nonlinear operator $T: P \rightarrow K$ and a linear operator $L: P \rightarrow K$ by

$$
\begin{equation*}
T u(t)=\lambda \int_{0}^{1} G(t, s) g(s) f(s, u(s)) d s \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
L u(t):=\int_{0}^{1} G(t, s) g(s) u(s) d s \tag{11}
\end{equation*}
$$

Lemma 3.1([24]). Under the hypotheses (i) -(vi) the maps $T: P \rightarrow E$ defined in $\sqrt{10}$) is compact.
Theorem 3.1. Under the hypotheses (i) -(vi) the map $T: P \rightarrow K$.
Proof.
For $u \in P$ and $t \in[0,1]$ we have :

$$
T u(t) \leq \lambda \int_{0}^{1} \Phi(s) g(s) f(s, u(s)) d s
$$

Hence,

$$
\|T u\| \leq \lambda \int_{0}^{1} \Phi(s) g(s) f(s, u(s)) d s
$$

Also , for $t \in[a, b]$, we have :

$$
\begin{aligned}
& T u(t) \geq c \lambda \int_{0}^{1} \Phi(s) g(s) f(s, u(s)) d s \\
& \quad \geq c\|T u\|
\end{aligned}
$$

Similar to the proofs of Lemma 3.1 and Theorem 3.1, $L u(t)$ is compact and maps P into K. We shall use the Krein-Rutman theorem. We recall that λ is an eigenvalue of L with corresponding eigenfunction ϕ if $\phi \neq 0$ and $\lambda \phi=L \phi$. The reciprocals of eigenvalues are called characteristic values of L. The radius of the spectrum of L, denoted $r(L)$, is given by the well-known spectral radius formula $r(L)=$ $\lim _{n \rightarrow \infty}\left\|L^{n}\right\|^{1 / n}$.

Theorem 3.2. [25] Let K be a total cone in a real Banach space E and let $\hat{L}: E \rightarrow E$ be a compact linear operator with $\hat{L}(K) \subseteq K$. If $r(\hat{L})>0$ then there is $\phi_{1} \in K \backslash\{0\}$ such that $\hat{L} \phi_{1}=r(\hat{L}) \phi_{1}$.
Thus $\lambda_{1}:=r(\hat{L})$ is an eigenvalue of \hat{L}, the largest possible real eigenvalue and $\mu_{1}=\frac{1}{\lambda_{1}}$ is the smallest positive characteristic value.
Lemma 3.2. [25]
Assume that (i) -(iv) hold and let L be as defined in 11). Then $r(L)>0$.
Theorem 3.3.
When (i) -(iv) hold, $r(L)$ is an eigenvalue of L with eigenfunction ϕ_{1} in K.
Proof. $r(L)$ is an eigenvalue of L with eigenfunction in P, by Theorem 3.2. As L maps P into K, the eigenfunction belongs to K.
Theorem $3.4\left([\mathbf{2 5]})\right.$. Let $\mu_{1}=1 / r(L)$ and $\phi_{1}(t)$ be a corresponding eigenfunction in P of norm 1. Then $m \leq \mu_{1} \leq M$, where

$$
\begin{equation*}
m=\left(\sup _{t \in[0,1]} \int_{0}^{1} G(t, s) g(s) d s\right)^{-1}, \quad M=\left(\inf _{t \in[a, b]} \int_{a}^{b} G(t, s) g(s) d s\right)^{-1} \tag{12}
\end{equation*}
$$

If $g(t)>0$ for $t \in[0,1]$ and $G(t, s)>0$ for $t, s \in[0,1]$, the first inequality is strict unless $\phi_{1}(t)$ is constant for $t \in[0,1]$. If $g(t) \phi(t)>0$ for $t \in[a, b]$, the second inequality is strict unless $\phi_{1}(t)$ is constant for $t \in[a, b]$.
For the local BVP 7 if $g(t) \equiv 1$:
We now compute the constant m and the optimal value of $M(a, b)$, that is, we determine a, b so that $M(a, b)$ is minimal.
For $s \leq t$, we have by direct integration

$$
\begin{aligned}
\int_{0}^{t} G_{0}(t, s) d s & =\int_{0}^{t}\left[\frac{t^{\alpha-1}(1-s)^{\alpha-3}}{\Gamma(\alpha)}-\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\right] d s \\
& =-\frac{t^{\alpha-1}(1-t)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}+\frac{t^{\alpha-1}}{(\alpha-2) \Gamma(\alpha)}-\frac{t^{\alpha}}{\alpha \Gamma(\alpha)}
\end{aligned}
$$

For $s \geq t$,

$$
\int_{t}^{1} G_{0}(t, s) d s=\int_{t}^{1} \frac{t^{\alpha-1}(1-s)^{\alpha-3}}{\Gamma(\alpha)} d s=\frac{t^{\alpha-1}(1-t)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}
$$

Then we have :

$$
\int_{0}^{1} G_{0}(t, s) d s=\frac{t^{\alpha-1}}{(\alpha-2) \Gamma(\alpha)}-\frac{t^{\alpha}}{\alpha \Gamma(\alpha)}
$$

And the maximum of this expression occurs when $t=1$, hence

$$
\sup _{t \in[0,1]} \int_{0}^{1} G_{0}(t, s) d s=\frac{1}{(\alpha-2) \Gamma(\alpha)}-\frac{1}{\alpha \Gamma(\alpha)}=\frac{2}{(\alpha-2) \Gamma(\alpha+1)}
$$

Then $m=\frac{(\alpha-2) \Gamma(\alpha+1)}{2}$.
For $a<b$, we have by direct integration

$$
\begin{aligned}
& \int_{a}^{t} G_{0}(t, s) d s=-\frac{t^{\alpha-1}(1-t)^{\alpha-2}}{(\alpha-2))^{(\alpha)}}+\frac{t^{\alpha-1}(1-a)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}-\frac{(t-a)^{\alpha}}{\alpha \Gamma(\alpha)} \\
& \int_{t}^{b} G_{0}(t, s) d s=-\frac{t^{\alpha-1}(1-b)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}+\frac{t^{\alpha-1}(1-t)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \quad \begin{aligned}
& \int_{a}^{b} G_{0}(t, s) d s \\
&=\frac{t^{\alpha-1}(1-a)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}-\frac{(t-a)^{\alpha}}{\alpha \Gamma(\alpha)}-\frac{t^{\alpha-1}(1-b)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)} \\
&=\frac{1}{(\alpha-2) \Gamma(\alpha)}\left[t^{\alpha-1}\left((1-a)^{\alpha-1}-(1-b)^{\alpha-1}\right)-\frac{(\alpha-2)}{\alpha}(t-a)^{\alpha}\right] \\
&=R(t, a, b),
\end{aligned} \\
& \frac{\partial R(t, a, b)}{\partial t}=\frac{1}{(\alpha-2) \Gamma(\alpha)}\left[(\alpha-1) t^{\alpha-2}\left((1-a)^{\alpha-2}-(1-b)^{\alpha-2}\right)-(\alpha-2)(t-a)^{\alpha-1}\right] .
\end{aligned}
$$

The sign of derivative $\frac{\partial R}{\partial t}$ shows that this is an increasing function of t so the minimum occurs at $t=a$. Let

$$
R(a, b)=\frac{a^{\alpha-1}}{(\alpha-2) \Gamma(\alpha)}\left((1-a)^{\alpha-2}-(1-b)^{\alpha-2}\right) .
$$

The minimal value of $M(a, b)$ corresponds to the maximal value of $R(a, b)$.

$$
\frac{\partial R(a, b)}{\partial b}=\frac{a^{\alpha-1}(1-b)^{\alpha-3}}{\Gamma(\alpha)}>0
$$

The quantity $R(a, b)$ is an increasing function of b so its maximum is when $b=1$.
Let

$$
R(a)=\frac{a^{\alpha-1}(1-a)^{\alpha-2}}{(\alpha-2) \Gamma(\alpha)}
$$

Then the maximal of $R(a)$ occurs when $a=\frac{\alpha-1}{2 \alpha-3}$

$$
\min _{t \in[a, b]} \int_{a}^{b} G_{0}(t, s) d s=R\left(\frac{\alpha-1}{2 \alpha-3}, 1\right)=\frac{(\alpha-1)^{\alpha-1}}{(2 \alpha-3) \Gamma(\alpha)}
$$

Hence the minimal value of $M(a, b)$ is :

$$
M\left(\frac{\alpha-1}{2 \alpha-3}, 1\right)=\frac{(2 \alpha-3) \Gamma(\alpha)}{(\alpha-1)^{\alpha-1}}
$$

4. The existence of at least one positive solution

For convenience, we introduce the following notations

$$
\begin{aligned}
& \bar{f}(u):=\sup _{t \in[0,1]} f(t, u), \quad \underline{f}(u):=\inf _{t \in[0,1]} f(t, u) ; \\
& f^{0}:=\limsup _{u \rightarrow 0^{+}} \bar{f}(u) / u, \quad f_{0}:=\liminf _{u \rightarrow 0^{+}} \underline{f}(u) / u ; \\
& f^{\infty}:=\limsup _{u \rightarrow \infty} \bar{f}(u) / u, \quad f_{\infty}:=\liminf _{u \rightarrow \infty} \underline{f}(u) / u, \\
& f^{0, r}:=\sup _{\{0 \leq t \leq 1,0 \leq u \leq r\}} f(t, u) / r, f_{r, r / c}:=\inf _{\{a \leq t \leq b, r \leq u \leq r / c\}} f(t, u) / r .
\end{aligned}
$$

Under the hypotheses (i)-(iv) let \tilde{L} be defined by :

$$
\tilde{L} u(t)=\int_{a}^{b} G(t, s) g(s) u(s) d s
$$

Then \tilde{L} is a compact linear operator and $\tilde{L}(P) \subseteq K$.
Hence $r(\tilde{L})$ is an eigenvalue of \tilde{L} with an eigenfunction $\tilde{\phi}_{1}$ in K. Let $\tilde{\mu}_{1}:=\frac{1}{r(\tilde{L})}$.
Note that $\tilde{\mu}_{1} \geq \mu_{1}$, hence the condition in the following theorem is more stringent than if could user (L).
Theorem 4.1. Assume that
(A1) $0 \leq \lambda f^{0}<\mu_{1}$,
(A2) $\tilde{\mu}_{1}<\lambda f_{\infty} \leq \infty$.
Then (1)-(2) has at least one positive solution.
Proof. (A1) Let $\varepsilon>0$ be such that $f^{0} \leq \frac{1}{\lambda}\left(\mu_{1}-\varepsilon\right)$. Then there exists $\rho_{0}>0$ such that $f(t, u) \leq \frac{1}{\lambda}\left(\mu_{1}-\varepsilon\right) u$ for all $u \in\left[0, \rho_{0}\right]$ and almost all $t \in[0,1]$. Let $\rho \in\left(0, \rho_{0}\right]$, we prove that

$$
\begin{equation*}
T u \neq \beta u \text { for } u \in \partial K_{\rho} \quad \text { and } \quad \beta \geq 1 \tag{13}
\end{equation*}
$$

which implies the result. In fact, if (13) doesn't hold, then there exist $u \in \partial K_{\rho}$ and $\beta \geq 1$ such that $T u=\beta u$. This implies

$$
\begin{aligned}
& \beta u(t)=\lambda \int_{0}^{1} G(t, s) g(s) f(s, u(s)) d s \\
& \quad \leq\left(\mu_{1}-\varepsilon\right) \int_{0}^{1} G(t, s) g(s) u(s) d s=\left(\mu_{1}-\varepsilon\right) L u(t)
\end{aligned}
$$

Thus, we have shown $u(t) \leq\left(\mu_{1}-\varepsilon\right) L u(t)$. This gives

$$
u(t) \leq\left(\mu_{1}-\varepsilon\right) L\left[\left(\mu_{1}-\varepsilon\right) L u(t)\right]=\left(\mu_{1}-\varepsilon\right)^{2} L^{2} u(t)
$$

and iterating $u(t) \leq\left(\mu_{1}-\varepsilon\right)^{n} L^{n} u(t)$ for $n \in N$. Therefore

$$
\begin{aligned}
& \|u\| \leq\left(\mu_{1}-\varepsilon\right)^{n}\left\|L^{n}\right\|\|u\| \\
& 1 \leq\left(\mu_{1}-\varepsilon\right)^{n}\left\|L^{n}\right\|,
\end{aligned}
$$

and we have

$$
1 \leq\left(\mu_{1}-\varepsilon\right) \lim _{n \rightarrow 0}\left\|L^{n}\right\|^{1 / n}=\left(\mu_{1}-\varepsilon\right) \frac{1}{\mu_{1}}<1
$$

a contradiction. It follows that

$$
\begin{equation*}
i_{k}\left(T, K_{\rho}\right)=1, \text { for each } \rho \in\left(0, \rho_{0}\right] . \tag{14}
\end{equation*}
$$

(A2) Let $\rho_{1}>0, \rho_{1}>\rho$ be chosen so that $f(t, u)>\frac{\tilde{\mu}_{1}}{\lambda} u$ for all $u \geq c \rho_{1}, c$ as in (ii) and almost all $t \in[0,1]$.
We claim that $u \neq T u+\beta \tilde{\phi}_{1}$ for all $\beta>0$ and $u \in \partial K_{\rho^{*}}$ when $\rho^{*}>\rho_{1}$. Note that for $u \in K$ with $\|u\|=\rho^{*} \geq \rho_{1}$.
We have $u(t) \geq c \rho_{1}$ for all $t \in[a, b]$.
Now, if our claim is false, then we have

$$
u(t)=\lambda \int_{0}^{1} G(t, s) g(s) f(s, u(s)) d s+\beta \tilde{\phi}_{1}(t)
$$

Therefore,

$$
\begin{align*}
u(t) & \geq \tilde{\mu}_{1} \int_{a}^{b} G(t, s) g(s) u(s) d s+\beta \tilde{\phi}_{1}(t) \tag{15}\\
& =\tilde{\mu}_{1} \tilde{L} u(t)+\beta \tilde{\phi}_{1}(t)
\end{align*}
$$

From (15) we firstly deduce that $u(t) \geq \beta \tilde{\phi}_{1}(t)$ on $[a, b]$. Then we have

$$
\tilde{\mu}_{1} \tilde{L} u(t) \geq \tilde{\mu}_{1} \tilde{L}\left(\beta \tilde{\phi}_{1}(t)\right)=\beta \tilde{\phi}_{1}(t)
$$

Inserting this into we obtain $u(t) \geq 2 \beta \tilde{\phi}_{1}(t)$ for $t \in[a, b]$. Repeating this process gives $u(t) \geq n \beta \tilde{\phi}_{1}(t)$ for $t \in[a, b], n \in N$. Since $\tilde{\phi}_{1}(t)$ is strictly positive on $[a, b]$ this is a contradiction, then

$$
\begin{equation*}
i_{K}\left(T, K_{\rho^{*}}\right)=0, \text { for } u \in \partial K_{\rho^{*}} \tag{16}
\end{equation*}
$$

By (14) and (16), one has

$$
\overline{i_{K}}\left(T, K_{\rho^{*}} \backslash \bar{K}_{\rho}\right)=i_{K}\left(T, K_{\rho^{*}}\right)-i_{K}\left(T, K_{\rho}\right)=-1
$$

Therefore, T has at least one fixed point $u_{0} \in K_{\rho^{*}} \backslash \bar{K}_{\rho}$, and u_{0} is a positive solution of BVP (1)-(2).
Theorem 4.2. Assume that
(A3) $\mu_{1}<\lambda f_{0} \leq \infty$,
(A4) $0 \leq \lambda f^{\infty}<\mu_{1}$.
Then (17)-(2) has at least one positive solution.
Proof. (A3) Let $\varepsilon>0$ satisfy $f_{0}>\frac{1}{\lambda}\left(\mu_{1}+\varepsilon\right)$. Then there exists $R_{1}>0$ such that

$$
\begin{equation*}
f(t, u) \geq \frac{1}{\lambda}\left(\mu_{1}+\varepsilon\right) u \text { forallt } \in[0,1], u \in\left[0, R_{1}\right] \tag{17}
\end{equation*}
$$

For any $u \in \partial K_{R_{1}}$ we have by 17 that

$$
\begin{align*}
T u(t) & =\lambda \int_{0}^{1} G(t, s) g(s) f(s, u(s)) d s \\
& \geq\left(\mu_{1}+\varepsilon\right) \int_{0}^{1} G(t, s) g(s) u(s) d s \tag{18}\\
& \geq \mu_{1} L u(t), \quad \forall t \in[0,1] .
\end{align*}
$$

Let \tilde{u}_{1} be the positive eigenfunction of L corresponding to μ_{1}, that $\tilde{u}_{1}=\mu_{1} L \tilde{u}_{1}$. We may suppose that T has no fixed point on $\partial K_{R_{1}}$, otherwise, the proof is finished. In the following we will show that

$$
\begin{equation*}
u-T u \neq \beta \tilde{u}_{1} \text { for all } u \in \partial K_{R_{1}}, \beta \geq 0 \tag{19}
\end{equation*}
$$

If 19 is not true, then there is $\tilde{u}_{0} \in \partial K_{R_{1}}$ and $\beta_{0} \geq 0$ such that $\tilde{u}_{0}-T \tilde{u}_{0}=\beta_{0} \tilde{u}_{1}$. It is clear that $\beta_{0}>0$ and $\tilde{u}_{0}=T \tilde{u}_{0}+\beta_{0} \tilde{u}_{1} \geq \beta_{0} \tilde{u}_{1}$. Set

$$
\begin{equation*}
\beta^{*}=\sup \left\{\beta: \quad \tilde{u}_{0} \geq \beta \tilde{u}_{1}\right\} \tag{20}
\end{equation*}
$$

Obviously, $\beta^{*} \geq \beta_{0}>0$. It follows from $L(P) \subset P$ that

$$
\mu_{1} L \tilde{u}_{0} \geq \mu_{1} L \beta^{*} \tilde{u}_{1}=\beta^{*} \mu_{1} L \tilde{u}_{1}=\beta^{*} \tilde{u}_{1}
$$

Using this and 18), we have

$$
\tilde{u}_{0}=T \tilde{u}_{0}+\beta_{0} \tilde{u}_{1} \geq \mu_{1} L \tilde{u}_{0}+\beta_{0} \tilde{u}_{1} \geq \beta^{*} \tilde{u}_{1}+\beta_{0} \tilde{u}_{1}
$$

which contradicts (24). Thus, 19 holds.
By Lemma 2.2, we have

$$
\begin{equation*}
i_{K}\left(T, K_{R_{1}}\right)=0 \tag{21}
\end{equation*}
$$

On the other hand, Let $\varepsilon>0$ satisfy $f^{\infty}<\frac{1}{\lambda}\left(\mu_{1}-\varepsilon\right)$. Then there exists $R_{2}>R_{1}$ such that:

$$
\begin{equation*}
f(t, u) \leq \frac{1}{\lambda}\left(\mu_{1}-\varepsilon\right) u . \quad \forall t \in[0,1], u \geq R_{2} \tag{22}
\end{equation*}
$$

By (v) there exists an L^{∞} function φ_{1} such that $f(t, u) \leq \frac{1}{\lambda} \varphi_{1}(t)$ for all $u \in\left[0, R_{2}\right]$ and $t \in[0,1]$. Hence, we have

$$
\begin{equation*}
f(t, u) \leq \frac{1}{\lambda}\left[\left(\mu_{1}-\varepsilon\right) u+\varphi_{1}(t)\right] \text { for all } u \in R^{+}, t \in[0,1] \tag{23}
\end{equation*}
$$

Since $1 / \mu_{1}$ is the radius of the spectrum of $L,\left(I /\left(\mu_{1}-\varepsilon\right)-L\right)^{-1}$ exists. Let:
$C=\int_{0}^{1} \varphi_{1}(s) \Phi(s) g(s) d s$ and $R_{0}=\left(I /\left(\mu_{1}-\varepsilon\right)-L\right)^{-1}\left(c /\left(\mu_{1}-\varepsilon\right)\right)$. We prove that for each $R>R_{0}$,

$$
\begin{equation*}
T u \neq \beta u \text { for all } u \in \partial K_{R} \text { and } \beta \geq 1 \tag{24}
\end{equation*}
$$

In fact, if not, there exist $u \in \partial K_{R}$ and $\beta \geq 1$ such that $T u=\beta u$.

This together with 23, implies

$$
\begin{aligned}
u(t) & \leq \int_{0}^{1} G(t, s) g(s)\left(\left(\mu_{1}-\varepsilon\right) u(s)+\varphi_{1}(s)\right) d s \\
& =\left(\mu_{1}-\varepsilon\right) \int_{0}^{1} G(t, s) g(s) u(s) d s+\int_{0}^{1} G(t, s) g(s) \varphi_{1}(s) d s \\
& =\left(\mu_{1}-\varepsilon\right) L u(t)+C
\end{aligned}
$$

This implies
$\left(\frac{I}{\mu_{1}-\varepsilon}-L\right) u(t) \leq \frac{C}{\mu_{1}-\varepsilon}$ and $u(t) \leq\left(\frac{I}{\mu_{1}-\varepsilon}-L\right)^{-1}\left(\frac{C}{\mu_{1}-\varepsilon}\right)=R_{0}$.
Therefore, we have $\|u\| \leq R_{0}<R$, a contradiction. Take $R>R_{2}$, it follows from (24) and properties of index that

$$
\begin{equation*}
i_{K}\left(T, K_{R}\right)=1, \quad \forall R>R_{0} \tag{25}
\end{equation*}
$$

Now (21) and 25 combined imply

$$
i_{K}\left(T, K_{R} \backslash \bar{K}_{R_{1}}\right)=i_{K}\left(T, K_{R}\right)-i_{K}\left(T, \bar{K}_{R_{1}}\right)=1
$$

Therefore, T has at least one fixed point $u_{0} \in K_{R} / \bar{K}_{R_{1}}$, and u_{0} is a positive solution of BVP (1)- (22).

5. The existence of two positive solution

Theorem 5.1. Suppose that (A2), (A3) and
(A5) $\lambda f^{0, \rho^{\prime}} \leq m$ for some $\rho^{\prime}>0$.
Then (1)-(2) has at least two positive solutions.
Proof. By (A5), we have

$$
\begin{aligned}
T u(t) & =\lambda \int_{0}^{1} G(t, s) g(s) f(s, u(s)) d s \\
& \leq \int_{0}^{1} G(t, s) g(s) \rho^{\prime} m d s
\end{aligned}
$$

so that $\|T u\| \leq \rho^{\prime}=\|u\|$, for all $u \in \partial V_{\rho^{\prime}}$. Now Lemma 2.1, yields

$$
\begin{equation*}
i_{k}\left(T, V_{\rho^{\prime}}\right)=1 \tag{26}
\end{equation*}
$$

On the other hand, in view of (A2), we may take $\rho^{*}>\rho^{\prime}$ so that 16 holds (see the proof of Theorem 4.1). From (A3), We may take $R_{1} \in\left(0, \rho^{\prime}\right)$ so that (21) holds (see the proof Theorem 4.2).
Combining (26), (16) and (21), we arrive at

$$
i_{k}\left(T, K_{\rho^{*}} \backslash \bar{V}_{\rho^{\prime}}\right)=0-1=-1
$$

and

$$
i_{k}\left(T, V_{\rho^{\prime}} \backslash \bar{K}_{R_{1}}\right)=1-0=1
$$

Consequently, T has at least two fixed points, with one on $K_{\rho^{*}} \backslash \bar{V}_{\rho^{\prime}}$ and the other on $V_{\rho^{\prime}} \backslash \bar{K}_{R_{1}}$. Therefore, (1)-(2) has at least two positive solutions.
Theorem 5.2. Suppose that (A1),(A4) and (A6) $\lambda f_{\rho^{\prime}, \rho^{\prime} / c} \geq M$ for some $\rho^{\prime}>0$.
Then (1)-(2) has at least two positive solutions.
Proof. By (A6), we have

$$
\begin{aligned}
T u(t) & =\lambda \int_{0}^{1} G(t, s) g(s) f(s, u(s)) d s \\
& \geq \lambda \int_{a}^{b} G(t, s) g(s) f(s, u(s)) d s \\
& \geq \int_{a}^{b} G(t, s) g(s) M \rho^{\prime} d s
\end{aligned}
$$

so that $\|T u\| \geq \rho^{\prime}=\|u\|$, for all $u \in \partial V_{\rho^{\prime}}$, and by Lemma 2.1, yields

$$
\begin{equation*}
i_{k}\left(T, V_{\rho^{\prime}}\right)=0 \tag{27}
\end{equation*}
$$

On the other hand, in view of (A1), We may take $\rho \in\left(0, \rho^{\prime}\right)$ so that 14 holds (see the proof Theorem 4.1). In addition, from (A4), we may take $R>\rho^{\prime}$ so that 25 holds (see the proof of Theorem 4.2).
Combining (27), (14) and 25, we arrive at

$$
i_{k}\left(T, K_{R} \backslash \bar{V}_{\rho^{\prime}}\right)=1-0=1
$$

and

$$
i_{k}\left(T, V_{\rho^{\prime}} \backslash \bar{K}_{\rho}\right)=0-1=-1
$$

Hence, T has at least two fixed points, with one on $V_{\rho^{\prime}} \backslash \bar{K}_{\rho}$ and the other on $K_{R} \backslash \bar{V}_{\rho^{\prime}}$. Therefore, (1)-(2) has at least two positive solutions.

6. Nonexistence results

We now give a nonexistence result which shows that the above result on existence of one solution is sharp.
Definition 6.1. We say that a bounded linear operator L is u_{0} - positiveon the cone P, if there exists $u_{0} \in P \backslash\{0\}$, such that for every $u \in P \backslash\{0\}$ there are positive constants $k_{1}(u), k_{2}(u)$ such that $k_{1}(u) u_{0}(t) \leq L u(t) \leq k_{2}(u) u_{0}(t)$, for every $t \in[0,1]$.
Theorem 6.1([7,19]). Suppose that L is u_{0} - positivefor some $u_{0} \in P \backslash\{0\}$. Let $\mu_{1}=1 / r(L)$ be the principal characteristic value of L. Suppose that one of the following conditions hold.
(i) $f(t, u)<\mu_{1} u$, for all $u>0$ and almost all $t \in[0,1]$.
(ii) $f(t, u)>\mu_{1} u$, for all $u>0$ and almost all $t \in[0,1]$.

If (i) holds, then 0 is the unique fixed point of T in P. If (ii) holds, then 0 is the only possible fixed point of T in P.
Theorem 6.2. If g and $g \mathrm{G}_{A}(s)$ are integrable functions, then $G(t, s) \leq W(s) c_{0}(t)$ for a function W with $W g \in L^{1}(0,1)$,so L_{0} is c_{0} - positiveon P.
Proof. We have

$$
\begin{aligned}
G(t, s) & =\frac{\gamma(t) \mathrm{G}_{A}(s)}{1-\theta[\gamma]}-\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} H(t-s)+\frac{t^{\alpha-1}(1-s)^{\alpha-3}}{\Gamma(\alpha)} H(1-s) \\
& \leq c_{0}(t)\left[\frac{\mathrm{G}_{A}(s)}{11-\theta[\gamma]}+\frac{(1-s)^{\alpha-3}}{\Gamma(\alpha)} H(1-s)\right] \\
& =c_{0}(t) W(s) .
\end{aligned}
$$

We illustrate the applicability of these results with some examples.
Example 6.1. Consider the problem

$$
\begin{align*}
& D^{(6.5)} u(t)+\lambda(5 t+3)\left(\frac{6 u^{2}+u}{u+1}\right)(3+\sin u)=0, t \in(0,1) \tag{28}\\
& u(0)=0, \quad u^{(k)}(0)=0, \quad 1 \leq k \leq 5, \quad u^{\prime \prime}(1)=0
\end{align*}
$$

Here we have $g(t)=5 t+3, \quad f(u)=(3+\sin u) \frac{6 u^{2}+u}{u+1}$ and $6<\alpha \leq 7$.
It is readily shown that $f^{0}=f_{0}=3, \quad f^{\infty}=24, \quad f_{\infty}=12$. Also, $3 u \leq f(u) \leq$ $24 u$ for $u \geq 0$. By calculation, we find $m=945.1744$, the smallest M calculated is $M(a, b) \approx M(0.5661,1) \approx 203765.1892$. We find $\mu_{1} \approx 107683$. Hence, by Theorem 4.1, there is at least one positive solution if $3 \lambda<\mu_{1}$ and $12 \lambda>\mu_{1}$; that is, there is a positive solution if $\lambda \in(8973.5833,35894.3333)$. By Theorem 6.1, there does not exist a positive solution if either $3 \lambda>\mu_{1}$ or $24 \lambda<\mu_{1}$; that is, if $\lambda<4486.7917$ or $\lambda>35894.3333$ no positive solution exists. For $g(t) \equiv 1$ the corresponding constants are

$$
m=4210.3222, \quad M=1261771.943, \quad \mu_{1} \approx 105890
$$

References

[1] Z. Bai , On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Analysis, 72 (2010) 916-924.
[2] M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstract and Applied Analysis, (2007) 1-8.
[3] M. El-Shahed and J. J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Computers and Mathematics with Applications, 59 (2010) 3438-3443.
[4] M. Feng, X. Zhang and W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Boundary Value Problems, (2011)120.
[5] C. S. Goodrich, Positive solutions to boundary value problems with nonlinear boundary conditions, Nonlinear Anal. 75 (2012), 417-432.
[6] C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 23 (2010) 1050-1055.
[7] J. R. Graef, Positive solutions to a fourth order three point boundary value problem, Discrete and Continuous Dynamical Systems, (2009) 269-275.
[8] J. R. Graef and T. Moussaoui,A class of nth-order BVPs with nonlocal conditions, Computers and Mathematics with applications, 58 (2009)1662-1671.
[9] J. R. Graef and J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal., 71(2009)1542-1551.
[10] Y. Guo, Y. Ji and J. Zhang, Three positive solutions for a nonlinear nth-order m-point boundary value problem, Nonlinear Anal., 68 (2008) 3485-3492.
[11] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988
[12] X. Hao, L. Liu, Y. Wu and Q. Sun, Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions, Nonlinear Analysis, 73 (2010) 1653-1662.
[13] G. Infante and J. R. L. Webb, Positive solutions of some nonlocal boundary value problems, Abstract and Applied Analysis, 18 (2003)1047-1060.
[14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam , The Netherlands, 2006.
[15] C. F. Li, X. N. Luo and Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Computers and Mathematics with Applications, 59 (2010) 1363-1375.
[16] Y. Li and Z. Wei, Multiple positive solutions for nth-order multipoint boundary value problem, Boundary value problems, 2010 (2010) 1-13.
[17] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
[18] M. ur Rehman and Rahmat Ali Khan, Existence and uniqueness of solutions for multi- point boundary value problem for fractional differential equations, Appl.Math.Lett., 23 (2010) 10381044.
[19] Y. Wang, L. Liu and Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Analysis, 74 (2011) 3599-3605
[20] J. R. L. Webb, Positive solutions of some higher order nonlocal boundary value problems, Electronic J. Qual. Theory Differ. Equ.,1 (2009) 1-20.
[21] J. R. L. Webb, Nonlocal conjugate type boundary value problems of higher order, Nonlinear Analysis, 71 (2009) 1933-1940.
[22] J. R. L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. London Math. Soc., 79 (2009) 238-258.
[23] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems Involving integral conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 45-67.
[24] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach , J. London Math. Soc., 74 (2006) 673-693.
[25] J. R. L. Webb and K. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol.Methods Nonlinear Anal., 27 (2006) 91-116.
[26] F. H. Wong, T. G. Chen and S. P. Wang, Existence of positive solutions for various boundary value problems, Computers and Mathematics with Applications, 56 (2008)953-958.
[27] D. Xie, Y. Liu and C. Bai, Green's function and positive solutions of a singular nth- order three-point boundary value problem on time scales, Electronic Journal of Qualitative Theory of Differential Equations, 38 (2009) 1-14.
[28] B. Yang, Positive solutions of the ($\mathrm{n}-1,1$) conjugate boundary value problem, Electronic Journal of Qualitative Theory of Differential Equations, 53 (2010) 1-13.
[29] W. Zhong and W. Lin, Nonlocal and multi-point boundary value problem for fractional differential equations, Computers and Mathematics with Applications, 59 (2010)1345-1351.
[30] M. Zima, Positive operators in banach spaces and their applications, Wydawnictwo Uniwersytetu Rzeszowskiego, 2005.

Moustafa El-Shahed
Department of Mathematics, Faculty of Arts and Sciences, College of Education, P.O.
Box 3771, Qassim-Unaizah 51911, Saudi Arabia.
E-mail address: elshahedm@yahoo.com
Wafa M. Shammakh
Department of Mathematics, Sciences Faculty for Girls, King Abdulaziz University, P.O. Box 30903, Jeddah 21487, Saudi Arabia.

E-mail address: wshammakh@kau.edu.sa

[^0]: 2000 Mathematics Subject Classification. 34B15, 34B16, 34B18, 34B27.
 Key words and phrases. Fractional differential equations, positive solutions, nonlocal conditions, Green's function.

 Submitted Jan. 3, 2011. Published July 1, 2012.

