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NUMERICAL SOLUTION OF SYSTEM OF FRACTIONAL

PARTIAL DIFFERENTIAL EQUATIONS BY DISCRETE

ADOMIAN DECOMPOSITION METHOD

D. B. DHAIGUDE AND GUNVANT A. BIRAJDAR

Abstract. The aim of this paper is to obtain the solution of linear as well as

nonlinear system of fractional partial differential equations with initial condi-
tions, using space discrete Adomian decomposition method. It is verified by
comparing with exact solution when α=1. Solutions of numerical examples

are graphically represented by using MATLAB software.

1. Introduction

Partial differential equations arise in every field of science and technology, in
particular in physics, chemistry, biology,engineering and bioengineering. System
of partial differential equations have attracted much attention in studying evo-
lution equations describing wave propagation, in investigating the shallow wa-
ter waves [14, 15, 24] and in examining the chemical reaction-diffusion model
of Brusselator[3].Fractional differential equations are increasingly used to model
problems in acoustics and thermal systems, rheology and mechanical systems, sig-
nal processing and systems identification, control and robotics and other areas
of applications (see [5, 25]). The interdisciplinary applications show the impor-
tance and necessity of fractional calculus. It motivates us to construct a vari-
ety of efficient methods for fractional differential equations such as integral trans-
form method[18, 19],new iterative method[10, 12, 13] and Adomian decomposi-
tion method [4, 11]. Adomian decomposition method(ADM) [1, 2] and references
theirin, has proved to be a very useful tool while dealing with nonlinear equations.
In the last two decades, extensive work has been done using ADM[9, 17, 22, 23].
It provides approximate solutions for nonlinear equations without linearization &
perturbation. Shawagfeh[20], Li et al. [8] has employed ADM for solving nonlinear
fractional differential equations.Recently, considerable attention has been given to
ADM for solving nonlinear fractional partial differential equations. The discrete
ADM was first used to obtain the numerical solutions of the discrete nonlinear
Schrodinger equation[6].
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We organize the paper as follows. In section 2, we define preliminary definitions
and some properties of Riemann-Liouville(R-L)integral and relation between R-
L integral and Caputo fractional derivative. Section 3, is devoted for analysis
of discrete ADM. In section 4, we illustrate the method solving linear as well as
nonlinear system of fractional partial differential equations with suitable initial
conditions.

2. Preliminaries and notations

In this section, we set up notation and basic definitions and main properties of
R-L integral and relation between R-L integral and Caputo fractional derivative
from fractional calculus.

Definition 2.1. [16] A real function f(x), x > 0 is said to be in space Cα, α ∈ ℜ if
there exists a real number p > α such that f(x) = xpf1(x) where f1(x) ∈ C[0,∞).

Definition 2.2. [16] A function f(x), x > 0 is said to be in space Cm
α ,m ∈ N

∪
{0}

if fm ∈ Cα.

Definition 2.3. [18] Let f ∈ Cα and α ≥ −1, then Riemann-Liouville fractional
integral of f(x, t) of order α is denoted by Jαf(x, t) and is difined as

Jαf(x, t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(x, τ)dτ, t > 0, α > 0

The well known property of the Riemann-Liouville operatorJα is

Jαtγ =
Γ(γ + 1)tγ+α

Γ(γ + α+ 1)

Definition 2.4. [7] For m to be the smallest integer that exceeds α > 0, the Caputo
fractional derivative of u(x, t) of order α > 0 is defined as

Dα
t u(x, t) =

∂αu(x, t)

∂tα
=


1

Γ(m−α)

∫ t

0
(t− τ)m−α−1 ∂mu

∂tm dτ, for m− 1 < α < m;

∂mu(x,t)
∂tm , for α = m ∈ N .

Note that the relation between Riemann-Liouville operator and Caputo frac-
tional differential operator is given as follows.

Jα(Dαf(x, t)) = (Jm−αf (m))(t) = f(x, t)−
m−1∑
k=0

f (k)(0)
tk

k!

3. Discrete Adomian Decomposition Method

Consider the time fractional system of partial differential equations of order α,

Dα
t u+N1(u, v, ux, vx) = g1(x, t)

Dα
t v +N2(u, v, ux, vx) = g2(x, t)

0 < α ≤ 1 (1)

with the initial conditions

u(x, 0) = f1(x); v(x, 0) = f2(x) (2)
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where Dα
t (.) is a Caputo fractional derivative of order α(0 < α ≤ 1), N1&N2

are nonlinear operators, g1&g2 are inhomogeneous functions. The discrete form of
equation (1)-(2) is as follows

Dα
t uj(t) +N1

(
uj(t), vj(t), Dhuj(t), Dhvj(t)

)
= g1j(t)

Dα
t vj(t) +N2

(
uj(t), vj(t), Dhuj(t), Dhvj(t)

)
= g2j(t)

(3)

with the initial conditions

uj(0) = f1j ; vj(0) = f2j (4)

where u(x, t) = u(j∆x, t) is the discrete function and it is denoted by uj(t),∆x = h
and f1(x, 0) = f1(j∆x) is the discrete function & is denoted by f1j and f2(x, 0) =
f2(j∆x) is the discrete function & denoted by f2j . The standard central differences
[21] Dhuj(t) and Dhvj(t) are defined by

Dhuj(t) =
uj+1(t)− uj−1(t)

2h
, Dhvj(t) =

vj+1(t)− vj−1(t)

2h

Applying the operator Jα to the system (3) and use the initial conditions (4),
we get

uj(t) = f1j + Jαg1j(t)− JαN1

(
uj(t), vj(t), Dhuj(t), Dhvj(t)

)
vj(t) = f2j + Jαg2j(t)− JαN2

(
uj(t), vj(t), Dhuj(t), Dhvj(t)

) (5)

As per the Adomian decomposition method the linear terms uj(t), vj(t) and the
nonlinear operators N1 and N2 should be decomposed by an infinite series of com-
ponents such as

uj(t) =
∞∑

n=0

ujn(t), vj(t) =
∞∑

n=0

vjn(t) (6)

and

N1

(
uj(t), vj(t), Dhuj(t), Dhvj(t)

)
=

∞∑
n=0

An

N2

(
uj(t), vj(t), Dhuj(t), Dhvj(t)

)
=

∞∑
n=0

Bn

(7)

respectively.Note that ujn(t), vjn(t), (n ≥ 0) are the approximations of uj(t)&vj(t)
and those will be elegantly determined also An&Bn (n ≥ 0) are Adomian polyno-
mials those can be generated for all forms of nonlinearity. The Adomian polynomial
An&Bn are generated according to nonlinearity.In general the Adomian polynomial
is defined as

An =
1

n!

[
dn

dλn
F

( ∞∑
k=0

λkujk

)]
λ=0

, n ≥ 0 (8)
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Substituting (7) and (6) into (5)gives
∞∑

n=0

ujn(t) = f1j + Jαg1j − Jα

( ∞∑
n=0

An

)
∞∑

n=0

vjn(t) = f2j + Jαg2j − Jα

( ∞∑
n=0

Bn

) (9)

On simplifying equations in (9), we get the following recursive relations as follow:

uj0(t) = f1j + Jαg1j , ujn+1(t) = −Jα(An);n ≥ 0

vj0(t) = f2j + Jαg2j , vjn+1(t) = −Jα(Bn);n ≥ 0
(10)

We know the zeroth components from the initial conditions and using the above
recurrence relations, we find the remaining components.

Remark 3.1. The above discrete Adomian decomposition method discussed for the
time fractional system of two partial differential equations can be extended to the
time fractional system of any finite number of partial differential equations.

4. Numerical Examples

In this section we solve system of fractional linear as well as nonlinear partial
differential equations, with suitable initial conditions.

Example 4.1. Consider the linear system of fractional partial differential equations

Dα
t u+ ux − 2v = 0

Dα
t v + vx − 2u = 0

(11)

with initial conditions

u(x, 0) = sinx, v(x, 0) = cosx (12)

It is called initial value problem (IVP). The discrete form of IVP (11)-(12) is

Dα
t uj(t) +Dhuj(t)− 2vj(t) = 0

Dα
t vj(t) +Dhvj(t)− 2uj(t) = 0

(13)

with initial conditions
uj0 = sinjh, vj0 = cosjh (14)

It is called discrete IVP.Operating the operator Jα on equations in (13)and using
initial conditions,we obtain

uj(t) = sin(jh) + Jα(2vj(t)−Dhuj(t))

vj(t) = cos(jh) + Jα(2uj(t)−Dhvj(t))
(15)

Using Adomian procedure we assumes that equations in (15) have series solution.
We obtain the following recurrence relations

uj0 = sin(jh), ujn+1(t) = Jα(2vjn −Dhujn(t))

vj0 = cos(jh), vjn+1(t) = Jα(2ujn −Dhvjn(t))
(16)

Since uj0 and vj0 are known, from recurrence relations in (16), we find uj1

uj1(t) = Jα(2vj0 −Dhuj0(t))

uj1(t) = (2− sin(h)

h
)cos(jh)

tα

Γ(α+ 1)
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and vj1

vj1(t) = Jα(2uj0 −Dhvj0(t))

vj1(t) = −(2− sin(h)

h
)sin(jh)

tα

Γ(α+ 1)

Similarly we find uj2 and vj2 using uj1 and vj1 in recurrence relations in (16)

uj2(t) = Jα(2vj1(t)−Dhuj1(t))

uj2(t) = −(2− sin(h)

h
)2sin(jh)

t2α

Γ(2α+ 1)

and vj2

vj2(t) = Jα(2uj1(t)−Dhvj1(t))

vj2(t) = −(2− sin(h)

h
)2cos(jh)

t2α

Γ(2α+ 1)

Similarly we find uj3 and vj3 using uj2 and vj2 in recurrence relations in (16)

uj3(t) = −(2− sin(h)

h
)3sin(jh)

t3α

Γ(3α+ 1)

vj3(t) = (2− sin(h)

h
)3cos(jh)

t3α

Γ(3α+ 1)

In general we can find ujn and vjn using ujn−1 and vjn−1 in recurrence relations
in (16).Summing all above approximations, we have

uj(t) = sin(jh)

[
1− t2α

Γ(2α+ 1)
− t4α

Γ(4α+ 1)
− ...

]
+

cos(jh)

[
tα

Γ(α+ 1)
− t3α

Γ(3α+ 1)
+

t5α

Γ(5α+ 1)
− ...

]
vj(t) = cos(jh)

[
1− t2α

Γ(2α+ 1)
− t4α

Γ(4α+ 1)
− ...

]
+

sin(jh)

[
tα

Γ(α+ 1)
+

t3α

Γ(3α+ 1)
+

t5α

Γ(5α+ 1)
− ...

]
(17)

If we put α = 1 the solution in (17) reduces in compact form

(uj(t), vj(t)) = (sin((jh) + at), cos((jh) + at))

where a = 2− sinh
h
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Example 4.2. Consider the system of nonlinear fractional partial differential equa-
tions as

Dα
t u+ vux + u = 1

Dα
t v − uvx − v = 1

(18)

with initial conditions

u(x, 0) = ex, v(x, 0) = e−x (19)

It is called initial value problem (IVP). The system (18) has wide applications
in evolution models, the shallow water waves[14, 15, 24]. The discrete form of IVP
(18)-(19) is

Dα
t uj(t) + vj(t)Dhuj(t) + uj(t) = 1

Dα
t vj(t)− uj(t)Dhvj(t)− vj(t) = 1

(20)

with initial conditions

uj0 = ejh, vj0 = e−jh (21)

Operating the operator Jα on equations in(20)and using initial conditions, we have

uj(t) = ejh +
tα

Γ(α+ 1)
− Jα(vj(t)Dhuj(t) + uj(t))

vj(t) = e−jh +
tα

Γ(α+ 1)
− Jα(uj(t)Dhvj(t) + vj(t))

(22)

Applying Adomian procedure and assume equations in (22) have series solution

uj(t) =

∞∑
n=0

ujn(t), vj(t) =

∞∑
n=0

vjn(t) (23)

and the nonlinear operators in equations (22) are defined as

vj(t)Dhuj(t) =
∞∑

n=0

An, uj(t)Dhvj(t) =
∞∑

n=0

Bn (24)

where An and Bn are the Adomian polynomials, which can be generated for any
form of nonlinearity. Substituting equations (23) and (24) in equations (22) which
yield

∞∑
n=0

ujn(t) = ejh +
tα

Γ(α+ 1)
− Jα

( ∞∑
n=0

An +

∞∑
n=0

ujn(t)

)
∞∑

n=0

vjn(t) = ejh +
tα

Γ(α+ 1)
− Jα

( ∞∑
n=0

Bn +
∞∑

n=0

vjn(t)

) (25)

Therefore the recursive relations are

uj0 = ejh

ujn+1(t) = −Jα

( ∞∑
n=0

An + ujn(t)

)
(26)

and
vj0 = e−jh

vjn+1(t) = −Jα

( ∞∑
n=0

Bn + vjn(t)

)
(27)
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As stated before, the Adomian polynomials can be constructed as follow. The first
few Adomian polynomials for given nonlinear term are given below.

A0 = vj0Dhuj0

A1 = vj1(t)Dhuj0 + vj0Dhuj1(t)

A2 = vj2(t)Dhuj0 + vj1(t)Dhuj1(t) + vj0Dhuj2(t)

A3 = vj3(t)Dhuj0 + vj2(t)Dhuj1(t) + vj1(t)Dhuj2(t) + vj0Dhuj3(t)

and so on.
Similarly Adomian polynomials for Bn are given as

B0 = uj0Dhvj0

B1 = uj1(t)Dhvj0 + uj0Dhvj1(t)

B2 = uj2(t)Dhvj0 + uj1(t)Dhvj1(t) + uj0Dhvj2(t)

B3 = uj3(t)Dhvj0 + uj2(t)Dhvj1(t) + uj1(t)Dhvj2(t) + uj0Dhvj3(t)

and so on.
By using recursive relations we find the approximations uj1, uj2, ... and vj1, vj2, ...

uj0 = ejh, vj0 = e−jh

uj1(t) = (1− sin

h
+ ejh)

tα

Γ(α+ 1)

vj1(t) = (1− sin

h
+ e−jh)

tα

Γ(α+ 1)

uj2(t) =

[
(
sin

h
)2

t2α

Γ(2α+ 1)
− (

sin

h
)

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)

]
ejh+

(
sin

h
)

t2α

Γ(2α+ 1)
− tα+1

Γ(α+ 2)

vj2(t) =

[
(
sin

h
)2

t2α

Γ(2α+ 1)
− (

sin

h
)

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)

]
e−jh−

(
sin

h
)

t2α

Γ(2α+ 1)
+

tα+1

Γ(α+ 2)

and so on.
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Example 4.3. Consider the following nonlinear fractional order system

Dα
t u+ vxwy − vywx = −u

Dα
t v + wxuy + wyux = v

Dα
t w + uxvy + uyvx = w

(28)

initial conditions

u(x, y, 0) = ex+y, v(x, y, 0) = ex−y, w(x, y, 0) = e−x+y (29)

is called initial value problem (IVP) for nonlinear system. The discrete form of
IVP (28)-(29) is

Dα
t ui,j(t) +Dhvi,j(t)Dkwi,j(t)−Dkvi,j(t)Dhwi,j(t) = −ui,j(t)

Dα
t vi,j(t) +Dhwi,j(t)Dkui,j(t) +Dkwi,j(t)Dhui,j(t) = vi,j(t)

Dα
t wi,j(t) +Dhui,j(t)Dkvi,j(t) +Dkui,j(t)Dhvi,j(t) = wi,j(t)

(30)

with initial conditions

ui,j0 = eih+jk, vi,j0 = eih−jk, wi,j0 = e−ih+jk (31)

is called discrete IVP for system (28)-(29). The standard central differences are
defined as

Dhui,j(t) =
ui+1,j(t)− ui−1,j(t)

2h
, Dkui,j(t) =

ui,j+1(t)− ui,j−1(t)

2k

Similarly for Dhvi,j(t), Dhwi,j(t), Dkvi,j(t)&Dkwi,j(t). Operating the operator Jα

on both sides of equations in (30), we get

ui,j(t) = eih+jk − Jα

(
ui,j(t) +Dhvi,jDkwi,j(t)−Dkvi,jDhwi,j(t)

)
vi,j(t) = eih−jk − Jα

(
vi,j(t)−Dhwi,jDkui,j(t)−Dkwi,jDhui,j(t)

)
wi,j(t) = e−ih+jk − Jα

(
wi,j(t)−Dhui,jDkvi,j(t)−Dkui,jDhvi,j(t)

) (32)

Using the discrete ADM we assume that it has series solution
∞∑

n=0

ui,jn(t) = eih+jk − Jα

( ∞∑
n=0

ui,jn(t) +
∞∑

n=0

An −
∞∑

n=0

Ān

)
∞∑

n=0

vi,jn(t) = eih−jk − Jα

( ∞∑
n=0

vi,jn(t)−
∞∑

n=0

Bn −
∞∑

n=0

B̄n

)
∞∑

n=0

wi,jn(t) = e−ih+jk − Jα

( ∞∑
n=0

wi,jn(t) +

∞∑
n=0

Cn −
∞∑

n=0

C̄n

) (33)

where An, Ān, Bn, B̄n, Cn and C̄n are Adomian polynomials that represents the
nonlinear terms. These few polynomials can be formed for each nonlinear terms.
Here we list few terms of Adomian polynomials.For Dhvi,j(t)Dkwi,j(t), we get

A0 = Dhvi,j0Dkwi,j0

A1 = Dhvi,j1(t)Dkwi,j0 +Dhvi,j0Dkwi,j1(t)

A2 = Dhvi,j2(t)Dkwi,j0 +Dhvi,j1(t)Dkwi,j1(t) +Dhvi,j0Dkwi,j2(t)
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and for Dhwi,jDkvi,j(t), we have

Ā0 = Dkvi,j0Dhwi,j0

Ā1 = Dkvi,j1(t)Dhwi,j0 +Dkvi,j0Dhwi,j1(t)

Ā2 = Dkvi,j2(t)Dhwi,j0 +Dkvi,j1(t)Dhwi,j1(t) +Dkvi,j0Dhwi,j2(t)

Similarly, for Bn, B̄n, Cn and C̄n, we can find terms. Using these polynomials and
by employing the appropriate recursive relations we find(

ui,j0, vi,j0, wi,j0

)
=

(
eih+jk, eih−jk, e−ih+jk

)
(
ui,j1(t), vi,j1(t), wi,j1(t)

)
=

(
−eih+jktα

Γ(α+ 1)
,
eih−jktα

Γ(α+ 1)
,
e−ih+jktα

Γ(α+ 1)

)
(
ui,j2(t), vi,j2(t), wi,j2(t)

)
=

(
eih+jkt2α

Γ(2α+ 1)
,
eih−jkt2α

Γ(2α+ 1)
,
e−ih+jkt2α

Γ(2α+ 1)

)
(
ui,j3(t), vi,j3(t), wi,j3(t)

)
=

(
−eih+jkt3α

Γ(3α+ 1)
,
eih−jkt3α

Γ(3α+ 1)
,
e−ih+jkt3α

Γ(3α+ 1)

)
and so on.

ui,j(t) = eih+jk − eih+jktα

Γ(α+ 1)
+

eih+jkt2α

Γ(2α+ 1)
− eih+jkt3α

Γ(3α+ 1)
+ ...

= eih+jk

(
1− tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
− t3α

Γ(3α+ 1)
+ ...

)
vi,j(t) = eih−jk +

eih−jktα

Γ(α+ 1)
+

eih−jkt2α

Γ(2α+ 1)
+

eih−jkt3α

Γ(3α+ 1)
+ ...

= eih−jk

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...

)
wi,j(t) = e−ih+jk +

e−ih+jktα

Γ(α+ 1)
+

e−ih+jkt2α

Γ(2α+ 1)
+

e−ih+jkt3α

Γ(3α+ 1)
+ ...

= e−ih+jk

(
1− tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...

)
If we put α = 1 in above equations, we get the compact solution as follows(

ui,j(t), vi,j(t), wi,j(t)

)
=

(
e−ih+jk−t, eih−jk+t, e−ih+jk+t

)
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