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EXISTENCE AND NONEXISTENCE RESULTS OF POSITIVE

SOLUTION FOR NONLINEAR FRACTIONAL EIGENVALUE

PROBLEM

KAZEM GHANBARI, YOUSEF GHOLAMI

Abstract. In this work, we consider the following BVP

cDα
0 u(t) = λg(t)f(t, u(t)) ; t ∈ (0, 1) , α ∈ (2, 3)

u(0) + u
′
(0) = 0

u(1) + u
′
(1) = 0

au
′′
(0) + bu

′′
(1) = 0 ; a > 0 , b ≤ 0 , a+ b > 0

where cDα
0 represents the fractional Caputo derivative of order α and λ is a

positive parameter. Using a fixed point theorem for operators on a cone, we
obtain sufficient conditions for the existence of positive solution of the above

BVP. At the end, example is presented illustrate the main results.

1. Introduction

Recently, fractional differential equations(in short FDEs) have been studied ex-
tensively. The motivation for those works stems from both the development of
fractional calculus itself and the applications of such constructions in various sci-
ences such as physics, chemistry, economy, biology and so on. For an extensive
collection of such results, we refer the readers to the monographs by Podlubny[7],
Kilbas et al[5], Ross and Miller[6].
Some basic theory for initial value problems of FDE involving Caputo differential
operators has been discussed by many researchers. Also there are some papers
about the existence results of positive solution for nonlinear fractional boundary
value problems by using techniques of fixed point theorem([1]-[4], [9]-[11]).
For example S.Zhang[8] considered the BVP of the following form:

cDα
0 u(t) = f(t, u(t)) ; t ∈ (0, 1) , α ∈ (1, 2]

u(0) + u
′
(0) = 0

u(1) + u
′
(1) = 0.
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In this paper we consider the following BVP

cDα
0 u(t) = λg(t)f(t, u(t)) ; t ∈ (0, 1) , α ∈ (2, 3) (1)

u(0) + u
′
(0) = 0

u(1) + u
′
(1) = 0

au
′′
(0) + bu

′′
(1) = 0 ; a > 0 , b ≤ 0 , a+ b > 0 (2)

where cDα
0 represents the fractional Caputo derivative of order α and λ is a

positive parameter.
Assume that the following conditions hold:

(H1) f ∈ C((0, 1)× [0,∞), [0,∞)) and f is nonzero, in particular f(0, u) ≠ 0.
(H2) g ∈ C((0, 1), [0,∞))and g does not vanish on any sub interval of [0, 1] and

0 <

∫ 1

0

g(s)ds < ∞.

(H3)

f0 = lim
u7→0+

f(t, u)

u
, f∞ = lim

u→∞

f(t, u)

u
, t ∈ (0, 1), 0 ≤ f0, f∞ ≤ ∞.

2. Applicable Preliminaries

Definition2.1. The fractional Riemann-Liouville integral of order α > 0 of the
continuous function u : R+ → R is given by

Iα0 u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds (3)

Definition2.2. The fractional Caputo derivative of order α > 0 of a continuous
function u : R+ → R is defined by

cDα
0 u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds (4)

where n = [α] + 1.
Lemma2.3.[7] Let α > 0 .If u ∈ Cn[0, 1], then

Iα0
cDα

0 u(t) = u(t) + c1 + c2t+ ..+ cnt
n−1.

Moreover, fractional differential equation

cDα
0 u(t) = 0

has the unique solution

u(t) = c1 + c2t+ ..+ cnt
n−1

where n = [α] + 1 and for every i = 1, 2, .., n ; ci ∈ R for details see[5].
Lemma2.4. If y ∈ C[0, 1] is given, then the unique solution of BVP

cDα
0 u(t) = y(t) ; t ∈ (0, 1) , α ∈ (2, 3)

u(0) + u
′
(0) = 0

u(1) + u
′
(1) = 0

au
′′
(0) + bu

′′
(1) = 0 ; a > 0 , b ≤ 0 , a+ b > 0
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is given by

u(t) =

∫ 1

0

G(t, s)y(s)ds (5)

where G(t, s) is called Green’s function and

G(t, s) =
1

Γ(α)



(1− t)(1− s)α−1 + (α− 1)(1− t)(1− s)α−2

+ (α−1)(α−2)b
2(a+b) (−3 + 3t− t2)(1− s)α−3+

(t− s)α−1 ; 0 ≤ s ≤ t ≤ 1

(1− t)(1− s)α−1 + (α− 1)(1− t)(1− s)α−2

+ (α−1)(α−2)b
2(a+b) (−3 + 3t− t2)(1− s)α−3

; 0 ≤ t ≤ s ≤ 1

(6)

Proof . Using Lemma 2.3 we have

cDα
0 u(t) = y(t) −→ u(t) = −c1 − c2t− c3t

2 +

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

−→ u
′
(t) = −c2 − 2c3t+

∫ t

0

(t− s)α−2

Γ(α− 1)
y(s)ds

−→ u
′′
(t) = −2c3 +

∫ t

0

(t− s)α−3

Γ(α− 2)
y(s)ds

(7)

Considering boundary conditions, we obtain



u(0) = −c1, u
′
(0) = −c2, u

′′
(0) = −2c3

u(1) = −c1 − c2 − c3 +
∫ 1

0
(1−s)α−1

Γ(α) y(s)ds

u
′
(1) = −c2 − 2c3 +

∫ 1

0
(1−s)α−2

Γ(α−1) y(s)ds

u
′′
(1) = −2c3 +

∫ 1

0
(1−s)α−3

Γ(α−2) y(s)ds

Thus we compute c1, c2, c3 as follows

c1 =
3b

2(a+ b)

∫ 1

0

(1− s)α−3

Γ(α− 2)
y(s)ds−

∫ 1

0

(1− s)α−2

Γ(α− 1)
y(s)ds−

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds

c2 =
−3b

2(a+ b)

∫ 1

0

(1− s)α−3

Γ(α− 2)
y(s)ds+

∫ 1

0

(1− s)α−2

Γ(α− 1)
y(s)ds+

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds

c3 =
b

2(a+ b)

∫ 1

0

(1− s)α−3

Γ(α− 2)
y(s)ds
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Substituting c1, c2, c3 in (7) we obtain

u(t) =

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+

∫ 1

0

(1− s)α−2

Γ(α− 1)
y(s)ds− 3b

2(a+ b)

∫ 1

0

(1− s)α−3

Γ(α− 2)
y(s)ds

− t

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds− t

∫ 1

0

(1− s)α−2

Γ(α− 1)
y(s)ds+

3bt

2(a+ b)

∫ 1

0

(1− s)α−3

Γ(α− 2)
y(s)ds

− bt2

2(a+ b)

∫ 1

0

(1− s)α−3

Γ(α− 2)
y(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

=

∫ t

0

(1− t)(1− s)α−1 + (α− 1)(1− t)(1− s)α−2

Γ(α)
y(s)ds

+

∫ t

0

(α−1)(α−2)b
2(a+b) (−3 + 3t− t2)(1− s)α−3 + (t− s)α−1

Γ(α)
y(s)ds

+

∫ 1

t

(1− t)(1− s)α−1 + (α− 1)(1− t)(1− s)α−2

Γ(α)
y(s)ds

+

∫ 1

t

(α−1)(α−2)b
2(a+b) (−3 + 3t− t2)(1− s)α−3

Γ(α)
y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

The proof is complete.
Lemma2.5. The Green’s function G(t, s) given by (6) satisfies the following con-
ditions :

(P1) For all t, s ∈ (0, 1), G(t, s) > 0 and G(t, s) ∈ C([0, 1]× [0, 1]).
(P2) There exist γ(s) ∈ C(0, 1) :

min
1
4≤t≤ 3

4

G(t, s) ≥ γ(s) max
0≤t≤1

G(t, s) (8)

where for all s ∈ (0, 1)

M(s) =
(1− s)α−1 + (α− 1)(1− s)α−2 − 3(α−1)(α−2)b

2(a+b) (1− s)α−3

Γ(α)
, (9)

m(s) =
8(1− s)α−1 + 8(α− 1)(1− s)α−2 − 21 (α−1)(α−2)b

a+b (1− s)α−3

32Γ(α)
(10)

and γ(s) = m(s)
M(s) .

Proof . (P1) is clear by definition of G(t, s) . Note that for all s ∈ (0, 1) G(t, s) is
decreasing for t ≤ s . Now let

g1(t, s) =
(1− t)(1− s)α−1 + (α− 1)(1− t)(1− s)α−2

Γ(α)

+

(α−1)(α−2)b
2(a+b) (−3 + 3t− t2)(1− s)α−3 + (t− s)α−1

Γ(α)
; s ≤ t

,
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g2(t, s) =
(1− t)(1− s)α−1 + (α− 1)(1− t)(1− s)α−2

Γ(α)

+

(α−1)(α−2)b
2(a+b) (−3 + 3t− t2)(1− s)α−3

Γ(α)
; t ≤ s

where g1(t, s) for 1/4 ≤ t ≤ 3/4 and g2(t, s) with respect to t are decreasing and
continuous. Thus we have

min
1
4≤t≤ 3

4

g1(t, s) ≥
8(1− s)α−1 + 8(α− 1)(1− s)α−2 − 21 (α−1)(α−2)b

a+b (1− s)α−3

32Γ(α)
,

max
0≤t≤1

g1(t, s) ≤
2(1− s)α−1 + (α− 1)(1− s)α−2 − 3 (α−1)(α−2)b

2(a+b) (1− s)α−3

Γ(α)
.

Also we have

min
1
4≤t≤ 3

4

g2(t, s) ≥
8(1− s)α−1 + 8(α− 1)(1− s)α−2 − 21 (α−1)(α−2)b

a+b (1− s)α−3

32Γ(α)
,

max
0≤t≤1

g2(t, s) ≤
(1− s)α−1 + (α− 1)(1− s)α−2 − 3 (α−1)(α−2)b

2(a+b) (1− s)α−3

Γ(α)

≤
2(1− s)α−1 + (α− 1)(1− s)α−2 − 3 (α−1)(α−2)b

2(a+b) (1− s)α−3

Γ(α)
.

So there for we conclude that for s ∈ [0, 1)

min
1
4≤t≤ 3

4

G(t, s) ≥ m(s) =
8(1− s)α−1 + 8(α− 1)(1− s)α−2 − 21 (α−1)(α−2)b

a+b (1− s)α−3

32Γ(α)

(11)
,

max
0≤t≤1

G(t, s) ≤ M(s) =
2(1− s)α−1 + (α− 1)(1− s)α−2 − 3 (α−1)(α−2)b

2(a+b) (1− s)α−3

Γ(α)
.

(12)
Now for s ∈ (0, 1) we set

γ(s) =
1

32

8(1− s)α−1 + 8(α− 1)(1− s)α−2 − 21 (α−1)(α−2)b
a+b (1− s)α−3

2(1− s)α−1 + (α− 1)(1− s)α−2 − 3 (α−1)(α−2)b
2(a+b) (1− s)α−3

(13)

hence γ ∈ C((0, 1), (0,+∞)). This complete the proof.
Remark2.6. We consider the Banach space B = C[0, 1] such that equipped with
the norm

∥ u ∥= max
0≤t≤1

| u(t) |

also we define the cone P ⊂ B with the following form

P =

{
u ∈ B

∣∣∣∣ u(t) ≥ 0

}
.

Finally, we define the integral Hammerstein operator as below

T : P −→ B ; Tu(t) = λ

∫ 1

0

G(t, s)g(t)f(s, u(s))ds. (14)
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Obviously from definition (14) we conclude that TP ⊂ P.
Lemma2.7. Assume that the conditions (H1), (H2) hold. Then the operator
T : P −→ P defined by (14) is a completely continuous operator.
Proof . By conditions (H1), (H2) and Lemma 2.5, clearly T, is a continuous oper-
ator. Now let Ω ⊂ P is bounded. Thus

∃M ∈ R+, ∀u ∈ Ω ; ∥ u ∥≤ M.

Let

L1 = max
t∈[0,1],u∈[0,M ]

| f(t, u(t)) | +1 , ∀t ∈ [0, 1] ; a(t) ≤ L2 , L = L1L2 + 1,

hence for every u ∈ Ω,we have

| Tu(t) |= λ

∫ 1

0

G(t, s)g(s)f(s, u(s))ds ≤ λL

∫ 1

0

G(s, s)ds < +∞.

So TΩ is bounded.
At last we prove that operator T,is equicontinuous. Let u ∈ Ω and t2 > t1 for
every s ∈ (0, 1), t1, t2 ∈ [0, s]. Thus indeed

| Tu(t2)− Tu(t1) | ≤ λL

∫ 1

0

| G(t2, s)−G(t1, s) | ds

≤ λL

∫ t1

0

| G(t2, s)−G(t1, s) | ds

+ λL

∫ t2

t1

| G(t2, s)−G(t1, s) | ds

+ λL

∫ 1

t2

| G(t2, s)−G(t1, s) | ds

=

∫ t1

0

(t2 − t1)
[
(1− s)α−1 + (α− 1)(1− s)α−2 + (α−1)(α−2)b

2(a+b) (3− (t1 + t2))(1− s)α−3
]

Γ(α)
ds

+

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
Γ(α)

ds

+

∫ t2

t1

2(t2 − t1)
[
(1− s)α−1 + (α− 1)(1− s)α−2 + (α−1)(α−2)b

2(a+b) (3− (t1 + t2))(1− s)α−3
]

Γ(α)
ds

+

∫ t2

t1

[
(t2 − s)α−1 − (t1 − s)α−1

]
Γ(α)

ds

+

∫ 1

t2

(t2 − t1)
[
(1− s)α−1 + (α− 1)(1− s)α−2 + (α−1)(α−2)b

2(a+b) (3− (t1 + t2))(1− s)α−3
]

Γ(α)
ds

Thus, when t1 → t2 we conclude that

| Tu(t2)− Tu(t1) |−→ 0.

Hence TΩ is equicontinuous on [0,1]. So using Arzela− Ascoli theorem we attain
that, operator T : P −→ P is completely continuous. The proof is complete.
Theorem2.8.[4] Let X be a real Banach space and P ⊂ X be a cone in X .
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Assume Ω1,Ω2 are two open bounded subsets of X with 0 ∈ Ω1 ,Ω1 ⊂ Ω2 and
T : P ∩ (Ω2\Ω1) −→ P be a completely continuous operator such that

(i) ∥ Tu ∥≤∥ u ∥, u ∈ P ∩ ∂Ω1 and ∥ Tu ∥≥∥ u ∥, u ∈ P ∩ ∂Ω2 , or
(ii) ∥ Tu ∥≤∥ u ∥, u ∈ P ∩ ∂Ω2 and ∥ Tu ∥≥∥ u ∥, u ∈ P ∩ ∂Ω1 .

Then T has a fixed point in P ∩ (Ω2\Ω1).

3. Main Results

The following theorems relies on Theorem 2.8 which has two possibilities (i) and
(ii). We have to prove any case may occur. That is why we stated the results in
two different Theorems 3.1 and 3.2, separately.
Theorem3.1. Let conditions (H1), (H2), (H3) are satisfied. Then for every λ satisfying

1∫ 3/4

1/4

γ(s)M(s)g(s)dsf∞

< λ <
1∫ 1

0

M(s)g(s)dsf0

(15)

boundary value problem (1),(2) has at least one positive solution in P .
Proof . Let λ be given as in (15) . Now, let ϵ > 0 be chosen such that

1∫ 3/4

1/4

γ(s)M(s)g(s)ds(f∞ − ϵ)

< λ <
1∫ 1

0

M(s)g(s)ds(f0 + ϵ)

(16)

By Lemmas 2.4 and 2.8, we know that T : P −→ P is completely continuous and
boundary value problem (1),(2) has a solution u if and only if u solves the operator
equation u = Tu .
Now turning to f0,there exist r1 > 0 such that f(t, u) ≤ (f0 + ϵ)u for every
0 < u ≤ r1.
Let c1 = r1, Ω1 = {u ∈ P | ∥ u ∥< c1}. For u ∈ ∂Ω1, we have 0 ≤ u(t) ≤ c1 for
t ∈ [0, 1]. It follows from Lemma 2.5 that for t ∈ [0, 1] :

∥ Tu ∥ = max
0≤t≤1

λ

∫ 1

0

G(t, s)g(s)f(s, u(s))ds

≤ λ

∫ 1

0

M(s)g(s)(f0 + ϵ)u(s)ds

≤ λ

∫ 1

0

M(s)g(s)ds(f0 + ϵ)c1 ≤ c1 =∥ u ∥ .

Hence,

∀u ∈ P ∩ ∂Ω1 ; ∥ Tu ∥≤∥ u ∥ . (17)

Next, considering f∞,there exist r2 > 0 such that f(t, u) > (f∞−ϵ)u, for all u ≥ r2.
Let c2 = max{1+ c1, r2}, and Ω2 = {u ∈ P | ∥ u ∥≤ c2}. For every u ∈ ∂Ω2,and for
every t ∈ [0, 1], we have 0 ≤ u(t) ≤ c2.
If u ∈ P with u(t) ≥ c2 and from Lemma 2.5 and
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Tu(t) = λ

∫ 1

0

G(t, s)g(s)f(s, u(s))ds

≥ λ

∫ 3/4

1/4

G(t, s)g(s)f(s, u(s))ds

≥ λ

∫ 3/4

1/4

γ(s)M(s)g(s)ds(f∞ − ϵ)c2

≥ c2,

thus,∥ Tu ∥≥ c2. Hence,

∀u ∈ P ∩ ∂Ω2 ; ∥ Tu ∥≥∥ u ∥ . (18)

Applying (17)and (18)and first part of Theorem 2.8 we conclude that boundary
value problem (1),(2) has at least one positive solution in P ∩ (Ω2\Ω1). This com-
plete the proof.
Theorem3.2. Assume that conditions (H1), (H2), (H3) are satisfied. Then, there
for each λ satisfying

1∫ 3/4

1/4

γ(s)M(s)g(s)dsf0

< λ <
1∫ 1

0

M(s)g(s)dsf∞

(19)

there exist at least one positive solution of boundary value problem (1),(1) in P .
Proof . Let λ be given as in (19). Now, let ϵ > 0 be chosen such that

1∫ 3/4

1/4

γ(s)M(s)g(s)ds(f0 − ϵ)

< λ <
1∫ 1

0

M(s)g(s)ds(f∞ + ϵ)

. (20)

By Lemmas 2.4 and 2.8, we know that T : P −→ P is completely continuous and
boundary value problem (1),(2) has a solution u = u(t) if and only if u solves the
operator equation u = Tu.
Beginning with f0, there exist r1 > 0 such that f(t, u) > (f0 − ϵ)u, for every
0 < u ≤ r1.
Let c1 = r1 , Ω1 = {u ∈ P | ∥ u ∥< c1}. For u ∈ P ∩ ∂Ω1, we have 0 ≤ u(t) ≤ c1 for
all t ∈ [0, 1].
If u ∈ P , u(t) ≥ c1, from Lemma 2.5 we have

Tu(t) = λ

∫ 1

0

G(t, s)g(s)f(s, u(s))ds

≥ λ

∫ 3/4

1/4

G(t, s)g(s)f(s, u(s))ds

≥ λ

∫ 3/4

1/4

γ(s)M(s)g(s)(f0 − ϵ)u(s)ds

≥ λ

∫ 3/4

1/4

γ(s)M(s)g(s)ds(f0 − ϵ)c1

≥ c1.
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Thus,∥ Tu ∥≥ c1. Hence

∀u ∈ P ∩ ∂Ω1 ; ∥ Tu ∥≥∥ u ∥ . (21)

It remain to consider f∞. There exist r2 > 0 such that f(t, u) < (f∞ + ϵ)u, for all
u ≥ r2.
There are the two cases ;

(a) f is bounded. In this case suppose N > 0 is such that f(t, u) ≤ N, for all
0 < u < ∞.
Let c2 = max{1 + c1, Nλ

∫ 1

0
g1(0, s)g(s)ds}.

Then, for u ∈ P with ∥ u ∥= c2, by Lemma 2.5 we have

Tu(t) = λ

∫ 1

0

G(t, s)g(s)f(s, u(s))ds

≤ Nλ

∫ 1

0

M(s)g(s)ds

≤ c2 =∥ u ∥,
so there for ∥ Tu ∥≤∥ u ∥. So, if Ω2 = {u ∈ P | ∥ u ∥< c2}, then

∀u ∈ P ∩ ∂Ω2 ; ∥ Tu ∥≤∥ u ∥ . (22)

(b) f is unbounded. In this case , let c2 = max{1 + c1, r2}, be such that for
0 < u ≤ c2, f(t, u) ≤ f(t, c2).
Now choosing u ∈ P with ∥ u ∥= c2, and from Lemma 2.5, we have

Tu(t) ≤ λ

∫ 1

0

M(s)g(s)f(s, u(s))ds

≤ λ

∫ 1

0

M(s)g(s)ds(f∞ + ϵ)c2

≤ c2 =∥ u ∥,
so ∥ Tu ∥≤∥ u ∥ . For this case if we let

Ω2 = {u ∈ P | ∥ u ∥< c2}
then

∀u ∈ P ∩ ∂Ω2 ; ∥ Tu ∥≤∥ u ∥ . (23)

Applying (21)-(23) and second part of Theorem 2.8 we conclude that boundary
value problem (1),(2) has at least one positive solution in P .The proof is complete.
Example3.3. Consider the boundary value problem

cD
5
2
0 u(t) = λg(t)f(t, u(t)) ; t ∈ (0, 1) (24)

u(0) + u
′
(0) = 0

u(1) + u
′
(1) = 0

3

2
u

′′
(0)− u

′′
(1) = 0 (25)
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where

λ = g(t) = 1,

f(t, u(t)) =

 1 + 14u2 ; 0 ≤ u ≤ 1

14 + u ; u > 1

A direct computation showed

∫ 1

0

M(s)g(s)ds = 4.739 ,

∫ 3/4

1/4

γ(s)M(s)g(s)ds = 1.004 ,

f0 = ∞ , f∞ = 1.

So for each 0 < λ < 0.211, according to Theorem 3.2, boundary value problem
(24),(25) has at least one positive solution u in P .
Theorem3.4. Let conditions (H1)− (H3) hold. If f0, f∞ < ∞, then there exist a
positive constant λ0, such that for every 0 < λ < λ0, the boundary value problem
(1),(2) has no positive solution.
Proof . Since f0, f∞ < ∞,thus

∃c1, c2, r1, r2 > 0 : r1 < r2, t ∈ [0, 1] ;

f(t, u) < c1u ; u ∈ [0, r1]

f(t, u) < c2u ; u ∈ [r2,+∞).

Let

C = max

{
c1, c2, sup

r1≤u≤r2

f(t, u)

u

}
Thus we have

f(t, u) ≤ Cu ; u ∈ [0,+∞), t ∈ [0, 1].

Assume w(t) is a positive solution of the boundary value problem (1),(2). We will
show that this leads to a contradiction for every 0 < λ < λ0 with

λ0 =
A

C
, A =

(
λ

∫ 1

0

M(s)g(s)ds

)−1

.

In this case we have

w(t) = Tw(t) = λ

∫ 1

0

G(t, s)g(s)f(s, w(s))ds

≤ λC ∥ w ∥
∫ 1

0

G(t, s)g(s)ds.
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Thus

∥ w ∥ ≤ λC ∥ w ∥
∫ 1

0

sup
t∈[0,1]

G(t, s)g(s)ds

=
λC

A
∥ w ∥

<∥ w ∥,

which is a contradiction. So therefore the boundary value problem (1),(2) has no
positive solution.The proof is complete.
Theorem3.5. Let conditions (H1) − (H3) hold. If f0, f∞ > 0, then there exist
a positive constant λ0, such that for every λ > λ0, the boundary value problem
(1),(2) has no positive solution.
Proof . Since f0, f∞ > 0, thus we conclude that

∃m1,m2, r1, r2 > 0 ; r1 < r2, t ∈ [1/4, 3/4] ;

f(t, u) ≥ m1u ; u ∈ [0, r1]

f(t, u) ≥ m2u ; u ∈ [r2,+∞).

Assume that

m = min

{
m1,m2, min

r1≤u≤r2

f(t, u)

u

}
.

Hence we have

f(t, u) ≥ mu , u ∈ [0,+∞), t ∈ [1/4, 3/4].

Let w(t) is a positive solution of the boundary value problem (1),(2). We will show
that this leads to a contradiction for every

λ > λ0, λ0 =
B

m
, B =

(
λ

∫ 3/4

1/4

γ(s)M(s)g(s)ds

)−1

.

So we have

w(t) = Tw(t) = λ

∫ 1

0

G(t, s)g(s)f(s, w(s))ds

≥ mλw

∫ 1

0

G(t, s)g(s)ds.

Hence

∥ w ∥ ≥ mλ ∥ w ∥
∫ 3/4

1/4

γ(s)M(s)g(s)ds

=
λm

B
∥ w ∥

>∥ w ∥,

which is a contradiction. So therefore the boundary value problem (1),(2)has no
positive solution. This complete the proof.
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