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NEW INEQUALITIES OF OSTROWSKI TYPE FOR

CO-ORDINATED s-CONVEX FUNCTIONS VIA FRACTIONAL

INTEGRALS

M. A. LATIF, S. S. DRAGOMIR, A. E. MATOUK

Abstract. In this paper, using the identity proved [43]in for fractional inte-

grals, some new Ostrowski type inequalities for Riemann-Liouville fractional
integrals of functions of two variables are established. The established results
in this paper generalize those results proved in [43].

1. Introduction

Fractional calculus has been known since the 17th century. Recently, the interest
in fractional analysis has been growing continually due to its useful applications in
many fields of sciences. It has been shown that mathematical expressions involved
with fractional derivatives can be elegantly described in interdisciplinary fields, for
example, electromagnetic waves [34], visco-elastic systems [15], quantum evolution
of complex systems [37] and diffusion waves [29]. Furthermore, applications of frac-
tional calculus have been reported in many areas such as physics [35], engineering
[52], finance [44], social sciences [8, 59], mathematical biology [9, 30] and chaos
theory [10, 11, 36]. On the other hand, in 1938, Ostrowski [47] established an inter-
esting integral inequality associated with differentiable mappings. This Ostrowski
inequality has powerful applications in numerical integration, probability and op-
timization theory, stochastic, statistics, information and integral operator theory.
Thus, fractional inequalities have promising applications in all fields of mathematics
and applied sciences.

Theorem 1 [47] Let f : [a, b] → R be a differentiable mapping on (a, b) whose
derivative f ′ : (a, b) → R is bounded on (a, b), i.e., ∥f ′∥∞ := sup

t∈(a,b)

|f ′ (t)| < ∞.

The we have the inequality∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[
1

4
+

(
x− a+b

2

)2
(b− a)

2

]
(b− a) ∥f ′∥∞ , (1)

for all x ∈ [a, b]. The constant 1
4 is the best possible.
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The inequality (1) can be rewritten in equivalent form as:

∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[
(x− a)

2
+ (b− x)

2

2 (b− a)

]
∥f ′∥∞ .

Since 1938 when A. Ostrowski proved his famous inequality, many mathemati-
cians have been working about and around it, in many different directions and with
a lot of applications in Numerical Analysis and Probability, etc.

Several generalizations of the Ostrowski integral inequality for mappings of bounded
variation, Lipschitzian, monotonic, absolutely continuous, convex mappings, quasi
convex mappings and n-times differentiable mappings with error estimates for some
special means and for some numerical quadrature rules are considered by many au-
thors. For recent results and generalizations concerning Ostrowski’s inequality see
[2]-[4], [13], [16], [20]-[24], [38], [49]-[53], [58] and [60] and the references therein.

Let us consider now a bidimensional interval ∆ =: [a, b]× [c, d] in R2 with a < b
and c < d, a mapping f : ∆ → R is said to be convex on ∆ if the inequality

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w),

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1]. The mapping f is said to be concave
on the co-ordinates on ∆ if the above inequality holds in reversed direction, for all
(x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

A modification for convex (concave) functions on ∆, which are also known as
co-ordinated convex (concave) functions, was introduced by S. S. Dragomir [17] as
follows:

A function f : ∆ → R is said to be convex (concave) on the co-ordinates on ∆
if the partial mappings fy : [a, b] → R, fy(u) = f(u, y) and fx : [c, d] → R, fx(v) =
f(x, v) are convex (concave) where defined for all x ∈ [a, b], y ∈ [c, d].

A formal definition for co-ordinated convex (concave) functions may be stated
in:

Definition 1 [40] A mapping f : ∆ → R is said to be convex on the co-ordinates
on ∆ if the inequality

f(tx+ (1− t)y, ru+ (1− r)w)

≤ trf(x, u) + t(1− r)f(x,w) + r(1− t)f(y, u) + (1− t)(1− r)f(y, w), (2)

holds for all t, r ∈ [0, 1] and (x, u), (y, w) ∈ ∆. The mapping f is concave on the
co-ordinates on ∆ if the inequality (2) holds in reversed direction for all t, r ∈ [0, 1]
and (x, u), (y, w) ∈ ∆.

Clearly, every convex (concave) mapping f : ∆ → R is convex (concave) on
the co-ordinates. Furthermore, there exists co-ordinated convex (concave) function
which is not convex (concave), (see for instance [17]).

The following Hermite-Hadamard type inequalities were proved in [17]:
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Theorem 2 [17] Suppose that f : ∆ → R is co-ordinated convex on ∆. Then
one has the inequalities:

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,

c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

4

[
1

b− a

∫ b

a

f (x, c) dx+
1

b− a

∫ b

a

f (x, d) dx

1

d− c

∫ d

c

f (a, y) dy +
1

d− c

∫ d

c

f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
. (3)

The above inequalities are sharp. The inequalities in (3) hold in reverse direction
if the mapping f is co-ordianted concave on ∆.

Alomari et al. [7] defined the co-ordinated s-convexity in the second sense as
follows:

Definition 2 [7] Let ∆ =: [a, b] × [c, d] ⊆ [0,∞)
2
with a < b and c < d. A

mapping f : ∆ → R is said to be s-convex in the second sense on ∆ if the inequality

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λsf(x, y) + (1− λ)sf(z, w),

holds for all (x, y), (z, w) ∈ ∆, λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. The mapping
f is said to be s-concave on the co-ordinates on ∆ if the above inequality holds in
reversed direction, for all (x, y), (z, w) ∈ ∆, λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

A function f : ∆ → R is said to be s-convex (s-concave) in the second senses on
the co-ordinates on ∆ if the partial mappings fy : [a, b] → R, fy(u) = f(u, y) and
fx : [c, d] → R, fx(v) = f(x, v) are s-convex (s-concave) in the second sense where
defined for all x ∈ [a, b], y ∈ [c, d] for some fixed s ∈ (0, 1].

A formal definition for co-ordinated s-convex (s-concave) functions in the second
sense may be stated in:

Definition 3 A mapping f : ∆ → R is said to be s-convex in the second sense
on the co-ordinates on ∆ if the inequality

f(tx+ (1− t)y, ru+ (1− r)w)

≤ tsrsf(x, u) + ts(1− r)sf(x,w) + rs(1− t)sf(y, u) + (1− t)s(1− r)sf(y, w),
(4)

holds for all t, r ∈ [0, 1], (x, u), (y, w) ∈ ∆ and for some fixed s ∈ (0, 1]. The mapping
f is s-concave in the second sense on the co-ordinates on ∆ if the inequality (4)
holds in reversed direction for all t, r ∈ [0, 1], (x, u), (y, w) ∈ ∆ for some fixed
s ∈ (0, 1].

It is also proved in [7] that every s-convex mapping f : ∆ → R is s-convex on
the co-ordinates on ∆. Furthermore, there exists co-ordinated s-convex function
which is not s-convex, (see for instance [7].
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The following Hermite-Hadamard type inequalities were proved in [7]:

Theorem 3 [7] Suppose f : ∆ =: [a, b] × [c, d] ⊆ [0,∞)
2 → [0,∞) with a < b

and c < d is s-convex on the co-ordinates on ∆. The one has the inequalities:

4s−1f

(
a+ b

2
,
c+ d

2

)
≤ 2s−2

[
1

b− a

∫ b

a

f

(
x,

c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

2 (s+ 1)

[
1

b− a

∫ b

a

f (x, c) dx+
1

b− a

∫ b

a

f (x, d) dx

1

d− c

∫ d

c

f (a, y) dy +
1

d− c

∫ d

c

f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

(s+ 1)
2 . (5)

In recent years, many authors have proved several inequalities for co-ordinated
convex functions. These studies include, among others, the works in [5]-[12], [17,
18, 33], [39]-[43], [48] and [56] (see also the references therein). Alomari et al. [5]-
[7], proved several Hermite-Hadamard type inequalities for co-ordinated s-convex
functions. Bakula et. al [12], proved Jensen’s inequality for convex functions on
the co-ordinates from the rectangle from the plan. Dragomir [17], proved the
Hermite-Hadamard type inequalities for co-ordinated convex functions. Hwang
et. al [33], also proved some Hermite-Hadamard type inequalities for co-ordinated
convex function of two variables by considering some mappings directly associated
to the Hermite-Hadamard type inequality for co-ordinated convex mappings of two
variables. Latif et. al [39]-[43], proved some inequalities of Hermite-Hadamard type
for differentiable co-ordinated convex function, product of two co-ordinated convex
mappings, for co-ordinated h-convex mappings and some Ostrowski type inequali-
ties for co-ordinated convex mappings. Özdemir et. al [48], proved Hadamard’s type
inequalities for co-ordinated m-convex and (α,m)-convex functions. Sarikaya, et.
al [56] proved Hermite-Hadamard type inequalities for differentiable co-ordinated
convex functions. For more inequalities on co-ordinated convex functions see also
the references in the above cited papers.

In the present paper, we establish new Ostrowski type inequalities for co-ordinated
s-convex functions similar to those from [43] but via Riemann-Liouville fractional
integral and hence generalizing those results from [43.

2. Main Results

We give first some necessary definitions and mathematical preliminaries of frac-
tional calculus theory which are used in this sections.
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Definition 4 Let f ∈ L1 [a, b]. The Riemann-Liouville integrals Jα
a+f and Jα

b−f
of order α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ (α)

∫ x

a

(x− t)
α−1

f(t)dt, x > a

Jα
b−f(x) =

1

Γ (α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b,

where Γ (α) =
∫∞
0

e−uuα−1du. It is to be noted that J0
a+f(x) = J0

b−f(x) = f(x).
In the case α = 1, the fractional integral reduces to the classical integral.
For further properties and results concerning this operator we refer the interested

reader to [1], [14], [25]-[31], [43], [53] and [54].
For the sake of convenience, we will use the following notation throughout this

section:

A =
Γ (α+ 1)Γ (β + 1)

(b− a) (d− c)

[
Jα,β
x−,y−f (a, c) + Jα,β

x−,y+f (a, d) + Jα,β
x+,y−f (b, c)

+Jα,β
x+,y+f (b, d)

]
− [(x− a)

α
+ (b− x)

α
] Γ (β + 1)

(b− a) (d− c)

[
Jβ
y−f (x, c) + Jβ

y+f (x, d)
]

−

[
(y − c)

β
+ (d− y)

β
]
Γ (α+ 1)

(b− a) (d− c)

[
Jα
x−f (a, y) + Jα

x+f (b, y)
]
,

where

Jα,β
a+,c+f(x, y)

=
1

Γ (α) Γ (β)

∫ x

a

∫ y

c

(x− u)
α−1

(y − v)
β−1

f(u, v)dvdu, x > a, y > c,

Jα,β
b−,d−f(x, y)

=
1

Γ (α) Γ (β)

∫ b

x

∫ d

y

(u− x)
α−1

(v − y)
β−1

f(u, v)ddvdu, x < b, y < d,

Jα,β
a+,d−f(x, y)

=
1

Γ (α) Γ (β)

∫ x

a

∫ d

y

(x− u)
α−1

(v − y)
β−1

f(u, v)ddvdu, x > a, y < d,

Jα,β
b−,c+f(x, y)

=
1

Γ (α) Γ (β)

∫ b

x

∫ y

c

(u− x)
α−1

(y − v)
β−1

f(u, v)ddvdu, x < b, y > c,

and Γ is the Euler Gamma function.
To establish our main results we need the following identity:
Lemma 1 [43] Let f : ∆ := [a, b] × [c, d] → R be a twice partial differentiable

mapping on ∆◦ with a < b, c < d. If ∂2f
∂r∂t ∈ L (∆) and α, β > 0, a, c ≥ 0, then the
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following identity holds:

[(b− x)
α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

=
(x− a)

α+1
(y − c)

β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c) drdt

− (x− a)
α+1

(d− y)
β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d) drdt

− (b− x)
α+1

(y − c)
β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c) drdt

+
(b− x)

α+1
(d− y)

β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d) drdt,

(6)

for all (x, y) ∈ ∆.
Theorem 4 Let f : ∆ := [a, b] × [c, d] → R be a twice partial differentiable

mapping on ∆◦ with a < b, c < d, a, c ≥ 0 such that ∂2f
∂r∂t ∈ L (∆). If

∣∣∣ ∂2f
∂r∂t

∣∣∣ is
s-convex on the co-ordinates on ∆ and

∣∣∣ ∂2

∂y∂xf(x, y)
∣∣∣ ≤ M , (x, y) ∈ ∆, then the

following inequality for fractional integrals with α, β > 0 holds:

∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣
≤ K

[
(b− x)

α+1
+ (x− a)

α+1

b− a

][
(d− y)

β+1
+ (y − c)

β+1

d− c

]
, (7)

for all (x, y) ∈ ∆, where

K =
M

(α+ s+ 1) (β + s+ 1)

+
MΓ (s+ 1)Γ (β + 1)Γ (α+ s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
MΓ (s+ 1)Γ (α+ 1)Γ (β + s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
M (Γ (s+ 1))

2
Γ (β + 1)Γ (α+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

and Γ is the Euler Gamma function.
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Proof. From Lemma (1), we have that the following inequality holds for all
(x, y) ∈ ∆:

∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣
≤ (x− a)

α+1
(y − c)

β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣ drdt
+

(x− a)
α+1

(d− y)
β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣ drdt
+

(b− x)
α+1

(y − c)
β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣ drdt
+

(b− x)
α+1

(d− y)
β+1

(b− a) (d− c)

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣ drdt.
(8)

By the convexity of
∣∣∣ ∂2f
∂r∂t

∣∣∣ on the co-ordinates on ∆ and
∣∣∣ ∂2

∂y∂xf(x, y)
∣∣∣ ≤ M , (x, y) ∈

∆, we get the following inequalities:

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣ drdt
≤ M

∫ 1

0

∫ 1

0

rβ+stα+sdsdt+M

∫ 1

0

∫ 1

0

tα+srβ (1− r)
s
drdt

+M

∫ 1

0

∫ 1

0

rβ+stα (1− t)
s
drdt+M

∫ 1

0

∫ 1

0

tα (1− t)
s
rβ (1− r)

s
drdt

=
M

(α+ s+ 1) (β + s+ 1)
+

MΓ (s+ 1)Γ (β + 1)Γ (α+ s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
MΓ (s+ 1)Γ (α+ 1)Γ (β + s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)
+

M (Γ (s+ 1))
2
Γ (β + 1)Γ (α+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)
. (9)

Analogously, we also have the following inequalities:

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣ drdt
≤ M

(α+ s+ 1) (β + s+ 1)
+

MΓ (s+ 1)Γ (β + 1)Γ (α+ s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
MΓ (s+ 1)Γ (α+ 1)Γ (β + s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)
+

M (Γ (s+ 1))
2
Γ (β + 1)Γ (α+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)
, (10)
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0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣ drdt
≤ M

(α+ s+ 1) (β + s+ 1)

+
MΓ (s+ 1)Γ (β + 1)Γ (α+ s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
MΓ (s+ 1)Γ (α+ 1)Γ (β + s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
M (Γ (s+ 1))

2
Γ (β + 1)Γ (α+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)
(11)

and

∫ 1

0

∫ 1

0

rβtα
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣ drdt
≤ M

(α+ s+ 1) (β + s+ 1)

+
MΓ (s+ 1)Γ (β + 1)Γ (α+ s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
MΓ (s+ 1)Γ (α+ 1)Γ (β + s+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)

+
M (Γ (s+ 1))

2
Γ (β + 1)Γ (α+ 1)

Γ (α+ s+ 2)Γ (β + s+ 2)
. (12)

By using (9)-(12) in (8), we get the desired inequality (7). This completes the proof
of the theorem.

Remark 1 In Theorem 4, if we take α = β = 1 and s = 1, then the inequality
(7) reduces to the inequality established in [42, Theorem 3].

The next result is about the powers of the absolute value of the partial deriva-
tives.

Theorem 5 Let f : ∆ := [a, b] × [c, d] → R be a twice partial differentiable

mapping on ∆◦ with a < b, c < d, a, c ≥ 0 such that ∂2f
∂r∂t ∈ L (∆). If

∣∣∣ ∂2f
∂r∂t

∣∣∣q
is s-convex on the co-ordinates on ∆, p, q > 1, 1

p + 1
q = 1 and

∣∣∣ ∂2

∂y∂xf(x, y)
∣∣∣ ≤ M ,

(x, y) ∈ ∆, then the following inequality for fractional integrals with α, β > 0 holds:

∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣
≤ M

(
2

s+ 1

) 2
q

[
(b− x)

α+1
+ (x− a)

α+1

(b− a) (αp+ 1)
1
p

][
(d− y)

β+1
+ (y − c)

β+1

(d− c) (βp+ 1)
1
p

]
, (13)

for all (x, y) ∈ ∆.
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Proof. From Lemma 1 and the Hölder inequality, we have that the following
inequality holds, for all (x, y) ∈ ∆:∣∣∣∣∣∣

[(b− x)
α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣ ≤
(∫ 1

0

∫ 1

0

tαprβpdrdt

) 1
p

[
(x− a)

α+1
(y − c)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣q drdt)
1
q

+
(x− a)

α+1
(d− y)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣q drdt)
1
q

+
(b− x)

α+1
(y − c)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣q drdt)
1
q

+
(b− x)

α+1
(d− y)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣q drdt)
1
q

]
.

(14)

By the co-ordinated convexity of f and
∣∣∣ ∂2

∂y∂xf(x, y)
∣∣∣ ≤ M , for all (x, y) ∈ ∆, we

have that the following inequality holds:∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣q drdt ≤ 4Mq

(s+ 1)
2 .

Similarly, we also have the following inequalities:∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣q drdt ≤ 4Mq

(s+ 1)
2 ,

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣q drdt ≤ 4Mq

(s+ 1)
2

and ∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣q drdt ≤ 4Mq

(s+ 1)
2 .

Using the fact ∫ 1

0

∫ 1

0

tαprαpdrdt =
1

(αp+ 1) (βp+ 1)

and using the last four inequalities in (14), we obtain (13). This completes the
proof of the theorem. This completes the proof of the theorem.

Remark 2 In Theorem 5, if we take α = β = 1, then the inequality (13) becomes
the inequality proved in [42, Theorem 4].

A different approach leads us to the following result:
Theorem 6 Let f : ∆ := [a, b] × [c, d] → R be a twice partial differentiable

mapping on ∆◦ with a < b, c < d, a, c ≥ 0 such that ∂2f
∂r∂t ∈ L (∆). If

∣∣∣ ∂2f
∂r∂t

∣∣∣q is

s-convex on the co-ordinates on ∆, q ≥ 1 and
∣∣∣ ∂2

∂y∂xf(x, y)
∣∣∣ ≤ M , (x, y) ∈ ∆, then
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the following inequality for fractional integrals with α, β > 0 holds:∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣
≤ K

1
q M1− 1

q

(α+ 1)
1− 1

q (β + 1)
1− 1

q

[
(b− x)

α+1
+ (x− a)

α+1

b− a

][
(d− y)

β+1
+ (y − c)

β+1

d− c

]
,

(15)

for all (x, y) ∈ ∆, where K is defined in Theorem 4.
Proof. From Lemma 1 and the power mean inequality, we have that the follow-

ing inequality holds, for all (x, y) ∈ ∆:∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣ ≤
(∫ 1

0

∫ 1

0

tαrβdrdt

)1− 1
q

[
(x− a)

α+1
(y − c)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣q drdt)
1
q

+
(x− a)

α+1
(d− y)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣q drdt)
1
q

+
(b− x)

α+1
(y − c)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂s∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣q drdt)
1
q

+
(b− x)

α+1
(d− y)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣q drdt)
1
q

]
.

(16)

By the co-ordinated convexity of f and
∣∣∣ ∂2

∂y∂xf(x, y)
∣∣∣ ≤ M , for all (x, y) ∈ ∆, we

have that the following inequality holds:∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣q drdt
≤ Mq

∫ 1

0

∫ 1

0

rs+βtα (1− t)
s
drdt+Mq

∫ 1

0

∫ 1

0

rβ (1− r)
s
tα (1− t)

s
drdt

+Mq

∫ 1

0

∫ 1

0

rs+βts+αdrdt+Mq

∫ 1

0

∫ 1

0

ts+αrβ (1− r)
s
drdt ≤ Mq−1K.

In a similarly way, we also have the following inequalities:∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣q dsdt ≤ Mq−1K,

∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣q dsdt ≤ Mq−1K

and ∫ 1

0

∫ 1

0

tαrβ
∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣q dsdt ≤ Mq−1K.
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Using the fact ∫ 1

0

∫ 1

0

tαrβdrdt =
1

(α+ 1) (β + 1)

and the last four inequalities, we obtain from (16) the inequality (15). This com-
pletes the proof of the theorem. This completes the proof of the theorem.

Remark 3 In Theorem 6, if we take α = β = 1, then the inequality (15) becomes
the inequality proved in [42, Theorem 5].

Now we drive some results with co-ordinated concavity property instead of co-
ordinated convexity.

Theorem 7 Let f : ∆ → R be a twice partial differentiable mapping on ∆◦ such

that ∂2f
∂r∂t ∈ L (∆). If

∣∣∣ ∂2f
∂r∂t

∣∣∣q is s-concave on the co-ordinates on ∆ and p, q > 1,
1
p + 1

q = 1, then the inequality∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣
≤ 4

s−1
q

(1 + αp)
1
p (1 + βp)

1
p (b− a) (d− c)

×
[
(x− a)

α+1
(y − c)

β+1

∣∣∣∣ ∂2

∂r∂t
f

(
x+ a

2
,
y + c

2

)∣∣∣∣
+ (x− a)

α+1
(d− y)

β+1

∣∣∣∣ ∂2

∂r∂t
f

(
x+ a

2
,
d+ y

2

)∣∣∣∣
+ (b− x)

α+1
(y − c)

β+1

∣∣∣∣ ∂2

∂r∂t
f

(
b+ x

2
,
y + c

2

)∣∣∣∣
+(b− x)

α+1
(d− y)

β+1

∣∣∣∣ ∂2

∂r∂t
f

(
b+ x

2
,
d+ y

2

)∣∣∣∣] , (17)

hods for all (x, y) ∈ ∆, where .
Proof. From Lemma 1 and using the Hölder inequality for double integrals, we

have that inequality holds:∣∣∣∣∣∣
[(b− x)

α
+ (x− a)

α
]
[
(d− y)

β
+ (y − c)

β
]

(b− a) (d− c)
f (x, y) +A

∣∣∣∣∣∣ ≤
(∫ 1

0

∫ 1

0

rβptαpdrdt

) 1
p

×

[
(x− a)

α+1
(y − c)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣q drdt)
1
q

+
(x− a)

α+1
(d− y)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣q drdt)
1
q

+
(b− x)

α+1
(y − c)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂s∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣q drdt)
1
q

+
(b− x)

α+1
(d− y)

β+1

(b− a) (d− c)

(∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣q drdt)
1
q

]
,

(18)
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for all (x, y) ∈ ∆.

Since
∣∣∣ ∂2f
∂r∂t

∣∣∣q is concave on the co-ordinates on ∆, so an application of (5) with

inequalities in reversed direction, gives us the following inequalities:∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂s∂t
f (tx+ (1− t) a, ry + (1− r) c)

∣∣∣∣q drdt
≤ 2s−2

[∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
tx+ (1− t) a,

y + c

2

)∣∣∣∣q dt
+

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
x+ a

2
, ry + (1− r) c

)∣∣∣∣q dr]
≤ 4s−1

∣∣∣∣ ∂2

∂r∂t
f

(
x+ a

2
,
y + c

2

)∣∣∣∣q , (19)

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) a, ry + (1− r) d)

∣∣∣∣q dsdt
≤ 2s−2

[∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
tx+ (1− t) a,

d+ y

2

)∣∣∣∣q dt
+

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
x+ a

2
, ry + (1− r) c

)∣∣∣∣q dr]
≤ 4s−1

∣∣∣∣ ∂2

∂r∂t
f

(
x+ a

2
,
d+ y

2

)∣∣∣∣q , (20)

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) c)

∣∣∣∣q drdt
≤ 2s−2

[∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
tx+ (1− t) a,

y + c

2

)∣∣∣∣q dt
+

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
b+ x

2
, ry + (1− r) c

)∣∣∣∣q dr]
≤ 4s−1

∣∣∣∣ ∂2

∂r∂t
f

(
b+ x

2
,
y + c

2

)∣∣∣∣q (21)

and∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f (tx+ (1− t) b, ry + (1− r) d)

∣∣∣∣q drdt
≤ 2s−2

[∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
tx+ (1− t) b,

d+ y

2

)∣∣∣∣q dt
+

∫ 1

0

∣∣∣∣ ∂2

∂r∂t
f

(
b+ x

2
, ry + (1− r) d

)∣∣∣∣q dr]
≤ 4s−1

∣∣∣∣ ∂2

∂r∂t
f

(
b+ x

2
,
d+ y

2

)∣∣∣∣q . (22)

By making use of (19)-(22) in (18), we obtain (17). Thus the proof of the theorem
is complete.
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Remark 4 If we take α = β = 1, in Theorem 7, we get the inequalities proved
in [42, Theorem 6].
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Math. Mechanics (English Edition), 2007, 28(7), 901-906.
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