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CARATHÈODORY THEOREM FOR QUADRATIC INTEGRAL

EQUATIONS OF ERDÉLYI-KOBER TYPE

HASHEM, H. H. G AND ZAKI, M. S.

Abstract. We present the existence of maximal and minimal at least one con-
tinuous solution for a nonlinear quadratic integral equation of Erdélyi-Kober

type. Also, some special cases will considered.

1. Introduction and Preliminaries

It is well-known that a useful mathematical tool for physical investigation and
description of non-local and anomalous diffusion is Fractional Calculus, which is
that branch of mathematical analysis dealing with pseudo-differential operators in-
terpreted as integrals and derivatives of non-integer order (see [1], [24] [29] and
[30]).
the generalized grey Brownian motion is an anomalous diffusion process driven by
a fractional integral equation in the sense of Erdélyi-Kober, and for this reason it
is proposed to call such family of diffusive processes as Erdélyi- Kober fractional
diffusion [27].

An Erdélyi-Kober operator is a fractional integration operation introduced by
Arthur Erdélyi (1940) and Hermann Kober (1940).
The Erdélyi-Kober fractional integral is given by ([1] and [12]-[14])

Iαmf(t) =

∫ t

0

(tm − sm)α−1

Γ(α)
m sm−1 f(s) ds, m > 0.

which generalizes the Riemann fractional integral (m = 1) and its generalized
fractional derivative of order α > 0, like:

Dα
mf(t) = DmI1−α

m , m > 0, α ∈ (0, 1).

For the properties of Erdélyi-Kober operators see [1], [24] and [30] for example.

Quadratic integral equations are often applicable in the theory of radiative transfer,
the kinetic theory of gases, the theory of neutron transport, the queuing theory and
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the traffic theory. Many authors studied the existence of solutions for several classes
of nonlinear quadratic integral equations (see e.g. [2]-[9] and [11]-[22]. However,
in most of the above literature, the main results are realized with the help of the
technique associated with the measure of noncompactness. Instead of using the
technique of measure of noncompactness we use Tychonoff fixed point theorem.
Let R be the set of real numbers whereas I = [0, 1], L1 = L1[0, 1] be the space
of Lebesgue integrable functions on I.

Here, we prove the existence of at least one continuous solution for the quadratic
integral equation of fractional order

x(t) = a(t) + g(t, x(t))

∫ t

0

(tm − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds, t ∈ I, α > 0, m > 0

(1)
and the existence of a continuous solution of the nonlinear differential equation of
fractional-order

RD
α
mx(t) = f(t, x(t)), t ∈ I and x(0) = 0, α ∈ (0, 1) (2)

(where RD
α
m is the Erdélyi-Kober fractional order derivative) will be given as an

application. Also, the results concerning the existence of continuous solution of the
initial value problem

dx(t)

dt
= f(t, x(t)), x(0) = x0, (3)

will be given as another application.
Finally, the existence of maximal and minimal solutions of (1) will be proved.
For m = 1, J. Banaś ( see [9]) proved the existence of a nondecreasing continuous
solution of (1) by using the technique of measure of noncompactness. The existence
of continuous solutions for some quadratic integral equations was proved by using
Schauder-Tychonoff fixed point theorem [31].

The existence results will be based on the following fixed-point theorems and defi-
nitions.

Theorem 1. Tychonoff fixed-point Theorem [10]
Suppose B is a complete, locally convex linear space and S is a closed convex
subset of B. Let the mapping T : B → B be continuous and T (S) ⊂ S. If the
closure of T (S) is compact, then T has a fixed point in S.

2. Existence of continuous solutions

Now, equation (1) will be investigated under the assumptions:

(i) a : I → R is continuous and bound with k1 = sup
t∈I

|a(t)|.

(ii) g : I × R → R is continuous and bounded with k2 = sup
(t,x)∈I×R

|g(t, x)|.

(iii) There exist two constants li, i = 1, 2 satisfying

|g(t, x)− g(s, y)| ≤ l1 |t− s|+ l2 |x− y|
for all t, s ∈ I and x, y ∈ R.

(iv) f : I × R → R satisfies Carathèodory condition (i.e. measurable in t
for all x : I → R and continuous in x for all t ∈ I ).
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(v) There exists a function ϕ ∈ L1 such that |f(t, x)| ≤ ϕ(t) (∀ (t, x) ∈ I×R )
and k3 = sup

t∈I
Iβm ϕ(t) for any β ≤ α.

Theorem 2. Let the assumptions (i)-(v) be satisfied, then the quadratic functional
integral equation (1) has at least one solution in the space x ∈ C(I).

Proof.
Let C = C(I) be the space of all continuous functions on I. It can be verified
that C(I) is a complete locally convex linear space [10].
Define a subset S of C(I) by

S = { x ∈ C : | x(t) | ≤ r }, t ∈ I,

then

| x(t) | ≤ |a(t)| + |g(t, x(t))|
∫ t

0

(tm − sm)α−1

Γ(α)
m sm−1 |f(s, x(s))| ds

|x(t)| ≤ k1 + k2 Iα−β
m Iβm ϕ(t).

Also from assumption (v) we obtain

|x(t)| ≤ k1 + k2 k3 m

∫ t

0

(tm − sm)α−β−1

Γ(α− β)
sm−1 ds.

Then

|x(t)| ≤ k1 +
k2 k3

Γ(α − β + 1)
.

From the last estimate we deduce that r = k1 + k2 k3

Γ(α − β + 1) .

It is clear that the set S is closed and convex.
Let T be an operator defined by

(Tx)(t) = a(t) + g(t, x(t))

∫ t

0

(tm − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds, x ∈ S

Assumptions (ii) and (iv) imply that T : S → C(I) is a continuous operator in
x. We shall prove that TS ⊂ S.
For every x ∈ S we have

|(Tx)(t)| ≤ k1 + k2 Iα−β
m Iβm ϕ(t) ds

≤ k1 +
k2 k3

Γ(α − β + 1)
= r.

Then, Tx ∈ S and hence TS ⊂ S.
Now for t1 and t2 ∈ I (without loss of generality assume that t1 < t2 ), we have

(Tx)(t2) − (Tx)(t1) = a(t2) − a(t1)

+ g(t2, x(t2)) I
α
m f(t2, x(t2)) − g(t1, x(t1)) I

α
m f(t1, x(t1))

+ g(t1, x(t1)) I
α
m f(t2, x(t2)) − g(t1, x(t1)) I

α
m f(t2, x(t2))

≤ a(t2) − a(t1) + [g(t2, x(t2)) − g(t1, x(t1))] I
α
m f(t2, x(t2))

+ g(t1, x(t1)) [ I
α
m f(t2, x(t2)) − Iαm f(t1, x(t1)) ],

but

Iαm f(t2, x(t2)) − Iαm f(t1, x(t1)) =

∫ t1

0

(tm2 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds
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+

∫ t2

t1

(tm2 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds−

∫ t1

0

(tm1 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds

≤
∫ t1

0

(tm1 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds+

∫ t2

t1

(tm2 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds

−
∫ t1

0

(tm1 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds =

∫ t2

t1

(tm2 − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds.

Then
|Iαm f(t2, x(t2)) − Iαm f(t1, x(t1))| ≤ Iαm,t1 |f(t2, x(t2))|

≤ Iαm,t1ϕ(t2) = Iα−β
m,t1 I

β
m,t1ϕ(t2)

≤ k3
(tm2 − tm1 )α−β

Γ(α− β + 1)
.

Then we get

| (Tx)(t2)− (Tx)(t1) | ≤ | a(t2)− a(t1) |+ [l1|t2−t1|+ l2|x(t2))−x(t1))|] Iαm | f(t2, x(t2)) |

+ | g(t1, x(t1)) | k3
(tm2 − tm1 )α−β

Γ(α− β + 1)

i.e.,

| (Tx)(t2) − (Tx)(t1) | ≤ | a(t2) − a(t1) | + [l1|t2−t1| + l2|x(t2)−x(t1)|] Iαm ϕ(t2)

+ k2 k3
(tm2 − tm1 )α−β

Γ(α− β + 1)

≤ | a(t2) − a(t1) | +
k3 (t2 − t1)

α−β

Γ(α− β + 1)
[l1|tm2 − tm1 | + l2|x(t2)− x(t1)|]

+
k2 k3

Γ(α− β + 1)
(tm2 − tm1 )α−β → 0 as t2 → t1.

This means that the functions of TS are equi-continuous on I. Then by the
Arzela-Ascoli Theorem [10] the closure of TS is compact .
Since all conditions of the Tychonoff Fixed-point Theorem hold, then T has a
fixed point in S.

3. Spacial cases

Corollary 1. Let the assumptions of Theorem 2 be satisfied (with m = 1), then
the fractional-order quadratic integral equation

x(t) = a(t) + g(t, x(t))

∫ t

0

(t − s)α−1

Γ(α)
f(s, x(s)) ds

has at least one solution x ∈ C.

Corollary 2. Let the assumptions of Theorem 2 be satisfied (with g(t, x) = 1 ),
then the fractional-order integral equation

x(t) = a(t) +

∫ t

0

(t − s)α−1

Γ(α)
f(s, x(s)) ds

has at least one solution x ∈ C.

which is the same results obtained in [23].
Now letting α, β → 1, we obtain
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Corollary 3. Let the assumptions of Theorem 2 be satisfied (with g(t, x) =
1, a(t) = x0 and letting α, β → 1 ), then the integral equation

x(t) = x0 +

∫ t

0

f(s, x(s)) ds.

has at least one solution x ∈ C which is equivalent to the initial value problem
(3).

which is the Carathéodory Theorem (proved in [10]).

4. Fractional order functional differential equations

For the initial value problem of the nonlinear fractional-order differential equa-
tion (2) we have the following theorem.

Theorem 3. Let the assumptions of Theorem 2 be satisfied (with a(t) = 0 and
g(t, x(t)) = 1), then the Cauchy type problem (2) has at least one solution x ∈ C.

Proof. Integrating (2) we obtain the integral equation

x(t) =

∫ t

0

(tm − sm)α−1

Γ(α)
m sm−1 f(s, x(s)) ds, t ∈ I (4)

which by Theorem 2 has the desired solution.
Operating with RD

α
m on (4) we obtain the initial value problem (2). So the

equivalence between the initial value problem(2) and the integral equation (4) is
proved and then the results follow from Theorem 2.

5. Maximal and minimal solutions

Definition 1. ( see [25]) Let q(t) be a solution of (1) Then q(t) is said to be
a maximal solution of (1) if every solution of (1) on I satisfies the inequality
x(t) < q(t), t ∈ I . A minimal solution s(t) can be defined in a similar way by
reversing the above inequality i.e. x(t) > s(t), t ∈ I.

we need the following lemma to prove the existence of maximal and minimal
solutions of (1).

Lemma 1. Let g(t, x), f(t, x) satisfy the assumptions in Theorem 2 and let
x(t), y(t) be continuous functions on I satisfying

x(t) ≤ a(t) + g(t, x(t)) Iαmf(t, x(t))

y(t) ≥ a(t) + g(t, y(t)) Iαmf(t, y(t))

where one of them is strict.
Suppose f(t, x) is nondecreasing function in x. Then

x(t) < y(t). (5)

proof
Let the conclusion (5) be false; then there exists t1 such that

x(t1) = y(t1), t1 > 0

and
x(t) < y(t), 0 < t < t1.
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From the monotonicity of the function f in x, we get

x(t1) ≤ a(t1) + g(t1, x(t1)) I
α
m f(t1, x(t1))

= a(t1) + g(t1, x(t1))

∫ t1

0

(tm1 − sm)α − 1

Γ(α)
m sm−1 f(s, x(s)) ds

< a(t1) + g(t1, y(t1))

∫ t1

0

(tm1 − sm)α − 1

Γ(α)
m sm−1 f(s, y(s)) ds

< y(t1).

This contradicts the fact that x(t1) = y(t1); then

x(t) < y(t).

Theorem 4. Let the assumptions of Theorem 2 be satisfied. Furthermore, if
f(t, x) is nondecreasing functions in x, then there exist maximal and minimal
solutions of (1).

Proof
Firstly, we shall prove the existence of maximal solution of (1). Let ϵ > 0 be given.
Now consider the fractional-order quadratic integral equation

xϵ(t) = a(t) + gϵ(t, xϵ(t)) I
α
m fϵ(t, xϵ(t)), (6)

where

fϵ(t, xϵ(t)) = f(t, xϵ(t)) + ϵ

and

gϵ(t, xϵ(t)) = g(t, xϵ(t)) + ϵ.

Clearly the functions fϵ(t, xϵ) and gϵ(t, xϵ) satisfy assumptions (ii), (iv) and

| gϵ(t, xϵ) | ≤ M + ϵ = M ′.

| fϵ(t, xϵ) | ≤ ϕ(t) + ϵ = ϕ′(t) ∈ L1.

Therefore, equation (6) has a continuous solution xϵ(t) according to Theorem 2.
Let ϵ1 and ϵ2 be such that 0 < ϵ2 < ϵ1 < ϵ. Then

xϵ1(t) = a(t) + gϵ1(t, xϵ1(t)) I
α
m fϵ1(t, xϵ1(t)),

xϵ1(t) = a(t) + (g(t, xϵ1(t)) + ϵ1) I
α
m (f(t, xϵ1(t)) + ϵ1),

> a(t) + (g(t, xϵ1(t)) + ϵ2) I
α
m (f(t, xϵ1(t)) + ϵ2), (7)

xϵ2(t) = a(t) + (g(t, xϵ2(t)) + ϵ2) I
α
m (f(t, xϵ2(t)) + ϵ2). (8)

Applying Lemma 1, then (7) and (8) imply

xϵ2(t) < xϵ1(t) for t ∈ I.

As shown before in the proof of Theorem 2, the family of functions xϵ(t) defined
by (6) is uniformly bounded and of equi-continuous functions. Hence by the Arzela-
Ascoli Theorem, there exists a decreasing sequence ϵn such that ϵ → 0 as n →
∞, and lim

n→∞
xϵn(t) exists uniformly in I and we denote this limit by q(t). from

the continuity of the functions fϵn and gϵn in the second argument, we get

q(t) = lim
n→∞

xϵn(t) = a(t) + g(t, q(t)) Iαm f(t, q(t))
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which proves that q(t) is a solution of (1).
Finally, we shall show that q(t) is maximal solution of (1). To do this, let x(t)
be any solution of (1). Then

xϵ(t) = a(t) + gϵ(t, xϵ(t))I
α
m fϵ(t, xϵ(t))

> a(t) + g(t, xϵ(t)) I
α
m f(t, xϵ(t)).

and

x(t) = a(t) + g(t, x(t)) Iαm f(t, x(t)).

Applying Lemma 1, we get

xϵ(t) > x(t) for t ∈ I.

from the uniqueness of the maximal solution (see [25], [28]), it is clear that xϵ(t) tends
to q(t) uniformly in t ∈ I as ϵ → 0.
By a similar way we can prove that s(t) is the minimal solution of (1).
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