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MAXIMAL AND MINIMAL POSITIVE SOLUTIONS FOR A

BOUNDARY VALUE PROBLEM WITH A NONLOCAL

CONDITIONS

BIN-TAHER, E.O

Abstract. In this paper we study the existence of positive solution for the
ordinary differential equation u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1) , with the

nonlocal conditions u(0) = 0, u(1) + Dα u(t)|t=1 = 0, α ∈ (0, 1) where
f is L1−Carathèodory. The existence of the maximal and minimal solutions
are also studied.

1. Introduction

Problems with non-local conditions have been extensively studied by several
authors in the last two decades. The reader is referred to ([1]-[3]), ([5]-[12]), ([14]-
[19]) and ([22]-[24]), and references therein.
In this work we study the existence of at least one positive solution for the nonlocal
boundary value problem of the ordinary differential equation

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1), (1)

with the nonlocal conditions

u(0) = 0, u(1) + RDα u(t)|t=1 = 0. (2)

where f is L1−Carathèodory and RDα is the Riemann-Liouville fractional-order
derivative of order α ∈ (0, 1).
The maximal and minimal solutions of the problem (1)-(2) is studied when the
function f is nondecreasing in the second argument.

2. preliminaries

Let C(I) denotes the class of continuous function on I and L1(I) denotes
the class of Lebesgue integrable functions on the interval I = [a, b], where
0 ≤ a < b < ∞ and let Γ(.) denotes the gamma function.
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Definition 1.1 The Riemann-Liouville fractional-order derivative of f of order
β ∈ (0, 1) is defined as (see [20] and [21])

Dβ
a f(t) =

d

dt

∫ t

a

(t − s)− β

Γ(1 − β)
f(s) ds.

Definition 1.2 The function f : [0, 1]×R → R is called L1−Carathéodory if
(i) t → f(t, x) is measurable for each x ∈ R,
(ii) x → f(t, x) is continuous for almost all t ∈ [0, 1],
(iii) there exists m ∈ L1[0, 1] such that |f | ≤ m.

The following theorem will be needed
Theorem 2.1 (Schauder fixed point theorem [4])
Let E be a Banach space and Q be a convex subset of E, and T : Q −→ Q is
compact, continuous map, Then T has at least one fixed point in Q.

3. Existence of solution

Lemma 3.1 The solution of the problem (1)-(2) can be represent by the integral
equation

u(t) = A t

{∫ 1

0

(1− s) f(s, u(s)) ds+

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

}
−

∫ t

0

(t− s) f(s, u(s)) ds. (3)

where A =
(

Γ(2−α)
1 + Γ(2−α)

)
.

proof. Integral the both sides of equation (1) twice, we obtain

u(t) = C2 + tC1 −
∫ t

0

(t− s)f(s, u(s)) ds.

From the relation u(0) = 0, we have

C2 = 0

Then,we have

u(t) = tC1 −
∫ t

0

(t− s)f(s, u(s)) ds.

Operating on both sides of the above equation by I1−α, we obtain

I1−αu(t) = C1
t2−α

Γ(3− α)
− I3−αf(t, u(t))

Differentiating the last relation , we obtain

Dαu(t) =
d

dt
I1−αu(t) = C1

t1−α

Γ(2− α)
− I2−αf(t, u(t))

Also from the relation u(1) + Dα u(t)|t=1 = 0, we have

C1 −
∫ 1

0

(1− s)f(s, u(s)) ds +
C1

Γ(2− α)
−

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds = 0

C1

(
1 +

1

Γ(2− α)

)
=

∫ 1

0

(1− s)f(s, u(s)) ds +

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds
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then

C1 =

(
Γ(2− α)

1 + Γ(2− α)

){∫ 1

0

(1− s)f(s, u(s)) ds +

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

}
and

u(t) =

(
t Γ(2− α)

1 + Γ(2− α)

){∫ 1

0

(1− s)f(s, u(s)) ds +

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

}

−
∫ t

0

(t− s) f(s, u(s)) ds,

then we get

u(t) = A t

{∫ 1

0

(1− s) f(s, u(s)) ds+

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

}
−

∫ t

0

(t−s) f(s, u(s)) ds.

where A =
(

Γ(2−α)
1 + Γ(2−α)

)
.

Now we can write equation (3) in the formula

u(t) =

∫ 1

0

G(t, s) f(t, u(s)) ds. (4)

where

G(t, s) =


−(1+Γ(2−α))(t−s)+ tΓ(2−α)(1−s)+t(1−s)1−α

1+Γ(2−α) , 0 ≤ s ≤ t ≤ 1

tΓ(2−α)(1−s)+t(1−s)1−α

1+Γ(2−α) , 0 ≤ t ≤ s ≤ 1.

Lemma 2.2 The function G(t, s) satisfies G(t, s) > 0, for t, s ∈ (0, 1).
Proof. For 0 ≤ s ≤ t ≤ 1, let

g(t, s) = −(1 + Γ(2− α))(t− s) + tΓ(2− α)(1− s) + t(1− s)1−α

then we have

tΓ(2− α)(1− s) + t(1− s)1−α ≥ tΓ(2− α)(1− s) + t(1− s)

= (1 + Γ(2− α))(t− ts) > (1 + Γ(2− α))(t− s)

Thus, g(t, s) > 0 .
For 0 ≤ t ≤ s ≤ 1, G(t, s) ≥ 0 holds clearly.
Then we get that G(t, s) > 0 for t, s ∈ (0, 1).

Definition 2.1 The function u is called a solution of the fractional-order func-
tional integral equation (3), if u ∈ C[0, 1] and satisfies (3).

For the existence of the solution we have the following theorem
Theorem Assume that the the function f : [0, 1]×R+ → R+ is L1−Carathèodory.
Then the nonlocal boundary value problem (1)-(2) has at least one positive contin-
uous solution u ∈ C[0, 1].
Proof. Define a subset Q+

r ⊂ C[0, 1] by

Q+
r = {u(t) > 0, for each t ∈ [0, 1], ∥u∥ ≤ r}, r = 2||m||L1 .
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The set Q+
r is nonempty, closed and convex.

Let T : Q+
r → Q+

r be an operator defined by

Tu(t) = A t

{∫ 1

0

(1− s) f(s, u(s)) ds−
∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

}

−
∫ t

0

(t− s) f(s, u(s)) ds.

For u ∈ Q+
r , let {un(t)} be a sequence in Q+

r converges to u(t), un(t) →
u(t), ∀t ∈ [0, 1], then

lim
n→∞

Tun(t) = A t lim
n→∞

∫ 1

0

(1−s) f(s, un(s)) ds−A t lim
n→∞

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, un(s)) ds

− lim
n→∞

∫ t

0

(t− s) f(s, un(s)) ds

Since f is L1−Carathèodory, then by applying Lebesgue dominated convergence
theorem we get

lim
n→∞

(Tun)(t) = (Tu)(t).

Then T is continuous.
Now, let u ∈ Q+

r , then

(Tu)(t) ≤ A t

∫ 1

0

(1− s)f(s, u(s)) ds + A t

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

+

∫ t

0

(t− s) f(s, u(s)) ds

≤ A

∫ 1

0

(1− s)f(s, u(s)) ds + A

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

+

∫ 1

0

(1− s) f(s, u(s)) ds

≤ (A +
A

Γ(2− α)
+ 1)

∫ 1

0

(1− s)1−α f(s, u(s)) ds

≤ AΓ(2− α) + A + Γ(2− α)

Γ(2− α)

∫ 1

0

(1− s)1−α m(s) ds

≤ Γ(2− α) + Γ(2− α)

Γ(2− α)

∫ 1

0

m(s) ds

≤ 2 ||m||L1 = r

Then {Tu(t)} is uniformly bounded in Q+
r .

In what follows we show that T is a completely continuous operator.
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For t1, t2 ∈ (0, 1), t1 < t2 such that |t2 − t1| < δ we have

|Tu(t2)− Tu(t1)| = |A t2

∫ 1

0

(1− s)f(s, u(s)) ds+At2

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s))ds

−
∫ t2

0

(t2 − s)f(s, u(s))ds

− At1

∫ 1

0

(1− s)f(s, u(s))ds−At1

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s))ds

+

∫ t1

0

(t1 − s)f(s, u(s)) ds|

≤ |
∫ t2

0

(t2 − s)f(s, u(s))) ds−
∫ t1

0

(t1 − s)f(s, u(s))) ds |

+ A |t2 − t1|
∫ 1

0

(1− s)|f(s, u(s))| ds

+ A |t2 − t1|
∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s))ds

≤ |
∫ t1

0

((t2 − t1)) f(s, u(s))) ds

+

∫ t2

t1

(t2 − s)f(s, u(s))) ds |

+ A |t2 − t1|
∫ 1

0

(1− s)|f(s, u(s))| ds

+ A |t2 − t1|
∫ 1

0

(1− s)1−α

Γ(2− α)
|f(s, u(s))|ds.

Hence the class of functions {TQ+
r } is equi-continuous. By Arzela-Ascolis The-

orem {TQ+
r } is relatively compact. Since all conditions of Schauder Theorem are

hold, then T has a fixed point in Q+
r .

Therefor the integral equation (3) has at least one positive continuous solution
u ∈ C(0, 1) .
Now,

lim
t→0

u(t) = A lim
t→0

t

∫ 1

0

(1− s)f(s, u(s))ds+A lim
t→0

t

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s))ds

− lim
t→0

∫ t

0

(t− s) f(s, u(s))) ds = u(0) = 0,
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and

lim
t→1

u(t) = A lim
t→1

t

∫ 1

0

(1− s)f(s, u(s))ds+A lim
t→1

t

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s))ds

− lim
t→1

∫ t

0

(t− s) f(s, u(s))) ds = u(1).

Then the integral equation (3) has at least one positive continuous solution u ∈
C[0, 1] .
To complete the proof differentiating equation (3) twice we obtain the differential
equation (1). Operating on both sides of equation (3) by I1−α, we obtain

I1−αu(t) =
A t2−α

Γ(3− α)

∫ 1

0

(1− s) f(s, u(s)) ds+
A t2−α

Γ(3− α)

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

−
∫ t

0

(t− s)2−α

Γ(3− α)
f(s, u(s)) ds

differentiating the above relation, we get

Dαu(t) =
d

dt
I1−αu(t) =

At1−α

Γ(2− α)

∫ 1

0

(1− s)f(s, u(s)) ds+
At1−α

Γ(2− α)

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

−
∫ t

0

(t− s)1−α

Γ(2− α)
f(s, u(s)) ds

Let t = 1 in equation (3) and in the above equation, we get

u(1) + Dαu(t)|t=1 = A

∫ 1

0

(1− s) f(s, u(s)) ds+ A

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

−
∫ 1

0

(1− s) f(s, u(s)) ds+
A

Γ(2− α)

∫ 1

0

(1− s) f(s, u(s)) ds

+
A

Γ(2− α)

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds−

∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

=

(
A(1 +

1

Γ(2− α)
)− 1

) ∫ 1

0

(1− s) f(s, u(s)) ds

+

(
A(1 +

1

Γ(2− α)
)− 1

) ∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

=

(
A(

Γ(2− α) + 1

Γ(2− α)
)− 1

) ∫ 1

0

(1− s) f(s, u(s)) ds

+

(
A(

Γ(2− α) + 1

Γ(2− α)
)− 1

) ∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds

=

(
(

Γ(2− α)

1 + Γ(2− α)
)(
Γ(2− α) + 1

Γ(2− α)
)− 1

) ∫ 1

0

(1− s) f(s, u(s)) ds

+

(
(

Γ(2− α)

1 + Γ(2− α)
)(
Γ(2− α) + 1

Γ(2− α)
)− 1

) ∫ 1

0

(1− s)1−α

Γ(2− α)
f(s, u(s)) ds = 0.
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The proof is complete.

4. Maximal and minimal solutions

Here we study the existence of the maximal and minimal solutions of the fractional-
order integral equation (3).
Definition 3.1 Let n be a solution of the integral equation (3) , then n is said
to be a maximal solution of (3) if, for every solution u of (3) , the inequality
u(t) ≤ n(t), t ∈ [0, 1], holds.
A minimal solution may be define similarly by reversing the last inequality.
From Theorem 3 we get that the integral equation (3) has a positive solution
u ∈ C[0, 1]. Based on this criterion we can prove the following theorem.
Theorem Let the assumptions of Theorem 3 be satisfied. Furthermore, if f(t, x)
is non- decreasing functions in x, then there exist maximal and minimal solutions
of the integral equation (3).
Proof: Consider the fractional-order integral equation

uϵ(t) = ϵ +

∫ 1

0

G(t, s) f(s, uϵ(s)) ds, ϵ > 0. (5)

In the view of Theorem 3, it is clear that equation (5) has at least one positive
solution u(t) ∈ C[0, 1]. Now, let ϵ1 and ϵ2 be such that 0 < ϵ2 < ϵ1 ≤ ϵ. Then, we
have uϵ2(0) < uϵ1(0) ( from (3)-(5), we have uϵ2(0) = ϵ2 < ϵ1 = uϵ1(0)). We
can prove

uϵ2(t) < uϵ1(t) for all t ∈ [0, 1]. (6)

To prove conclusion (6), we assume that it is false, then there exist a t1 such that

uϵ2(t1) = uϵ1(t1) and uϵ2(t) < uϵ1(t) for all t ∈ [0, t1).

Since f is monotonic nondecreasing in u, it follows that f(t, uϵ2(t)) ≤ f(t, uϵ1(t))
and consequently, using equation (5), we obtain

uϵ2(t1) = ϵ2 +

∫ 1

0

G(t1, s) f(s, uϵ2(s)) ds

< ϵ1 +

∫ 1

0

G(t1, s) f(s, uϵ1(s)) ds

= uϵ1(t1).

Which contradict the fact that uϵ2(t1) = uϵ1(t1). Hence the inequality (6) is true.
From the hypothesis, it follows as in the proof of Theorem 3 that the family of
functions {uϵ} is relatively compact on [0, 1], hence, we can extract a uniformly
convergent subsequence {uϵp}, that is, there exists a decreasing sequence {ϵp} such
that ϵp → 0 as p → ∞ and limp→∞ uϵp(t) exists uniformly in t ∈ [0, 1], we denote
this limiting value by n(t).
Obviously, the uniform continuity of f and the equation

uϵp(t) = ϵp +

∫ 1

0

G(t, s) f(s, uϵp(s)) ds, t ∈ [0, 1],
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yields n is a solution of equation (3). Finally, we show that the solution n is the
maximal solution of equation (3). To achieve this goal, let u be any solution of (3)
existing on the interval [0, 1]. Then

u(t) < ϵ +

∫ 1

0

G(t, s) f(s, uϵ(s)) ds = uϵ(t), t ∈ [0, 1].

Since the maximal solution is unique (see [13]), it is clear that uϵ(t) tends to n(t)
uniformly in t ∈ [0, 1] as ϵ → 0. Which proves the existence of maximal solution to
the integral equation (3). A similar argument holds for the minimal solution.
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