Journal of Fractional Calculus and Applications, Vol. 4. Jan. 2013 No. 6, pp. 1- 9. ISSN: 2090-5858. http://www.fcaj.webs.com/

MAXIMAL AND MINIMAL POSITIVE SOLUTIONS FOR A BOUNDARY VALUE PROBLEM WITH A NONLOCAL CONDITIONS

BIN-TAHER, E.O

ABSTRACT. In this paper we study the existence of positive solution for the ordinary differential equation $u''(t) + f(t, u(t)) = 0, t \in (0, 1)$, with the nonlocal conditions $u(0) = 0, u(1) + D^{\alpha} u(t)|_{t=1} = 0, \alpha \in (0, 1)$ where f is L^1 -Carathèodory. The existence of the maximal and minimal solutions are also studied.

1. INTRODUCTION

Problems with non-local conditions have been extensively studied by several authors in the last two decades. The reader is referred to ([1]-[3]), ([5]-[12]), ([14]-[19]) and ([22]-[24]), and references therein.

In this work we study the existence of at least one positive solution for the nonlocal boundary value problem of the ordinary differential equation

$$u''(t) + f(t, u(t)) = 0, t \in (0, 1),$$
(1)

with the nonlocal conditions

$$u(0) = 0, \ u(1) + {}^{R}D^{\alpha} \ u(t)|_{t=1} = 0.$$
(2)

where f is L^1 -Carathèodory and $^RD^{\alpha}$ is the Riemann-Liouville fractional-order derivative of order $\alpha \in (0, 1)$.

The maximal and minimal solutions of the problem (1)-(2) is studied when the function f is nondecreasing in the second argument.

2. Preliminaries

Let C(I) denotes the class of continuous function on I and $L^1(I)$ denotes the class of Lebesgue integrable functions on the interval I = [a, b], where $0 \le a < b < \infty$ and let $\Gamma(.)$ denotes the gamma function.

²⁰⁰⁰ Mathematics Subject Classification. 34B10, 34B15, 34B27, 26A33.

Key words and phrases. ordinary differential equation, positive solution, Green's function, maximal and minimal solutions.

Submitted June. 3, 2012. Published Jan. 1, 2013.

Definition 1.1 The Riemann-Liouville fractional-order derivative of f of order $\beta \in (0,1)$ is defined as (see [20] and [21])

$$D_a^{\beta} f(t) = \frac{d}{dt} \int_a^t \frac{(t-s)^{-\beta}}{\Gamma(1-\beta)} f(s) \, ds.$$

Definition 1.2 The function $f: [0,1] \times R \to R$ is called L^1 -Carathéodory if (i) $t \to f(t,x)$ is measurable for each $x \in R$, (ii) $x \to f(t,x)$ is continuous for almost all $t \in [0,1]$,

(iii) there exists $m \in L^1[0,1]$ such that $|f| \leq m$.

The following theorem will be needed

Theorem 2.1 (Schauder fixed point theorem [4])

Let E be a Banach space and Q be a convex subset of E, and $T: Q \longrightarrow Q$ is compact, continuous map, Then T has at least one fixed point in Q.

3. EXISTENCE OF SOLUTION

Lemma 3.1 The solution of the problem (1)-(2) can be represent by the integral equation

$$u(t) = A t \left\{ \int_0^1 (1-s) f(s, u(s)) ds + \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds \right\} - \int_0^t (t-s) f(s, u(s)) ds.$$
(3)

where $A = \left(\frac{\Gamma(2-\alpha)}{1 + \Gamma(2-\alpha)}\right)$.

proof. Integral the both sides of equation (1) twice, we obtain

$$u(t) = C_2 + tC_1 - \int_0^t (t-s)f(s, u(s)) \, ds.$$

From the relation u(0) = 0, we have

$$C_2 = 0$$

Then, we have

$$u(t) = tC_1 - \int_0^t (t-s)f(s, u(s)) \, ds.$$

Operating on both sides of the above equation by $I^{1-\alpha}$, we obtain

$$I^{1-\alpha}u(t) = C_1 \frac{t^{2-\alpha}}{\Gamma(3-\alpha)} - I^{3-\alpha}f(t, u(t))$$

Differentiating the last relation , we obtain

$$D^{\alpha}u(t) = \frac{d}{dt}I^{1-\alpha}u(t) = C_1 \frac{t^{1-\alpha}}{\Gamma(2-\alpha)} - I^{2-\alpha}f(t, u(t))$$

Also from the relation $u(1) + D^{\alpha} u(t)|_{t=1} = 0$, we have

$$C_{1} - \int_{0}^{1} (1-s)f(s, u(s)) ds + \frac{C_{1}}{\Gamma(2-\alpha)} - \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds = 0$$

$$C_{1} \left(1 + \frac{1}{\Gamma(2-\alpha)}\right) = \int_{0}^{1} (1-s)f(s, u(s)) ds + \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds$$

 $\rm JFCA-2012/3(S)$

$$C_{1} = \left(\frac{\Gamma(2-\alpha)}{1+\Gamma(2-\alpha)}\right) \left\{ \int_{0}^{1} (1-s)f(s, u(s)) \, ds \, + \, \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) \, ds \right\}$$

and
$$u(t) = \left(\frac{t \, \Gamma(2-\alpha)}{1+\Gamma(2-\alpha)}\right) \left\{ \int_{0}^{1} (1-s)f(s, u(s)) \, ds \, + \, \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) \, ds \right\}$$
$$- \, \int_{0}^{t} (t-s) \, f(s, u(s)) \, ds,$$

then we get

$$u(t) = A t \left\{ \int_0^1 (1-s) f(s, u(s)) ds + \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds \right\} - \int_0^t (t-s) f(s, u(s)) ds.$$

where $A = \left(\frac{\Gamma(2-\alpha)}{1+\Gamma(2-\alpha)}\right).$

Now we can write equation (3) in the formula

$$u(t) = \int_0^1 G(t, s) f(t, u(s)) \, ds.$$
(4)

where

$$G(t, s) = \begin{cases} \frac{-(1+\Gamma(2-\alpha))(t-s)+t\Gamma(2-\alpha)(1-s)+t(1-s)^{1-\alpha}}{1+\Gamma(2-\alpha)}, & 0 \le s \le t \le 1\\ \\ \frac{t\Gamma(2-\alpha)(1-s)+t(1-s)^{1-\alpha}}{1+\Gamma(2-\alpha)}, & 0 \le t \le s \le 1. \end{cases}$$

Lemma 2.2 The function G(t, s) satisfies G(t, s) > 0, for $t, s \in (0, 1)$. **Proof.** For $0 \le s \le t \le 1$, let

$$g(t,s) = -(1 + \Gamma(2 - \alpha))(t - s) + t\Gamma(2 - \alpha)(1 - s) + t(1 - s)^{1 - \alpha}$$

then we have

$$t\Gamma(2-\alpha)(1-s) + t(1-s)^{1-\alpha} \ge t\Gamma(2-\alpha)(1-s) + t(1-s)$$

= $(1+\Gamma(2-\alpha))(t-ts) > (1+\Gamma(2-\alpha))(t-s)$

Thus, g(t, s) > 0. For $0 \le t \le s \le 1$, $G(t, s) \ge 0$ holds clearly. Then we get that G(t, s) > 0 for $t, s \in (0, 1)$.

Definition 2.1 The function u is called a solution of the fractional-order functional integral equation (3), if $u \in C[0, 1]$ and satisfies (3).

For the existence of the solution we have the following theorem

Theorem Assume that the function $f : [0, 1] \times R^+ \to R^+$ is L^1 -Carathèodory. Then the nonlocal boundary value problem (1)-(2) has at least one positive continuous solution $u \in C[0, 1]$.

Proof. Define a subset $Q_r^+ \subset C[0,1]$ by

$$Q_r^+ = \{u(t) > 0, \text{ for each } t \in [0,1], \|u\| \le r\}, r = 2||m||_{L^1}.$$

3

The set Q_r^+ is nonempty, closed and convex. Let $T: Q_r^+ \to Q_r^+$ be an operator defined by

$$Tu(t) = A \ t \ \left\{ \int_0^1 (1-s) \ f(s,u(s)) \ ds - \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \ f(s,u(s)) \ ds \right\}$$
$$- \int_0^t (t-s) \ f(s,u(s)) \ ds.$$

For $u \in Q_r^+$, let $\{u_n(t)\}$ be a sequence in Q_r^+ converges to $u(t), u_n(t) \to u(t), \forall t \in [0, 1]$, then

$$\lim_{n \to \infty} Tu_n(t) = A t \lim_{n \to \infty} \int_0^1 (1-s) f(s, u_n(s)) \, ds - A t \lim_{n \to \infty} \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u_n(s)) \, ds$$
$$- \lim_{n \to \infty} \int_0^t (t-s) f(s, u_n(s)) \, ds$$

Since f is $L^1-{\rm Carath}\grave{\rm e}{\rm odory},$ then by applying Lebesgue dominated convergence theorem we get

$$\lim_{n \to \infty} (Tu_n)(t) = (Tu)(t).$$

Then T is continuous. Now, let $u \in Q_r^+$, then

$$\begin{array}{rcl} (Tu)(t) &\leq & A \ t \int_0^1 (1-s)f(s, \ u(s)) \ ds \ + \ A \ t \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, \ u(s)) \ ds \\ &+ & \int_0^t (t-s) \ f(s, u(s)) \ ds \\ &\leq & A \ \int_0^1 (1-s)f(s, \ u(s)) \ ds \ + \ A \ \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, \ u(s)) \ ds \\ &+ & \int_0^1 (1-s) \ f(s, u(s)) \ ds \\ &\leq & (A \ + \ \frac{A}{\Gamma(2-\alpha)} \ + \ 1) \int_0^1 (1-s)^{1-\alpha} \ f(s, u(s)) \ ds \\ &\leq & \frac{A\Gamma(2-\alpha) \ + \ A \ + \ \Gamma(2-\alpha)}{\Gamma(2-\alpha)} \int_0^1 (1-s)^{1-\alpha} \ m(s) \ ds \\ &\leq & \frac{\Gamma(2-\alpha) \ + \ \Gamma(2-\alpha)}{\Gamma(2-\alpha)} \int_0^1 m(s) \ ds \end{array}$$

Then $\{Tu(t)\}$ is uniformly bounded in Q_r^+ . In what follows we show that T is a completely continuous operator. For $t_1, t_2 \in (0, 1), t_1 < t_2$ such that $|t_2 - t_1| < \delta$ we have

$$\begin{aligned} |Tu(t_2) - Tu(t_1)| &= |A \ t_2 \int_0^1 (1-s) f(s, u(s)) \ ds + At_2 \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds \\ &- \int_0^{t_2} (t_2 - s) f(s, u(s)) ds \\ &- At_1 \int_0^1 (1-s) f(s, u(s)) ds - At_1 \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds \\ &+ \int_0^{t_1} (t_1 - s) f(s, u(s)) \ ds| \end{aligned}$$

$$\leq | \int_{0}^{t_{2}} (t_{2} - s)f(s, u(s))) ds - \int_{0}^{t_{1}} (t_{1} - s)f(s, u(s))) ds |$$

$$+ A |t_{2} - t_{1}| \int_{0}^{1} (1 - s)|f(s, u(s))| ds$$

$$+ A |t_{2} - t_{1}| \int_{0}^{1} \frac{(1 - s)^{1 - \alpha}}{\Gamma(2 - \alpha)} f(s, u(s)) ds$$

$$\leq | \int_{0}^{t_{1}} ((t_{2} - t_{1})) f(s, u(s))) ds$$

$$+ \int_{t_{1}}^{t_{2}} (t_{2} - s)f(s, u(s))) ds |$$

$$+ A |t_{2} - t_{1}| \int_{0}^{1} (1 - s)|f(s, u(s))| ds$$

$$+ A |t_{2} - t_{1}| \int_{0}^{1} \frac{(1 - s)^{1 - \alpha}}{\Gamma(2 - \alpha)} |f(s, u(s))| ds.$$

Hence the class of functions $\{TQ_r^+\}$ is equi-continuous. By Arzela-Ascolis Theorem $\{TQ_r^+\}$ is relatively compact. Since all conditions of Schauder Theorem are hold, then T has a fixed point in Q_r^+ .

Therefor the integral equation (3) has at least one positive continuous solution $u \in C(0,1)$.

Now,

$$\begin{split} \lim_{t \to 0} u(t) &= A \lim_{t \to 0} t \int_0^1 (1-s) f(s, u(s)) ds + A \lim_{t \to 0} t \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds \\ &- \lim_{t \to 0} \int_0^t (t-s) f(s, u(s))) ds = u(0) = 0, \end{split}$$

JFCA-2012/3(S)

 $\quad \text{and} \quad$

$$\lim_{t \to 1} u(t) = A \lim_{t \to 1} t \int_0^1 (1-s) f(s, u(s)) ds + A \lim_{t \to 1} t \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s, u(s)) ds$$
$$- \lim_{t \to 1} \int_0^t (t-s) f(s, u(s)) ds = u(1).$$

Then the integral equation (3) has at least one positive continuous solution $\ u \in C[0,1]$.

To complete the proof differentiating equation (3) twice we obtain the differential equation (1). Operating on both sides of equation (3) by $I^{1-\alpha}$, we obtain

$$I^{1-\alpha}u(t) = \frac{A t^{2-\alpha}}{\Gamma(3-\alpha)} \int_0^1 (1-s) f(s,u(s)) ds + \frac{A t^{2-\alpha}}{\Gamma(3-\alpha)} \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s,u(s)) ds - \int_0^t \frac{(t-s)^{2-\alpha}}{\Gamma(3-\alpha)} f(s,u(s)) ds$$

differentiating the above relation, we get

$$D^{\alpha}u(t) = \frac{d}{dt}I^{1-\alpha}u(t) = \frac{At^{1-\alpha}}{\Gamma(2-\alpha)} \int_0^1 (1-s)f(s,u(s)) \, ds + \frac{At^{1-\alpha}}{\Gamma(2-\alpha)} \int_0^1 \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} f(s,u(s)) \, ds$$
$$- \int_0^t \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds$$

Let t = 1 in equation (3) and in the above equation, we get

$$\begin{split} u(1) &+ D^{\alpha}u(t)|_{t=1} = A \, \int_{0}^{1} (1-s) \, f(s,u(s)) \, ds + A \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds \\ &- \int_{0}^{1} (1-s) \, f(s,u(s)) \, ds + \frac{A}{\Gamma(2-\alpha)} \int_{0}^{1} (1-s) \, f(s,u(s)) \, ds \\ &+ \frac{A}{\Gamma(2-\alpha)} \, \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds - \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds \\ &= \left(A(1+\frac{1}{\Gamma(2-\alpha)})-1\right) \, \int_{0}^{1} (1-s) \, f(s,u(s)) \, ds \\ &+ \left(A(1+\frac{1}{\Gamma(2-\alpha)})-1\right) \, \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds \\ &= \left(A(\frac{\Gamma(2-\alpha)+1}{\Gamma(2-\alpha)})-1\right) \, \int_{0}^{1} (1-s) \, f(s,u(s)) \, ds \\ &+ \left(A(\frac{\Gamma(2-\alpha)+1}{\Gamma(2-\alpha)})-1\right) \, \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds \\ &= \left((\frac{\Gamma(2-\alpha)}{1+\Gamma(2-\alpha)})(\frac{\Gamma(2-\alpha)+1}{\Gamma(2-\alpha)})-1\right) \, \int_{0}^{1} (1-s) \, f(s,u(s)) \, ds \\ &+ \left((\frac{\Gamma(2-\alpha)}{1+\Gamma(2-\alpha)})(\frac{\Gamma(2-\alpha)+1}{\Gamma(2-\alpha)})-1\right) \, \int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)} \, f(s,u(s)) \, ds \\ &= 0. \end{split}$$

6

JFCA-2012/3(S)

The proof is complete.■

4. MAXIMAL AND MINIMAL SOLUTIONS

Here we study the existence of the maximal and minimal solutions of the fractionalorder integral equation (3).

Definition 3.1 Let *n* be a solution of the integral equation (3), then *n* is said to be a maximal solution of (3) if, for every solution *u* of (3), the inequality $u(t) \leq n(t), t \in [0, 1]$, holds.

A minimal solution may be define similarly by reversing the last inequality.

From Theorem 3 we get that the integral equation (3) has a positive solution $u \in C[0, 1]$. Based on this criterion we can prove the following theorem.

Theorem Let the assumptions of Theorem 3 be satisfied. Furthermore, if f(t, x) is non- decreasing functions in x, then there exist maximal and minimal solutions of the integral equation (3).

Proof: Consider the fractional-order integral equation

$$u_{\epsilon}(t) = \epsilon + \int_0^1 G(t,s) f(s, u_{\epsilon}(s)) ds, \epsilon > 0.$$
 (5)

In the view of Theorem 3, it is clear that equation (5) has at least one positive solution $u(t) \in C[0, 1]$. Now, let ϵ_1 and ϵ_2 be such that $0 < \epsilon_2 < \epsilon_1 \leq \epsilon$. Then, we have $u_{\epsilon_2}(0) < u_{\epsilon_1}(0)$ (from (3)-(5), we have $u_{\epsilon_2}(0) = \epsilon_2 < \epsilon_1 = u_{\epsilon_1}(0)$). We can prove

$$u_{\epsilon_2}(t) < u_{\epsilon_1}(t) \text{ for all } t \in [0,1].$$
(6)

To prove conclusion (6), we assume that it is false, then there exist a t_1 such that

$$u_{\epsilon_2}(t_1) = u_{\epsilon_1}(t_1) \text{ and } u_{\epsilon_2}(t) < u_{\epsilon_1}(t) \text{ for all } t \in [0, t_1).$$

Since f is monotonic nondecreasing in u, it follows that $f(t, u_{\epsilon_2}(t)) \leq f(t, u_{\epsilon_1}(t))$ and consequently, using equation (5), we obtain

$$u_{\epsilon_{2}}(t_{1}) = \epsilon_{2} + \int_{0}^{1} G(t_{1},s) f(s, u_{\epsilon_{2}}(s)) ds$$

$$< \epsilon_{1} + \int_{0}^{1} G(t_{1},s) f(s, u_{\epsilon_{1}}(s)) ds$$

$$= u_{\epsilon_{1}}(t_{1}).$$

Which contradict the fact that $u_{\epsilon_2}(t_1) = u_{\epsilon_1}(t_1)$. Hence the inequality (6) is true. From the hypothesis, it follows as in the proof of Theorem 3 that the family of functions $\{u_{\epsilon}\}$ is relatively compact on [0, 1], hence, we can extract a uniformly convergent subsequence $\{u_{\epsilon p}\}$, that is, there exists a decreasing sequence $\{\epsilon_p\}$ such that $\epsilon_p \to 0$ as $p \to \infty$ and $\lim_{p\to\infty} u_{\epsilon p}(t)$ exists uniformly in $t \in [0, 1]$, we denote this limiting value by n(t).

Obviously, the uniform continuity of f and the equation

$$u_{\epsilon_p}(t) = \epsilon_p + \int_0^1 G(t,s) f(s, u_{\epsilon_p}(s)) ds, t \in [0,1],$$

yields n is a solution of equation (3). Finally, we show that the solution n is the maximal solution of equation (3). To achieve this goal, let u be any solution of (3) existing on the interval [0, 1]. Then

$$u(t) < \epsilon + \int_0^1 G(t,s) f(s, u_{\epsilon}(s)) ds = u_{\epsilon}(t), t \in [0,1].$$

Since the maximal solution is unique (see [13]), it is clear that $u_{\epsilon}(t)$ tends to n(t) uniformly in $t \in [0, 1]$ as $\epsilon \to 0$. Which proves the existence of maximal solution to the integral equation (3). A similar argument holds for the minimal solution.

References

- Boucherif, A. and Henderson, J. Positive Solutions of Second Order Boundary Value Problems With Changing Signs Carathéodory Nonlinearities, *Electronic Journal of Qualitative Theory* of Differential Equations 2006, No. 7, 1-14.
- [2] Boucherif, A. Second-order boundary value problems with integral boundary conditions, Nonlinear Analysis 70 (2009) 364-371.
- [3] Bai,Z. and Du, Z. Positive solutions for some second-order four-point boundary value problems, J. Math. Anal. Appl. 330 (2007) 34-50.
- [4] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag (1985).
- [5] Erbe, L. H. and Wang, H. On the existence of positive solutions of ordinary differential equations, *Proceedings of The American Mathematical Society*, volume 120, number 3, March 1994.
- [6] Elo, P. W. and Ahmad, B. Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, *Applied Mathematics Letters* 18 (2005) 521-527.
- [7] Feng, Y. and Liu, S. Existence multiplicity and uniqueness results for a second order m-point boundary value problem, *Bulletin of the Korean Mathematical Society*, vol. 41, no. 3, pp. 483-492, 2004.
- [8] Infante, G. and Webb, J. R. L. Positive solutions of some nonlocal boundary value problems, Abstract and Applied Analysis, vol. 2003, no. 18, pp. 1047-1060, 2003.
- [9] Karakostas, G. L. and Tsamatos, P. Ch. Existence of multiple positive solutions for a nonlocal boundary value problem, Topological Methods in Nonlinear Analysis' *Journal of the Juliusz Schauder Center*, Volume 19, 2002, 109-121.
- [10] Karakostas, G. L. and Tsamatos, P. Ch. Sufficient Conditions for the Existence of Nonnegative Solutions of a Nonlocal Boundary Value Problem, *Applied Mathematics Letters* 15 (2002) 401-407.
- [11] Liu, B. A note on a nonlocal boundary value problems, Applied Mathematics and Computation 154 (2004) 871-880.
- [12] Liu, B. and Liu, L. and Wu, Y. Positive solutions for singular second order three-point boundary value problems, *Nonlinear Analysis* 66 (2007) 27562766.
- [13] Lakshmikantham, V. and Leela, S. Differential and Integral Inequalities, Vol. 1, Academic press, New York-London (1969).
- [14] Liu, Y. Solutions of two-point boundary value problems for even-order differential equations, J. Math. Anal. Appl., 323 (2006) 721-740.
- [15] Liu, B. Positive Solutions of Second-Order Three-Point Boundary Value Problems with Change of Sign, *Computers and Mathematics with Applications*, 47 (2004) 1351-1361.
- [16] Ma, R. and Castaneda, N. Existence of solutions of nonlinear m-point boundary-value problems, Journal of Mathematical Analysis and Applications, vol. 256, no. 2, pp. 556-567, 2001.
- [17] Ma, R. Positive solutions of a nonlinear three-point boundary-value problem, *Electronic Journal of Differential Equations*, Vol. 1998(1998), No. 34, pp. 1-8.
- [18] Ma, R. Positive solutions of second-order three-point boundary value problems, Applied Mathematics Letters, 14(2001)1-5.
- [19] Ntouyas, S. K. Nonlocal initial and boundary value problems: a survey, in Handbook of Differential Equations: Ordinary Differential Equations. Vol. II, A. Canada, P. Drabek, and A. Fonda, Eds., pp. 461 557, Elsevier, Amsterdam, The Netherlands, 2005.

- [20] Podlubny, I. and EL-Sayed, A. M. A. On two definitions of fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).
- [21] Podlubny, I. Fractional Differential Equations, Acad. press, San Diego-New York-London (1999).
- [22] Sun, Y. and Zhang, X. Existence of symmetric positive solutions for an m-point boundary value problem, *Boundary Value Problems*, vol. 2007, Article ID 79090, 14 pages, 2007
- [23] Wong, J. S. W. Positive solutions of second order multipoint boundary value problems with nonhomogeneous boundary conditions, *Differential Equations and Applications* Volume 2, Number 3 (2010), 345-375.
- [24] Yang, C., Zhai, C. and Yan, J. Positive solutions of the three-point boundary value problem for second order differential equations with an advanced argument, *Nonlinear Analysis* 65 (2006) 2013-2023.

BIN-TAHER, E.O

FACULTY OF SCIENCE, HADHRAMOUT UNIVERSITY OF SCI. AND TECH., HADHRAMOUT, YEMEN *E-mail address*: ebtsamsam@yahoo.com