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THE UNIFIED PATHWAY FRACTIONAL INTEGRAL

FORMULAE

PRAVEEN AGARWAL AND S.D. PUROHIT

Abstract. The aim of the present paper is to study unified pathway fractional
integral formulae, whose model was introduced by Mathai [11]. Here, first we

obtain pathway fractional integral formula (PFIF) for the tρ−1 (b− ct)−σand
further apply this result to establish the second PFIF which involves the prod-
uct of a general class of polynomials and Fox H- function. These formulae, be-
sides being of very general character have been put in a compact form avoiding

the occurrence of infinite series and thus making them useful in applications.
Our findings provide interesting unifications and extensions of a number of
(new and known) results. The results obtained by Nair [16] follow as simple

special cases of our main findings. In the end, we record some new PFIF in-
volving the product of the Wright generalized hypergeometric functions and
Mittag-Leffer functions as a special case of our second formula.

1. Introduction

The fractional integral operator involving various special functions, have found
significant importance and applications in various subfield of applicable mathemat-
ical analysis. Since last four decades, a number of workers like Love [10], McBride
[14], Kalla [2, 3], Kalla and Saxena [4], Saigo [18, 19, 20], Kilbas [5], Kilbas and
Sebastian [6], Kiryakova [8, 9] and Machado et.al [25, 26] etc. have studied in
depth, the properties, applications and different extensions of various hypergeo-
metric operators of fractional integration. A detailed account of such operators
along with their properties and applications can be found in the research mono-
graphs by Smako, Kilbas and Marichev [21], Miller and Ross [15], Kiryakova [8, 9],
Kilbas, Srivastava and Trujillo [7] and Debnath and Bhatta [1].

The aim of the present investigation is to obtain new pathway fractional integral
formulae (PFIF), using series expansion method, for the product of a general class
of polynomials and the Fox H-function. The pathway fractional integral operator
further developed in the present paper is based on the pathway model of Mathai
and Haubold. The importance of the present study lies in the fact. Then it can
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be related and applicable to a wide variety of statistical densities. For more details
on the pathway model, the readers are referred to the recent papers of Mathai and
Haubold [12, 13].
Let f(x) ∈ L(a, b), η ∈ C,ℜ(η) > 0, a > 0 and let us take a ”pathway parameter”
α < 1. The pathway fractional integration operator studied in the paper is defined
and represented as follows ([16], p.239):(

P
(η,α)
0+ f

)
(x) = xη

∫ [ x
a(1−α)

]

0

[1− a (1− α) t

x
]

η
(1−α) f(t)dt (1)

The pathway model related to above operator was introduced by Mathai [11] and
studied further by Mathai and Haubold [12, 13]. For real scalar α, the pathway
model for scalar random variables is represented by the following probability density
function (p. d. f.):

f(x) = c |x|γ−1
[
1− a(1− α) |x|δ

] β
(1−α)

(2)

provided that −∞ < x < ∞, δ > 0, β ≥ 0, [1 − a(1 − α) |x|δ] > 0, γ > 0, where c
is the normalizing constant and α is called the pathway parameter. For real α, the
normalizing constant is as follows:

c =
1

2

δ [a(1− α)]
γ
δ Γ

(
γ
δ + β

1−α + 1
)

Γ
(
γ
δ

)
Γ
(

β
1−α + 1

) , for α < 1 (3)

=
1

2

δ [a(1− α)]
γ
δ Γ

(
β

α−1

)
Γ
(
γ
δ

)
Γ
(

β
α−1 − γ

δ

) , for
1

α− 1
− γ

δ
> 0, α > 1 (4)

=
1

2

δ (aβ)
γ
δ

Γ
(
γ
δ

) , α → 1. (5)

We observe that for α < 1 it is a finite range density with [1− a(1−α) |x|δ] > 0
and (2) remains in the extended generalized type-1 beta family. The pathway
density in (2), for α < 1, includes the extended type-1 beta density, the triangular
density, the uniform density and many other p. d. f.
For α > 1 , we have

f(x) = c |x|γ−1
[
1 + a(α− 1) |x|δ

]− β
(α−1)

, (6)

provided that −∞ < x < ∞, δ > 0, β ≥ 0, α > 1, which is the extended generalized
type-2 beta model for real x. It includes the type-2 beta density, the F density, the
Student-t density, the Cauchy density and many more.

Here we consider only the case of pathway parameter α < 1. For α → 1 both
(2) and (6) take the exponential from, since

lim
α→ 1

c |x|γ−1
[
1− a(1− α) |x|δ

] η
(1−α)

=
lim

α→ 1
c |x|γ−1

[
1 + a(α− 1) |x|δ

]− η
(α−1)

= c |x|γ−1 exp(−aη |x|δ) (7)

This include the generalized Gamma, the Weibull, the chi-square, the Laplace, Maxwell-
Boltzmann and other related densities.
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when α→ 1−,
[
1− a(1−α)

x

] η
(1−α) → e

− aη
x

t
. Then, operator (1) reduces to the Laplace

integral transform of f with parameter aη
x
:(

P
(η,1)

0+
f
)
(x) = xη

∫ ∞

0

e−
aη
x f(t)dt = xηLf (

aη

x
) (8)

when α = 0, a = 1, then replacing η by η − 1 in (1) the integral operator reduces to the
Riemann-Liouville fractional integral operator (For more details, we refer to :[7], [8], [17],
[18] and [21]).

Also, S
m
n [x] occurring in the sequel denotes the general class of polynomials introduced

by Srivastava [22, p.1, eqn. (1)]:

S
m
n [x] =

[n/m]∑
k= 0

(−n)mk

k !
An,k xk(n = 0, 1, 2, . . . ), (9)

where m is an arbitrary positive integer and the coefficients An,k(n, k ≥ 0) are arbitrary
constants, real or complex. On suitably specializing the coefficients An,k, S

m
n [x] yields

a number of known polynomials as its special cases. These include, among others, the
Hermite polynomials, the Jacobi polynomials, the Lagurre polynomials, the Bessel’s poly-
nomials and several others (see [24, pp. 158-161].
The generalized hypergeometric function of one variable defined and represented as follows
is also required here:

pFq

[
(ap) ;
(bq) ;

z

]
=

∞∑
n=0

∏p
j=1 (aj)n∏q
j=1 (bj)n

zn

n!
, provided p ≤ qorp = q + 1and |z| < 1. (10)

The H-function of two variables occurring in the paper is defined and represented in
the following form ([23, p.82, eq. (6.1.1)]) :

H [x, y] = H
0,N1:M2,N2;M3,N3
P1,Q1:P2,Q2;P3,Q3

[
x
y

∣∣∣∣ (aj;αj,Aj)1,P1
: (cj,γj)1,P2

;(ej,Ej)1,P3

(bj;βj,Bj)1,Q1
: (dj,δj)1,Q2

;(fj,Fj)1,Q3

]
=

1

(2πω)2

∫
L1

∫
L2

ϕ1(ξ, η)θ1(ξ)θ2(η)x
ξyηdξdη (11)

where ω =
√

(−1) ,

ϕ1(ξ, η) =

∏N1
j=1 Γ(1− aj + αjξ +Ajη)∏P1

j=N1+1 Γ(aj − αjξ −Ajη)
∏Q1

j=1 Γ(1− bj + βjξ +Bjη)
, (12)

θ1(ξ) =

∏M2
j=1 Γ(dj − δjξ)

∏N2
j=1 Γ(1− cj + γjξ)∏Q2

j=M2+1 Γ(1− dj + δjξ)
∏P2

j=N2+1 Γ(cj + γjξ)
(13)

and

θ2(η) =

∏M3
j=1 Γ(fj − Fjη)

∏N3
j=1 Γ(1− ej + Ejη)∏Q3

j=M3+1 Γ(1− fj + Fjη)
∏P3

j=N3+1 Γ(ej − Ejη)
, (14)

The nature of contour L1, L2in (11), the various special cases and other details of the
above function can be found in the book referred to above.

It may be remarked here that all the Greek letter occurring in the left-hand side of
(11) are assumed to be positive real numbers for standization purposes. The definition of
this function will, however, be meaningful even if some of these quantities are zero.
Again, it is assumed that the various H-functions of one and two variables occurring in
the paper always satisfy their appropriate conditions of convergences ([23, pp.10-11 and
82-83]).
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2. Main Results

2.1. Pathway Fractional Integral Formula 1.

{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ)} (x) = xη+ρ b−σ

[a(1− α)]ρ
Γ(1 + η

1−α
)Γ(ρ)

Γ(1 + η
1−α

+ ρ)

× 2F1

[
σ, ρ

1 + η
1−α

+ ρ
;

c

ba(1− α)
x

]
, (15)

provided that
(i) η, ρ, σ ∈ C,ℜ(η) > 0, and α < 1.

(ii) ℜ(ρ) > 0,ℜ(σ) > 0 and ℜ
(

η
1−α

)
> −1,

(iii)
∣∣ c
b
x
∣∣ < 1.

2.2. Pathway Fractional Integral Formula 2.{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ Sm

n

(
e1t

ρ1 (b− ct)−σ1
)
HM,N

P,Q

[
e2t

ρ2 (b− ct)−σ2
])}

(x)

= xη+ρ b−σ

[a(1−α)]ρ

∑[ n
m ]

k=0
(−n)mk

k!
An,k

(
e1b

−σ1
)k ( x

a(1−α)

)ρ1k

Γ(1 + η
1−α

)

H0,2:M,N+1;1,0
2,1:P+1,Q;0,1

[
b−σ2e2x

ρ2

[a(1−α)]ρ2
−xc

[ab(1−α)]

∣∣∣∣ (1− ρ− ρ1k; ρ2, 1), (1− σ − σ1k;σ2, 1) :
(−ρ− ρ1k − η

1−α
; ρ2, 1),− :

(a1, α1), ..., (aP , αP ), (1− σ − σ1k;σ2);−
(b1, β1), ..., (bQ, βQ),−; (0, 1)

]
(16)

provided that

(i) η, ρ, ρ1, ρ2, σ, σ1, σ2 ∈ C,ℜ
(

η
1−α

)
> −1, ℜ(η, ρ, ρ1, ρ2, σ, σ1, σ2) > 0, and α < 1,e1, e2 ∈

R.
(ii)

∣∣ c
b
x
∣∣ < 1.

Proof of (15): To prove the pathway fractional integral formula (PFIF) 1, we first express

the (b− ax)−σoccurring on its left-hand side in the following binomial expansion form

(b− cx)−σ = b−σ
∞∑
l=0

(σ)l
l!

(c
b
x
)l

;
∣∣∣ c
b
x
∣∣∣ < 1 (17)

and then by using (1), taking f(x) = xρ+l−1 , we have:{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ)} (x)

= b−σ
∞∑
l=0

(σ)l
l!

(c
b

)l

xη
∫ [

x
a(1−α)

]
0

[
1− a (1− α) t

x

] η
(1−α)

tρ+l−1dt

= b−σxη+ρ
Γ(1 + η

1−α
)

[a (1− α)]ρ

∞∑
l=0

(σ)l

[a (1− α)]l l!

Γ(ρ+ l)

Γ(1 + η
1−α

+ ρ+ l)

(c
b
x
)l

(18)

Finally, interpreting the hypergeometric series of x in terms of the pFq-function, we easily
arrive at the desired formula (15) after a little simplification.

Proof of (16): To prove PFIF 2, we first express S
m
n [x] in its series form with the help

of (9) and put the value of HM,N
P,Q [.] in terms of Mellin-Barnes contour integral by help of

application of (11) (see also [23, p.10, eqn. (2.1.1)]). Interchanging the order of integration
and summation (which is permissible under the conditions stated with PFIF 2) and using
PFIF 1, then by using (1), taking f(x) = xρ+l+ρ1k+ρ2ξ−1 (16) assume the following form
(Say I) after a little simplification:
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I =

[ n
m ]∑

k=0

(−n)mk

k!
An,k (e1)

k

{(
1

2πi

)2 ∫
L1

∫
L2

ϕ(ξ)eξ2b
−σ−σ1k−σ2ξ Γ(σ + σ1k + σ2ξ)

Γ(l + 1)

(
−c
b

)l

×xη
∫ [

x
a(1−α)

]
0

[
1− a (1− α) t

x

] η
(1−α)

tρ+l+ρ1k+ρ2ξ−1dtdξdl

}
(19)

Finally, interpreting the ξ, l contour integrals in terms of the H-function of two variables
with the help of (11), we shall be led fairly easily to our PFIF 2.

3. Special Cases and Applications

The pathway fractional integral formula 1 and 2 established earlier are unified in nature
and act as key formulae. These results can be reduced to the Laplace integral transform
formulae when the pathway parameter α → 1 in (15) and (16). Thus the general class
of polynomial involved in PFIF 2 reduces to a large spectrum of polynomials listed by
Srivastava and Singh [24] and so from formula 2 we can further obtain various pathway
fractional integral formulas involving a number of simpler polynomials. Again, the H-
function of one variable occurring in the PFIF 2 can be suitably specialized to a remarkably
wide variety of useful functions which are expressible in terms of Wright hypergeometric
functions and Mittag-Lafter functions of one variable. For example:
If in PFIF 1, we take α → 1−,

η
1−α

→ ∞ and expand the gamma-functions involved in

(15) by using the Stirling formula, we have

Γ(1 + η
1−α

)

(1− α)ρ+lΓ(1 + η
1−α

+ ρ+ l)
→ 1

(η)ρ+l
.

Hence
lim

α→ 1−

{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ)} (x) = xη+ρb−σ

∞∑
l=0

(σ)l
l!

Γ(ρ+ l)

(aη)ρ+l

(c
b
x
)l

, (20)

provided that
∣∣ c
b
x
∣∣ < 1.

The formula given by (20) can also be considered as the following Laplace transform
formula with the help of (18):

lim
α→ 1−

{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ)} (x) = xη(b)−σ ∑∞

l=0
(σ)l
l!

(
c
b

)l ∫∞
0
e−

aη
x

ttρ+l−1dt

= xη+ρb−σ ∑∞
l=0

(σ)l
l!

Γ(ρ+l)

(aη)ρ+l

(
c
b
x
)l
.

(21)
The conditions of validity of (21) can be easily obtained from those of (15).

Similarly, if we set α→ 1−, in the right hand side of PFIF 2, it (say R) tends to

R = xη+ρ b−σ

[a(1− α)]ρ

[ n
m ]∑

k=0

(−n)mk

k!
An,k

(
e1b

−σ1
)k ( x

a(1− α)

)ρ1k

Γ(1 +
η

1− α
)

×
(

1

2πi

)2 ∫
L1

∫
L2

ϕ(ξ)(−c
b
)l
Γ(σ + σ1k + σ2ξ)Γ(σ + σ1k + σ2ξ + l)

Γ(l + 1)

× Γ(ρ+ ρ1k + ξρ2 + l)

Γ(1 + ρ+ η
1−α

+ ρ1k + ξρ2 + l)

(e2)
ξ(x)ξρ2+l

[a(1− α)]ξρ2+l
dξdl

= xη+ρ b−σ

(aη)ρ

[ n
m ]∑

k=0

(−n)mk

k!
An,k

(
e1b

−σ1
)k ( x

aη

)ρ1k
(

1

2πi

)2
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×
∫
L1

∫
L2

ϕ(ξ)(−c
b
)l
Γ(σ + σ1k + σ2ξ)Γ(σ + σ1k + σ2ξ + l)Γ(ρ+ ρ1k + ξρ2 + l)

Γ(l + 1)

× (e2)
ξ(x)ξρ2+l

[aη]ξρ2+l
dξdl.

Interpreting the above expression in terms of the H-function of two variables, we finally
get the following result after a little simplification:

lim
α→ 1−

{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ Sm

n

(
e1t

ρ1 (b− ct)−σ1
)
HM,N

P,Q

[
e2t

ρ2 (b− ct)−σ2
])}

(x)

= xη+ρ b−σ

(aη)ρ

[ n
m ]∑

k=0

(−n)mk

k!
An,k

(
e1b

−σ1
)k ( x

aη

)ρ1k

×H0,2:M,N+1;1,0
2,0:P+1,Q;0,1

[
e2x

ρ2

[aη]ρ2
−xc
[baη]

∣∣∣∣ (1− ρ− ρ1k; ρ2, 1), (1− σ − σ1k;σ2, 1) :
− :

(a1, α1), ..., (aP , αP ), (1− σ − σ1k;σ2);−
(b1, β1), ..., (bQ, βQ); (0, 1)

]
. (22)

The result given by (22) can also be express in the following form:

lim
α→ 1−

{
P

(η,α)

0+

(
tρ−1 (b− ct)−σ Sm

n

(
e1t

ρ1 (b− ct)−σ1
)
HM,N

P,Q

[
e2t

ρ2 (b− ct)−σ2
])}

(x)

=

[ n
m ]∑

k=0

(−n)mk

k!
An,k (e1)

k

{(
1

2πi

)2 ∫
L1

∫
L2

ϕ(ξ)eξ2b
−σ−σ1k−σ2ξ Γ(σ + σ1k + σ2ξ)

Γ(l + 1)

(
−c
b

)l

× xη
∫ ∞

0

e−
aη
x

ttρ+l+ρ1k+ρ2ξ−1dtdξdl

}
. (23)

The above result can be interpreted as a Laplace transform formula of the product of a
general class of polynomials and Fox H-function
If in PFIF 2, we reduce the Fox H-function to the exponential function [23] and SM

n [.] to
the Hermite polynomial [24] by setting:

S2
n → xn/2Hn

[
1
2
√
x

]
which case m → 2, An,k → (−1)k , we have the following interesting consequences of the
(16) after little simplification.{

P
(η,α)

0+

(
tρ−1 (b− ct)−σ tn/2Hn

[
1
2
√
t

]
β−1
1 tb1/β1 exp(−t1/β1)

)}
(x)

= xη+ρ b−σ

[a(1− α)]ρ

[n2 ]∑
k=0

(−n)2k
k!

(−1)k
(

x

a(1− α)

)k

Γ(1 +
η

1− α
)Γ(σ)

×H0,1:1,0;1,1
1,1:0,1;1,1

[
−x

[a(1−α)]ρ2
−xc

[ab(1−α)]

∣∣∣∣ (1− ρ− k; 1, 1) : −; (1− σ, 1)
(−ρ− k − η

1−α
; 1, 1) : (b1, β1); (0, 1)

]
. (24)

provided that
∣∣ c
b
x
∣∣ < 1. The conditions of validity of (24) can be easily obtained from

those of (16).
If, we put n, b1 → 0 and make suitable adjustment in the parameter in (24), we arrive at
the known result given by Nair [16].
If in (16), we reduce the Fox H-function occurring therein to generalized Mittag-Laffer-
function [23], we easily get new and interesting result of PFIF 2 after little simplification:{

P
(η,α)

0+

(
tρ−1 (b− ct)−σ Sm

n

(
e1t

ρ1 (b− ct)−σ1
)
Eν

β,µ [e2t
ρ2 ]

)}
(x)
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= xη+ρ b−σ

[a(1− α)]ρ

[ n
m ]∑

k=0

(−n)mk

k!
An,k

(
e1b

−σ1
)k ( x

a(1− α)

)ρ1k

Γ(1 +
η

1− α
)Γ(σ + σ1k)

×H0,1:1,1;1,1
1,1:1,2;1,1

[
e2x

ρ2

[a(1−α)]ρ2
−xc

[ab(1−α)]

∣∣∣∣ (1− ρ− ρ1k; ρ2, 1) : (1− ν, 1); (1− σ − σ1k, 1)
(−ρ− ρ1k − η

1−α
; ρ2, 1) : (0, 1), (1− µ, β); (0, 1)

]
, (25)

provided that
∣∣ c
b
x
∣∣ < 1. The conditions of validity of (25) can be easily obtained from

those of (16).
If, we set Sm

n [.] → 1 and make suitable adjustment in the parameter in (25), we arrive at
the known result given by Nair [16].
If in PFIF 2, we reduce the Fox H-function occurring therein to Wright generalized hy-
pergeometric function [23, p.19, eqn. (2.6.11)], we easily get after little simplification the
following new and interesting result:{

P
(η,α)

0+

(
tρ−1 (b− ct)−σ Sm

n

(
e1t

ρ1 (b− ct)−σ1
)
PψQ [e2t

ρ2 ]
)}

(x)

= xη+ρ b−σ

[a(1− α)]ρ

[ n
m ]∑

k=0

(−n)mk

k!
An,k

(
e1b

−σ1
)k ( x

a(1− α)

)ρ1k

Γ(1 +
η

1− α
)Γ(σ + σ1k)

×H0,1:1,P ;1,1
1,1:P,Q+1;1,1

[
−e2x

ρ2

[a(1−α)]ρ2
−xc

[ab(1−α)]

∣∣∣∣ (1− ρ− ρ1k; ρ2, 1) :
(−ρ− ρ1k − η

1−α
; ρ2, 1) :

(1− a1, α1), ..., (1− aP , αP ); (1− σ − σ1k; 0, 1)
(0, 1), (1− b1, β1), ..., (1− bQ, βQ); (0, 1)

]
, (26)

provided that
∣∣ c
b
x
∣∣ < 1. The conditions of validity of (26) can be easily obtained from

those of (16).

4. Conclusion

In this paper, we have presented two pathway fractional integral formulas (PFIF). The
results have been developed in terms of the generalized hypergeometric functions and the
product of H-functions and a general class of polynomials respectively in a compact and
elegant form with the help of Nair [16] operator. Most of the results obtained are in a
form besides being of very general character has been put in a compact form avoiding
the occurrence of infinite series and thus making them useful in applications. The result
obtained in the present paper provides an extension of the results given by Nair [16] as
mentioned earlier.
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